Math 170S

Lecture Notes Section 6.4 *[†] Maximum likelihood estimation

Instructor: Swee Hong Chan

WARNING: We have now reached possibly the most important concept in 170S. Please please please ask me questions if you are lost at any point.

^{*}Version date: Sunday 11th October, 2020, 20:41.

[†]This notes is based on Hanbaek Lyu's and Liza Rebrova's notes from the previous quarter, and I would like to thank them for their generosity. "*Nanos gigantum humeris insidentes* (I am but a dwarf standing on the shoulders of giants)".

1 Example of MLE: motivation

The friendly instructor owns an unknown random variable X for you to guess. He gives you three hints:

• X is a Bernoulli random variable for some unknown parameter p, with pmf

$$f_X(x) = P[X = x] = p^x (1-p)^{1-x} \qquad x = 0, 1.$$

• *p* is one of these four numbers,

$$p \in \{0, 0.2, 0.7, 1\}.$$

• 5 sample values x_1, x_2, x_3, x_4, x_5 are given.

Your job is to guess the unknown parameter p.

Here are some possible scenarios:

- $x_1 = x_2 = \ldots = x_5 = 0$. In this case, most people would guess p = 0.
- $x_1 = x_2 = \ldots = x_5 = 1$. In this case, most people would guess p = 1.
- x₁ = 1, x₂ = 0, x₃ = 0, x₄ = 1, x₅ = 1. Intuitively, most people would guess p = ³/₅ = 0.6. However, 0.6 is not an option for p, so we choose the closest value p = 0.7.

These guesses are indeed the best guess one can make, in a manner to be made precise. Let X be the Bernoulli random variable with unknown parameter p.

Suppose that the samples are $x_1 = 1$, $x_2 = 0$, $x_3 = 0$, $x_4 = 1$, $x_5 = 1$.

The probability for this particular outcome is: (BT)

$$P[X_1 = x_1, X_2 = x_2, X_3 = x_3, X_4 = x_4, X_5 = x_5]$$

= $P[X_1 = x_1] P[X_2 = x_2] \dots P[X_5 = x_5]$
= $p^{x_1}(1-p)^{1-x_1} p^{x_2}(1-p)^{1-x_2} \dots p^{x_5}(1-p)^{1-x_5}$
= $p^{x_1+x_2+x_3+x_4+x_5} (1-p)^{5-(x_1+x_2+x_3+x_4+x_5)}$
= $p^3(1-p)^2$.

We call this function L(p).

Let us test the value of L(p) for four choices of p:

• When
$$p = 0$$
,

$$L(p) = 0^3 (1 - 0)^2 = 0.$$

So if p = 0, the probability to see this particular outcome is 0. Clearly not a good choice.

• When p = 1, we have

$$L(p) = 1^3(1-1)^2 = 0.$$

Again the probability to see this particular outcome is 0. Also not a good choice. • When p = 0.2, we have

$$L(p) = (0.2)^3 (1 - 0.2)^2 = 0.00512.$$

• When p = 0.7, we have

$$L(p) = (0.7)^3 (1 - 0.7)^2 = 0.03087.$$

Our particular outcomes can occur for both p = 0.2 and p = 0.7, but it is six times as likely if p = 0.7! That is why we choose p = 0.7.

The best guess for p would be the value that maximizes the function L(p).

2 The problem

- Assumption: X is a random variable with distribution $f_{X;\theta}$ with unknown θ .
- **Problem:** Predict the unknown θ , and thus the unknown random variable X;
- Input: Samples x_1, \ldots, x_n .

Our strategy is to find θ that maximizes the likelihood function.

3 Maximum likelihood estimate

The **likelihood function** $L(\theta) := L(x_1, \ldots, x_n; \theta)$ is

$$L(\theta) := f_{X;\theta}(x_1) f_{X;\theta}(x_2) \dots f_{X;\theta}(x_n).$$

Here x_1, x_2, \ldots, x_n are fixed values, only θ is variable.

The log likelihood function $\ell(\theta)$ is

$$\ell(\theta) := \log L(\theta).$$

The maximum likelihood estimate (MLE) is the value of θ that maximizes $L(\theta)$, or equivalently $\ell(\theta)$. The MLE is usually denoted $\hat{\theta}$.

