Math 170S Lecture Notes Section $6.4^{* \dagger}$ Maximum likelihood estimation

Instructor: Swee Hong Chan

WARNING: We have now reached possibly the most important concept in 170S. Please please please ask me questions if you are lost at any point.
*Version date: Sunday 11 ${ }^{\text {th }}$ October, 2020, 20:41.
${ }^{\dagger}$ This notes is based on Hanbaek Lyu's and Liza Rebrova's notes from the previous quarter, and I would like to thank them for their generosity. "Nanos gigantum humeris insidentes (I am but a dwarf standing on the shoulders of giants)".

1 Example of MLE: motivation

The friendly instructor owns an unknown random variable X for you to guess. He gives you three hints:

- X is a Bernoulli random variable for some unknown parameter p, with pmf

$$
f_{X}(x)=P[X=x]=p^{x}(1-p)^{1-x} \quad x=0,1
$$

- p is one of these four numbers,

$$
p \in\{0,0.2,0.7,1\}
$$

- 5 sample values $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are given.

Your job is to guess the unknown parameter \mathbf{p}.

Here are some possible scenarios:

- $x_{1}=x_{2}=\ldots=x_{5}=0$. In this case, most people would guess $p=0$.
- $x_{1}=x_{2}=\ldots=x_{5}=1$. In this case, most people would guess $p=1$.
- $x_{1}=1, x_{2}=0, x_{3}=0, x_{4}=1, x_{5}=1$. Intuitively, most people would guess $p=\frac{3}{5}=0.6$. However, 0.6 is not an option for p, so we choose the closest value $p=0.7$.

These guesses are indeed the best guess one can make, in a manner to be made precise.

Let X be the Bernoulli random variable with unknown parameter p.

Suppose that the samples are $x_{1}=1, x_{2}=0, x_{3}=0$, $x_{4}=1, x_{5}=1$.

The probability for this particular outcome is: (BT)

$$
\begin{aligned}
& P\left[X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}, X_{4}=x_{4}, X_{5}=x_{5}\right] \\
& =P\left[X_{1}=x_{1}\right] P\left[X_{2}=x_{2}\right] \ldots P\left[X_{5}=x_{5}\right] \\
& =p^{x_{1}}(1-p)^{1-x_{1}} p^{x_{2}}(1-p)^{1-x_{2}} \ldots p^{x_{5}}(1-p)^{1-x_{5}} \\
& =p^{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}}(1-p)^{5-\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)} \\
& =p^{3}(1-p)^{2} .
\end{aligned}
$$

We call this function $L(p)$.

Let us test the value of $L(p)$ for four choices of p :

- When $p=0$,

$$
L(p)=0^{3}(1-0)^{2}=0 .
$$

So if $p=0$, the probability to see this particular outcome is 0 . Clearly not a good choice.

- When $p=1$, we have

$$
L(p)=1^{3}(1-1)^{2}=0 .
$$

Again the probability to see this particular outcome is 0 . Also not a good choice.

- When $p=0.2$, we have

$$
L(p)=(0.2)^{3}(1-0.2)^{2}=0.00512
$$

- When $p=0.7$, we have

$$
L(p)=(0.7)^{3}(1-0.7)^{2}=0.03087
$$

Our particular outcomes can occur for both $p=0.2$ and $p=0.7$, but it is six times as likely if $p=0.7$! That is why we choose $p=0.7$.

The best guess for p would be the value that maximizes the function $L(p)$.

2 The problem

- Assumption: X is a random variable with distribution $f_{X ; \theta}$ with unknown θ.
- Problem: Predict the unknown θ, and thus the unknown random variable X;
- Input: Samples x_{1}, \ldots, x_{n}.

Our strategy is to find θ that maximizes the likelihood function.

3 Maximum likelihood estimate

The likelihood function $L(\theta):=L\left(x_{1}, \ldots, x_{n} ; \theta\right)$ is

$$
L(\theta):=f_{X ; \theta}\left(x_{1}\right) f_{X ; \theta}\left(x_{2}\right) \ldots f_{X ; \theta}\left(x_{n}\right) .
$$

Here $x_{1}, x_{2}, \ldots, x_{n}$ are fixed values, only θ is variable.
The log likelihood function $\ell(\theta)$ is

$$
\ell(\theta):=\log L(\theta)
$$

The maximum likelihood estimate (MLE) is the value of θ that maximizes $L(\theta)$, or equivalently $\ell(\theta)$. The MLE is usually denoted $\widehat{\theta}$.

