Math 170S
 Lecture Notes Section $6.7{ }^{* \dagger}$ Sufficient statistics

Instructor: Swee Hong Chan

NOTE: The notes is a summary for materials discussed in the class and is not supposed to substitute the text-
book. Please send me an email if you find typos.
*Version date: Monday $19^{\text {th }}$ October, 2020, 11:10.
${ }^{\dagger}$ This notes is based on Hanbaek Lyu's and Liza Rebrova's notes from the previous quarter, and I would like to thank them for their generosity. "Nanos gigantum humeris insidentes (I am but a dwarf standing on the shoulders of giants)".

1 Recap: MLE

Recall what we learn about MLE from before.

- Problem: X is an unknown random variable with distribution f_{θ} and unknown parameter θ.
- Input: Samples $x_{1}, x_{2}, \ldots, x_{n}$ of X.
- Output: An estimate $\widehat{\theta}$ for θ.

2 Example: Bernoulli

Let X be a Bernoulli random variable with parameter p.
The MLE is

$$
\widehat{\mathrm{p}}=\frac{x_{1}+\ldots+x_{n}}{n}
$$

the sample mean. Other aspects (e.g., median, maximum, minimum) of x_{1}, \ldots, x_{n} is irrelevant in computing $\widehat{\mathrm{p}}$.

Intuitively, this means that \bar{x} is a sufficient statistics

$$
\text { for } \widehat{p} \text {. }
$$

3 Example: Uniform

Let X be the uniform random variable on the interval
$[0, \theta]$. The MLE is

$$
\widehat{\theta}=\max \left(x_{1}, \ldots, x_{n}\right)
$$

Note that you cannot compute $\widehat{\theta}$ by only knowing the sample mean.

Intuitively, this means that \bar{x} is not a sufficient statistics for $\widehat{\theta}$.

4 Statistics

A statistic $u:=u\left(x_{1}, \ldots, x_{n}\right)$ is a real number whose values depend only on the samples x_{1}, \ldots, x_{n} (and implicitly, on n).

For example, the functions

$$
\frac{x_{1}+\ldots+x_{n}}{n} \quad \text { and } \quad x_{1}^{2}+\ldots+x_{n}^{2}
$$

are statistics of X, as they depend only on x_{1}, \ldots, x_{n}. On the other hand, the function

$$
\theta+x_{1}+\ldots+x_{n}
$$

is not a statistic as it also depends on (unknown) θ.

5 Sufficient statistics (rigorous)

A statistic $u:=u\left(x_{1}, \ldots, x_{n}\right)$ is a sufficient statistics, if there exists functions ϕ and h such that

$$
f_{\theta}\left(x_{1}\right) \ldots f_{\theta}\left(x_{n}\right)=\phi(u, \theta) h\left(x_{1}, \ldots, x_{n}\right),
$$

where $\phi: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a function that depends only on u and θ, and $h:=h\left(x_{1}, \ldots, x_{n}\right)$ is a statistics that depend only on x_{1}, \ldots, x_{n}.

My mnemonic to remember the formula above is that
"The u and θ are the favorite children of the family, so they are separated from the rest of the children (x's)."

6 Example: Bernoulli (rigorous)

Let X be the Bernoulli random variable with unknown parameter p. Let $u:=u\left(x_{1}, \ldots, x_{n}\right)$ be the statistic

$$
u=\frac{x_{1}+\ldots+x_{n}}{n}
$$

the sample mean. Then (BT)

$$
f_{p}\left(x_{1}\right) \ldots f_{p}\left(x_{n}\right)=p^{n u}(1-p)^{n-n u} .
$$

To check u is a sufficient statistics, let ϕ and h be

$$
\phi(u, p):=p^{n u}(1-p)^{n-n u} ; \quad h\left(x_{1}, \ldots, x_{n}\right):=1 .
$$

Then we see that

$$
f_{p}\left(x_{1}\right) \ldots f_{p}\left(x_{n}\right)=\phi(u, p) h\left(x_{1}, \ldots, x_{n}\right) .
$$

7 Example: Poisson

Let X be the Poisson random variable with unknown parameter λ,

$$
f_{\lambda}(x)=\frac{\lambda^{x} e^{-\lambda}}{x!} \quad(x \in\{0,1,2, \ldots\})
$$

Let $u:=u\left(x_{1}, \ldots, x_{n}\right)$ be the statistic

$$
u=\frac{x_{1}+\ldots+x_{n}}{n}
$$

We then have (BT)

$$
\begin{aligned}
f_{\lambda}\left(x_{1}\right) \ldots f_{\lambda}\left(x_{n}\right) & =\frac{\lambda^{x_{1}} e^{-\lambda}}{x_{1}!} \ldots \frac{\lambda^{x_{n}} e^{-\lambda}}{x_{n}!} \\
& =\lambda^{x_{1}+\ldots+x_{n}} e^{-n \lambda} \frac{1}{x_{1}!x_{2}!\ldots x_{n}!} \\
& =\lambda^{n u} e^{-n \lambda} \frac{1}{x_{1}!x_{2}!\ldots x_{n}!} .
\end{aligned}
$$

To see that u is a sufficient statistics, let ϕ and h be

$$
\begin{aligned}
\phi(u, \lambda) & :=\lambda^{n u} e^{-n \lambda} \\
h\left(x_{1}, \ldots, x_{n}\right) & :=\frac{1}{x_{1}!x_{2}!\ldots x_{n}!} .
\end{aligned}
$$

Then we see that

$$
f_{\lambda}\left(x_{1}\right) \ldots f_{\lambda}\left(x_{n}\right)=\phi(u, \lambda) h\left(x_{1}, \ldots, x_{n}\right)
$$

as desired.