4 Example: Bernoulli

Let X be a Bernoulli RV with unknown $p \in [0, 1]$. Let x_1, x_2, \ldots, x_n be unknown samples of X. Let \overline{x} be the sample mean $\frac{x_1 + \ldots + x_n}{n}$. The likelihood function $L(p)^1$ for Bernoulli is (BT)

$$L(p) = f_{X;p}(x_1) \dots f_{X;p}(x_n)$$

= $p^{x_1}(1-p)^{1-x_1} p^{x_2}(1-p)^{1-x_2} \dots p^{x_n}(1-p)^{1-x_n}$
= $p^{x_1+\dots+x_n}(1-p)^{n-(x_1+\dots+x_n)}$
= $p^{n\overline{x}}(1-p)^{n-n\overline{x}}.$

The log likelihood function is

$$\ell(p) = \log\left(p^{n\,\overline{\mathbf{x}}}(1-p)^{n-n\,\overline{\mathbf{x}}}\right) = n\,\overline{\mathbf{x}}\log p + (n-n\,\overline{\mathbf{x}})\log(1-p).$$

¹We substitute θ for p here

To maximize the log likelihood function, we take the partial derivatives in p:

$$\frac{\partial \ell(p)}{dp} = \frac{n\,\overline{\mathbf{x}}}{p} - \frac{n-n\,\overline{\mathbf{x}}}{1-p}$$

•

The MLE \hat{p} is a maximizer of $\ell(p)$, so $\frac{\partial \ell(\hat{p})}{dp} = 0$. This gives us (BT)

$$0 = \frac{n\,\overline{\mathbf{x}}}{\widehat{\mathbf{p}}} - \frac{n-n\,\overline{\mathbf{x}}}{1-\widehat{\mathbf{p}}}$$
$$\frac{n\,\overline{\mathbf{x}}}{\widehat{\mathbf{p}}} = \frac{n-n\,\overline{\mathbf{x}}}{1-\widehat{\mathbf{p}}}$$
$$\frac{1-\widehat{\mathbf{p}}}{\widehat{\mathbf{p}}} = \frac{n-n\,\overline{\mathbf{x}}}{n\,\overline{\mathbf{x}}}$$
$$\frac{1}{\widehat{\mathbf{p}}} - 1 = \frac{1}{\overline{\mathbf{x}}} - 1$$
$$\widehat{\mathbf{p}} = \overline{\mathbf{x}}.$$

So \hat{p} is either 0, \bar{x} , or 1.

These three options give us

$$\ell(0) = -\infty;$$

$$\ell(p) = n \overline{x} \log \overline{x} - (n - n \overline{x}) \log(1 - \overline{x});$$

$$\ell(1) = -\infty;$$

So the MLE for Bernoulli is $\hat{p} = \bar{x}$, which is the sample mean. This confirms our usual intuition.

5 Example: Exponential

Let X be the exponential random variable with unknown parameter $\theta \in [0, \infty]$,

$$f_{X;\theta}(x) = \begin{cases} \theta^{-1} e^{-x/\theta} & \text{if } x \ge 0; \\ 0 & \text{if } x < 0. \end{cases}$$

Let x_1, \ldots, x_n be (nonnegative) samples.

The likelihood function is (BT)

$$L(\theta) = f_{X;\theta}(x_1) f_{X;\theta}(x_2) \dots f_{X;\theta}(x_n)$$
$$= \theta^{-1} e^{-x_1/\theta} \ \theta^{-1} e^{-x_2/\theta} \dots \ \theta^{-1} e^{-x_n/\theta}$$
$$= \theta^{-n} e^{-(x_1 + \dots + x_n)/\theta} = \theta^{-n} e^{-n\overline{x}/\theta}.$$

The log likelihood function is

$$\ell(\theta) = \log\left(\theta^{-n}e^{-\theta n\,\overline{\mathbf{x}}}\right) = -n\log\theta - \frac{n\,\overline{\mathbf{x}}}{\theta}.$$

