
Math 170S

Lecture Notes Section 6.7 ∗†

Sufficient statistics

Instructor: Swee Hong Chan

NOTE: The notes is a summary for materials discussed

in the class and is not supposed to substitute the text-

book. Please send me an email if you find typos.

∗Version date: Monday 19th October, 2020, 11:10.
†This notes is based on Hanbaek Lyu’s and Liza Rebrova’s notes from the

previous quarter, and I would like to thank them for their generosity. “Nanos
gigantum humeris insidentes (I am but a dwarf standing on the shoulders of
giants)”.
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1 Recap: MLE

Recall what we learn about MLE from before.

• Problem: X is an unknown random variable with

distribution fθ and unknown parameter θ.

• Input: Samples x1, x2, . . . , xn of X .

• Output: An estimate θ̂ for θ.
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2 Example: Bernoulli

Let X be a Bernoulli random variable with parameter p.

The MLE is

p̂ =
x1 + . . . + xn

n
,

the sample mean. Other aspects (e.g., median, maximum,

minimum) of x1, . . . , xn is irrelevant in computing p̂.

Intuitively, this means that x is a sufficient statistics

for p̂.
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3 Example: Uniform

Let X be the uniform random variable on the interval

[0, θ]. The MLE is

θ̂ = max(x1, . . . , xn).

Note that you cannot compute θ̂ by only knowing the

sample mean.

Intuitively, this means that x is not a sufficient

statistics for θ̂.
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4 Statistics

A statistic u := u(x1, . . . , xn) is a real number whose

values depend only on the samples x1, . . . , xn (and im-

plicitly, on n).

For example, the functions

x1 + . . . + xn
n

and x21 + . . . + x2n

are statistics of X , as they depend only on x1, . . . , xn.

On the other hand, the function

θ + x1 + . . . + xn

is not a statistic as it also depends on (unknown) θ.
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5 Sufficient statistics (rigorous)

A statistic u := u(x1, . . . , xn) is a sufficient statistics,

if there exists functions φ and h such that

fθ(x1) . . . fθ(xn) = φ(u, θ)h(x1, . . . , xn),

where φ : R×R → R is a function that depends only

on u and θ, and h := h(x1, . . . , xn) is a statistics that

depend only on x1, . . . , xn.

My mnemonic to remember the formula above is that

“The u and θ are the favorite children of the family, so

they are separated from the rest of the children (x’s).”
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6 Example: Bernoulli (rigorous)

Let X be the Bernoulli random variable with unknown

parameter p. Let u := u(x1, . . . , xn) be the statistic

u =
x1 + . . . + xn

n
,

the sample mean. Then (BT)

fp(x1) . . . fp(xn) = pnu(1− p)n−nu.

To check u is a sufficient statistics, let φ and h be

φ(u, p) :=pnu(1− p)n−nu; h(x1, . . . , xn) := 1.

Then we see that

fp(x1) . . . fp(xn) = φ(u, p)h(x1, . . . , xn) .
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7 Example: Poisson

Let X be the Poisson random variable with unknown

parameter λ,

fλ(x) =
λxe−λ

x!
(x ∈ {0, 1, 2, . . .}).

Let u := u(x1, . . . , xn) be the statistic

u =
x1 + . . . + xn

n
.

We then have (BT)

fλ(x1) . . . fλ(xn) =
λx1e−λ

x1!
. . .

λxne−λ

xn!

= λx1+...+xne−nλ
1

x1!x2! . . . xn!

= λnue−nλ
1

x1!x2! . . . xn!
.
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To see that u is a sufficient statistics, let φ and h be

φ(u, λ) :=λnue−nλ;

h(x1, . . . , xn) :=
1

x1!x2! . . . xn!
.

Then we see that

fλ(x1) . . . fλ(xn) = φ(u, λ)h(x1, . . . , xn),

as desired.
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8 Example: Uniform (rigorous)

Let X be the uniform random variable on the interval

[0, θ],

fθ(x) =


1
θ if 0 < x ≤ θ;

0 otherwise.

Let u := u(x1, . . . , xn) be the statistic

u =
x1 + . . . + xn

n
.

We then have

fθ(x1) . . . fθ(xn) =


1
θ

n
if θ ≥ max(x1, . . . , xn),

0 if θ < max(x1, . . . , xn).

This function cannot be written as products that separate

u and θ from x’s, so u is not a sufficient statistic.
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On the other hand, let w be the statistics

w := max(x1, . . . , xn).

Let φ and h be defined by

φ(w, θ) :=


1
θ

n
if θ ≥ w,

0 if θ < w.

;

h(x1, . . . , xn) :=1.

Then we see that

fθ(x1) . . . fθ(xn) = φ(w, θ)h(x1, . . . , xn),

so w is a sufficient statistics.
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9 Joint sufficient statistics

Recall that sometimes X is a random variable with two

unknown parameters θ1, θ2.

Two statistics u1 := u1(x1, . . . , xn) and u2 := u2(x1, . . . , xn)

are joint sufficient statistics, if there exists φ and h

such that

fθ1,θ2(x1) . . . fθ1,θ2(xn) = φ(u1, u2, θ1, θ2)h(x1, . . . , xn),

where φ : R×R×R×R → R is a function that de-

pends only on u1, u2, θ1, θ2, and h := h(x1, . . . , xn) is a

statistics that depend only on x1, . . . , xn.
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10 Example: Normal

Let X be a normal random variable with unknown mean

µ and unknown variance σ2,

fµ,σ2(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
.

Let u1 := u(x1, . . . , xn) and u2 := u(x1, . . . , xn) be the

statistics

u1 :=x1 + . . . + xn;

u2 :=x21 + . . . + x2n;
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We then have (BT)

fµ,σ2(x1) . . . fµ,σ2(xn)

=
1√

2πσ2
exp

(
−(x1 − µ)2

2σ2

)
. . .

1√
2πσ2

exp

(
−(xn − µ)2

2σ2

)
= (2πσ2)−n/2 exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2

)
.

Now note that

n∑
i=1

(xi − µ)2 =

n∑
i=1

(x2i − 2xiµ + µ2)

=

(
n∑
i=1

x2i

)
− 2µ

(
n∑
i=1

xi

)
+

(
n∑
i=1

µ2

)
= u2 − 2µu1 + nµ2.

Combining the two equation above,

fµ,σ2(x1) . . . fµ,σ2(xn) = (2πσ2)−n/2 exp

(
−u2 − 2µu1 + nµ2

2σ2

)
.
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To see that u is a sufficient statistics, let φ and h be

φ(u1, u2, µ, σ
2) :=(2πσ2)−n/2 exp

(
−u2 − 2µu1 + nµ2

2σ2

)
;

h(x1, . . . , xn) :=1.

Then we see that

fµ,σ2(x1) . . . fµ,σ2(xn) = φ(u1, u2, µ, σ
2)h(x1, . . . , xn),

as desired.
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