8 Example: Uniform (rigorous)

Let X be the uniform random variable on the interval
$[0, \theta]$,

$$
f_{\theta}(x)= \begin{cases}\frac{1}{\theta} & \text { if } 0<x \leq \theta \\ 0 & \text { otherwise }\end{cases}
$$

Let $u:=u\left(x_{1}, \ldots, x_{n}\right)$ be the statistic

$$
u=\frac{x_{1}+\ldots+x_{n}}{n}
$$

We then have

$$
f_{\theta}\left(x_{1}\right) \ldots f_{\theta}\left(x_{n}\right)= \begin{cases}\frac{1^{n}}{}{ }^{n} & \text { if } \theta \geq \max \left(x_{1}, \ldots, x_{n}\right) \\ 0 & \text { if } \theta<\max \left(x_{1}, \ldots, x_{n}\right)\end{cases}
$$

This function cannot be written as products that separate u and θ from x 's, so u is not a sufficient statistic.

On the other hand, let w be the statistics

$$
w:=\max \left(x_{1}, \ldots, x_{n}\right)
$$

Let ϕ and h be defined by

$$
\begin{aligned}
\phi(w, \theta) & := \begin{cases}\frac{1}{\theta}^{n} & \text { if } \theta \geq w, \\
0 & \text { if } \theta<w .\end{cases} \\
h\left(x_{1}, \ldots, x_{n}\right) & :=1 .
\end{aligned}
$$

Then we see that

$$
f_{\theta}\left(x_{1}\right) \ldots f_{\theta}\left(x_{n}\right)=\phi(w, \theta) h\left(x_{1}, \ldots, x_{n}\right)
$$

so w is a sufficient statistics.

9 Joint sufficient statistics

Recall that sometimes X is a random variable with two unknown parameters θ_{1}, θ_{2}.

Two statistics $u_{1}:=u_{1}\left(x_{1}, \ldots, x_{n}\right)$ and $u_{2}:=u_{2}\left(x_{1}, \ldots, x_{n}\right)$ are joint sufficient statistics, if there exists ϕ and h such that
$f_{\theta_{1}, \theta_{2}}\left(x_{1}\right) \ldots f_{\theta_{1}, \theta_{2}}\left(x_{n}\right)=\phi\left(u_{1}, u_{2}, \theta_{1}, \theta_{2}\right) h\left(x_{1}, \ldots, x_{n}\right)$,
where $\phi: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a function that depends only on $u_{1}, u_{2}, \theta_{1}, \theta_{2}$, and $h:=h\left(x_{1}, \ldots, x_{n}\right)$ is a statistics that depend only on x_{1}, \ldots, x_{n}.

10 Example: Normal

Let X be a normal random variable with unknown mean μ and unknown variance σ^{2},

$$
f_{\mu, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) .
$$

Let $u_{1}:=u\left(x_{1}, \ldots, x_{n}\right)$ and $u_{2}:=u\left(x_{1}, \ldots, x_{n}\right)$ be the statistics

$$
\begin{aligned}
& u_{1}:=x_{1}+\ldots+x_{n} ; \\
& u_{2}:=x_{1}^{2}+\ldots+x_{n}^{2} ;
\end{aligned}
$$

We then have (BT)

$$
\begin{aligned}
& f_{\mu, \sigma^{2}}\left(x_{1}\right) \ldots f_{\mu, \sigma^{2}}\left(x_{n}\right) \\
= & \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x_{1}-\mu\right)^{2}}{2 \sigma^{2}}\right) \ldots \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x_{n}-\mu\right)^{2}}{2 \sigma^{2}}\right) \\
= & \left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right) .
\end{aligned}
$$

Now note that

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} & =\sum_{i=1}^{n}\left(x_{i}^{2}-2 x_{i} \mu+\mu^{2}\right) \\
& =\left(\sum_{i=1}^{n} x_{i}^{2}\right)-2 \mu\left(\sum_{i=1}^{n} x_{i}\right)+\left(\sum_{i=1}^{n} \mu^{2}\right) \\
& =u_{2}-2 \mu u_{1}+n \mu^{2}
\end{aligned}
$$

Combining the two equation above,

$$
f_{\mu, \sigma^{2}}\left(x_{1}\right) \ldots f_{\mu, \sigma^{2}}\left(x_{n}\right)=\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left(-\frac{u_{2}-2 \mu u_{1}+n \mu^{2}}{2 \sigma^{2}}\right)
$$

To see that u is a sufficient statistics, let ϕ and h be

$$
\begin{aligned}
\phi\left(u_{1}, u_{2}, \mu, \sigma^{2}\right) & :=\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left(-\frac{u_{2}-2 \mu u_{1}+n \mu^{2}}{2 \sigma^{2}}\right) \\
h\left(x_{1}, \ldots, x_{n}\right) & :=1
\end{aligned}
$$

Then we see that

$$
f_{\mu, \sigma^{2}}\left(x_{1}\right) \ldots f_{\mu, \sigma^{2}}\left(x_{n}\right)=\phi\left(u_{1}, u_{2}, \mu, \sigma^{2}\right) h\left(x_{1}, \ldots, x_{n}\right),
$$

as desired.