To maximize the $\ell(\theta)$, we take partial derivatives in θ :

$$\frac{\partial \ell(\theta)}{d\theta} = -\frac{n}{\theta} + \frac{n\,\overline{\mathbf{x}}}{\theta^2}$$

The MLE $\hat{\theta}$ is a maximizer of $\ell(\hat{\theta})$, and therefore $\frac{\partial \ell(\hat{\theta})}{d\theta} = 0$. This gives us (BT)

$$0 = -\frac{n}{\widehat{\theta}} + \frac{n\,\overline{\mathbf{x}}}{\widehat{\theta}^2}$$
$$\widehat{\theta} = \overline{\mathbf{x}}$$

Therefore the MLE for exponential RVs is sample mean, again confirming our intuition.

6 Example: Normal

Suppose that X is a normal RV with unknown mean μ and variance σ^2 ,

$$f_{X;\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

Let $\overline{\mathbf{x}}$ be the sample mean, and v be the variance of the empirical distribution,

$$v = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{\mathbf{x}})^2.$$

The likelihood function $L(\mu, \sigma^2)$ is² (BT)

$$L(\mu, \sigma^2) = f_{X;\mu,\sigma^2}(x_1) \dots f_{X;\mu,\sigma^2}(x_n)$$

= $\prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_1 - \mu)^2}{2\sigma^2}\right)$
= $(2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2\right).$

The log likelihood function is

$$\ell(\mu, \sigma^2) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2.$$

²the variable θ is replaced by two variables μ and σ^2

To maximize the log likelihood function, we take partial derivatives in μ and σ^2 : (BT)

$$\frac{\partial \ell(\mu, \sigma^2)}{d\mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = \frac{n}{\sigma^2} (\overline{\mathbf{x}} - \mu);$$

$$\frac{\partial \ell(\mu, \sigma^2)}{d\sigma^2} = -\frac{n}{2} \frac{2\pi}{2\pi\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2$$

$$= -\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2.$$

The MLE $\hat{\mu}$ and $\hat{\sigma}^2$ satisfies $\frac{\partial \ell(\hat{\mu}, \hat{\sigma}^2)}{d\mu} = \frac{\partial \ell(\hat{\mu}, \hat{\sigma}^2)}{d\sigma^2} = 0$. Solving for $\frac{\partial \ell(\hat{\mu}, \hat{\sigma}^2)}{d\mu} = 0$ gives us (BT)

$$0 = \frac{n}{\widehat{\sigma}^2} (\overline{\mathbf{x}} - \widehat{\mu})$$
$$\overline{\mathbf{x}} = \widehat{\mu}.$$

Solving for $\frac{\partial \ell(\hat{\mu}, \hat{\sigma}^2)}{d\sigma^2} = 0$ gives us (BT)

$$0 = -\frac{n}{2}\frac{1}{\hat{\sigma}^2} + \frac{1}{2\hat{\sigma}^4}\sum_{i=1}^n (x_i - \hat{\mu})^2$$

$$n\hat{\sigma}^2 = \sum_{i=1}^n (x_i - \hat{\mu})^2$$

$$\hat{\sigma}^2 = \frac{1}{n}\sum_{i=1}^n (x_i - \hat{\mu})^2 = \frac{1}{n}\sum_{i=1}^n (x_i - \bar{x})^2 = v.$$

Thus the maximum likelihood estimate $\hat{\mu}$ is the sample mean, and $\hat{\sigma}^2$ is the variance of the empirical distribution (NOT sample variance!).

7 Unbiased estimator: Bernoulli

Let X be a Bernoulli random variable with unknown parameter p. We have seen that the MLE is equal to

$$\widehat{\mathbf{p}} = \frac{x_1 + \ldots + x_n}{n}$$

We make the following observations:

- 1. $\widehat{\mathbf{p}} := \widehat{\mathbf{p}}(x_1, \dots, x_n)$ is a function that depends on the value of x_1, x_2, \dots, x_n ;
- For small n, the MLE p̂ can be very different from the real value p. However, as n gets larger, p̂ should be very close to p.

The samples x_1, \ldots, x_n is deterministic **AFTER** we complete the experiment, but **BEFORE** the experiment they are unknown and it stands to reason to assume that they are random variables.

Therefore, we replace deterministic numbers x_1, \ldots, x_n with random numbers X_1, \ldots, X_n , which are are independent Bernoullis with (unknown) parameter p. Then

$$\widehat{\mathbf{p}}(X_1,\ldots,X_n) = \frac{X_1 + \ldots + X_n}{n}$$

Taking the expectation of $\widehat{\mathbf{p}}$ as a random variable,

$$E[\widehat{p}(X_1, \dots, X_n)] = E\left[\frac{X_1 + \dots + X_n}{n}\right]$$
$$= \frac{E[X_1] + \dots + E[X_n]}{n}$$
$$= \frac{p + p + \dots + p}{n} = p.$$

Therefore, if we repeat the experiment often enough, the MLE $\widehat{p}(X_1, \ldots, X_n)$ is indeed equal to p on average!

Not all MLEs have this property, and the one that does is called unbiased estimator.

8 Unbiased estimator

Let X be a random variable with parameter θ . Let $\hat{\theta} := \theta(x_1, \dots, x_n)$ be an MLE for X. Let X_1, \dots, X_n be independent random variables with the same distribution as X.

Then $\widehat{\theta}$ is an **unbiased estimator** if

$$E[\widehat{\theta}(X_1,\ldots,X_n)] = \theta.$$

9 Unbiased estimator: Normal

Let X be a normal random variable with mean μ and variance σ^2 . The MLEs are

$$\widehat{\mu}(x_1, \dots, x_n) = \frac{x_1 + x_2 + \dots + x_n}{n};$$

$$\widehat{\sigma}^2(x_1, \dots, x_n) = \frac{x_1^2 + \dots + x_n^2}{n} - \left(\frac{x_1 + x_2 + \dots + x_n}{n}\right)^2$$

We check if $\hat{\mu}$ is an unbiased estimator: (BT)

$$E[\widehat{\mu}(X_1, \dots, X_n)] = E\left[\frac{X_1 + \dots + X_n}{n}\right]$$
$$= \frac{E[X_1] + \dots + E[X_n]}{n}$$
$$= \frac{\mu + \mu + \dots + \mu}{n} = \mu.$$

Indeed $\hat{\mu}$ is an unbiased estimator for μ .

We check if $\hat{\sigma}^2$ is an unbiased estimator: (BT)

$$\begin{split} E[\widehat{\sigma}^{2}(X_{1},\ldots,X_{n})] \\ &= E\left[\frac{X_{1}^{2}+\ldots+X_{n}^{2}}{n} - \left(\frac{X_{1}+\ldots+X_{n}}{n}\right)^{2}\right] \\ &= E\left[\frac{X_{1}^{2}+\ldots+X_{n}^{2}}{n} - \left(\frac{X_{1}^{2}+\ldots+X_{n}^{2}}{n^{2}} + \sum_{1 \leq i \neq j \leq n} \frac{X_{i}X_{j}}{n^{2}}\right)\right] \\ &= E\left[\frac{n-1}{n^{2}}\left(X_{1}^{2}+\ldots+X_{n}^{2}\right) - \sum_{1 \leq i \neq j \leq n} \frac{X_{i}X_{j}}{n^{2}}\right] \\ &= \frac{n-1}{n^{2}}\left(E[X_{1}^{2}]+\ldots+E[X_{n}^{2}]\right) - \sum_{1 \leq i \neq j \leq n} \frac{E[X_{i}]E[X_{j}]}{n^{2}} \\ &= \frac{n-1}{n^{2}}nE[X^{2}]+\ldots+E[X^{2}]\right) - \sum_{1 \leq i \neq j \leq n} \frac{E[X]E[X]}{n^{2}} \\ &= \frac{n-1}{n^{2}}nE[X^{2}]-n(n-1)\frac{E[X]E[X]}{n^{2}} \\ &= \frac{n-1}{n}\left(E[X^{2}]-(E[X])^{2}\right) = \frac{n-1}{n}\sigma^{2}. \end{split}$$

So $\hat{\sigma}$ is a **biased** estimator for the variance σ^2 !

To correct this bias, we use the sample variance,

$$s^{2} = \frac{n}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - \frac{(\sum_{i=1}^{n} X_{i})^{2}}{n^{2}} \right)$$

as the MLE $\hat{\sigma}^2$. Indeed, by using $\hat{\sigma}^2 = s^2$:

$$E[\widehat{\sigma}^{2}] = E\left[\frac{n}{n-1}\left(\frac{X_{1}^{2} + \ldots + X_{n}^{2}}{n} - \left(\frac{X_{1} + \ldots + X_{n}}{n}\right)^{2}\right)\right]$$
$$= \frac{n}{(n-1)}\frac{(n-1)}{n}\sigma^{2} = \sigma^{2},$$

which is indeed an unbiased estimator.

10 Method of moments: Intro

Before the method of MLE was popularized by Fischer in the beginning of 20th century, the **method of moments** was widely used.

In the modern era we still use method of moments sometimes, as it is more computationally efficient than MLE.

Recall that the k-th moment of X is the quantity $E[X^k]$.

11 Method of moments

- Assumption: X is a random variable with unknown parameter θ and moments $M_1(\theta) := E[X], M_2(\theta) := E[X^2], \ldots$
- **Problem:** Predict the unknown parameter θ .
- Input: Samples x_1, \ldots, x_n sampled from X.
- Solution: Our guess for θ is a value $\tilde{\theta}$ such that

$$M_1(\theta) = \frac{x_1 + \dots x_n}{n};$$
$$M_2(\theta) = \frac{x_1^2 + \dots x_n^2}{n};$$

It can be impractical to check for all moments of X, and one usually stops at the second moment.

12 Method of moments: Gamma

Let X be a gamma random variable with unknown parameters α, β ,

$$f_{X;\alpha,\beta}(x) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} & \text{if } x \ge 0; \\ 0 & \text{otherwise.} \end{cases}$$

where $\Gamma(x)$ is the function

$$\Gamma(x) := \int_0^\infty t^x e^{-t} \, dt.$$

The MLE for this random variable is

$$L(\alpha,\beta) = \left[\frac{\beta^{\alpha}}{\Gamma(\alpha)}\right]^n (x_1 x_2 \dots x_n)^{\alpha-1} \exp\left(-\beta \sum_{i=1}^n x_i\right).$$

Maximizing the function above is not meant for mortals, because the term $\Gamma(x)$ in $L(\alpha, \beta)$ is hard to compute. Instead, we use the fact that $\Gamma(\alpha,\beta)$ has moments:

$$M_1(\alpha,\beta) = \frac{\alpha}{\beta}; \qquad M_2(\alpha,\beta) = \frac{\alpha + \alpha^2}{\beta^2}$$

Solving for the first moment, (BT)

$$M_1(\widetilde{\alpha}, \widetilde{\beta}) = \frac{x_1 + \dots x_n}{n}$$
$$\frac{\widetilde{\alpha}}{\widetilde{\beta}} = \frac{x_1 + \dots x_n}{n} = \overline{x}.$$

Solving for the second moment,

$$M_2(\widetilde{\alpha}, \widetilde{\beta}) = \frac{x_1^2 + \dots x_n^2}{n}$$
$$\frac{\widetilde{\alpha} + \widetilde{\alpha}^2}{\widetilde{\beta}^2} = v + \overline{x}^2$$

Substituting the first equation into the second equation,

$$\frac{\widetilde{\alpha} + \widetilde{\alpha}^2}{\widetilde{\beta}^2} = v + \frac{\widetilde{\alpha}^2}{\widetilde{\beta}^2}$$
$$\frac{\widetilde{\alpha}}{\widetilde{\beta}^2} = v.$$

Combining $\frac{\tilde{\alpha}}{\tilde{\beta}^2} = v$ and $\frac{\tilde{\alpha}}{\tilde{\beta}} = \bar{x}$, we then conclude that

$$\widetilde{\alpha} = \frac{\overline{\mathbf{x}}^2}{v}; \qquad \widetilde{\beta} = \frac{\overline{\mathbf{x}}}{v}.$$