4 Example: Bernoulli

Let X be a Bernoulli RV with unknown $p \in[0,1]$.
Let $x_{1}, x_{2}, \ldots, x_{n}$ be unknown samples of X.
Let $\overline{\mathrm{x}}$ be the sample mean $\frac{x_{1}+\ldots+x_{n}}{n}$.
The likelihood function $L(p)^{1}$ for Bernoulli is (BT)

$$
\begin{aligned}
L(p) & =f_{X ; p}\left(x_{1}\right) \ldots f_{X ; p}\left(x_{n}\right) \\
& =p^{x_{1}}(1-p)^{1-x_{1}} p^{x_{2}}(1-p)^{1-x_{2}} \ldots p^{x_{n}}(1-p)^{1-x_{n}} \\
& =p^{x_{1}+\ldots+x_{n}}(1-p)^{n-\left(x_{1}+\ldots+x_{n}\right)} \\
& =p^{n \bar{x}}(1-p)^{n-n \bar{x}} .
\end{aligned}
$$

The log likelihood function is

$$
\ell(p)=\log \left(p^{n \overline{\mathrm{x}}}(1-p)^{n-n \overline{\mathrm{x}}}\right)=n \overline{\mathrm{x}} \log p+(n-n \overline{\mathrm{x}}) \log (1-p) .
$$

${ }^{1}$ We substitute θ for p here

To maximize the log likelihood function, we take the partaal derivatives in p :

$$
\frac{\partial \ell(p)}{d p}=\frac{n \overline{\mathrm{x}}}{p}-\frac{n-n \overline{\mathrm{x}}}{1-p} .
$$

The MLE $\widehat{\mathrm{p}}$ is a maximizer of $\ell(p)$, so $\frac{\partial \ell(\hat{\mathrm{p}})}{d p}=0$. This gives us (BT)

$$
\begin{aligned}
0 & =\frac{n \overline{\mathrm{x}}}{\widehat{\mathrm{p}}}-\frac{n-n \overline{\mathrm{x}}}{1-\widehat{\mathrm{p}}} \\
\frac{n \overline{\mathrm{x}}}{\widehat{\mathrm{p}}} & =\frac{n-n \overline{\mathrm{x}}}{1-\widehat{\mathrm{p}}} \\
\frac{1-\widehat{\mathrm{p}}}{\widehat{\mathrm{p}}} & =\frac{n-n \overline{\mathrm{x}}}{n \overline{\mathrm{x}}} \\
\frac{1}{\widehat{\mathrm{p}}-1} & =\frac{1}{\overline{\mathrm{x}}}-1 \\
\widehat{\mathrm{p}} & =\overline{\mathrm{x}}
\end{aligned}
$$

So \widehat{p} is either $0, \bar{x}$, or 1 .

These three options give us

$$
\begin{aligned}
& \ell(0)=-\infty \\
& \ell(p)=n \overline{\mathrm{x}} \log \overline{\mathrm{x}}-(n-n \overline{\mathrm{x}}) \log (1-\overline{\mathrm{x}}) \\
& \ell(1)=-\infty
\end{aligned}
$$

So the MLE for Bernoulli is $\widehat{p}=\bar{x}$, which is the sample mean. This confirms our usual intuition.

5 Example: Exponential

Let X be the exponential random variable with unknown parameter $\theta \in[0, \infty]$,

$$
f_{X ; \theta}(x)= \begin{cases}\theta^{-1} e^{-x / \theta} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Let x_{1}, \ldots, x_{n} be (nonnegative) samples.
The likelihood function is (BT)

$$
\begin{aligned}
L(\theta) & =f_{X ; \theta}\left(x_{1}\right) f_{X ; \theta}\left(x_{2}\right) \ldots f_{X ; \theta}\left(x_{n}\right) \\
& =\theta^{-1} e^{-x_{1} / \theta} \theta^{-1} e^{-x_{2} / \theta} \ldots \theta^{-1} e^{-x_{n} / \theta} \\
& =\theta^{-n} e^{-\left(x_{1}+\ldots+x_{n}\right) / \theta}=\theta^{-n} e^{-n \overline{\mathrm{x}} / \theta} .
\end{aligned}
$$

The log likelihood function is

$$
\ell(\theta)=\log \left(\theta^{-n} e^{-\theta n \overline{\mathrm{x}}}\right)=-n \log \theta-\frac{n \overline{\mathrm{x}}}{\theta} .
$$

To maximize the $\ell(\theta)$, we take partial derivatives in θ :

$$
\frac{\partial \ell(\theta)}{d \theta}=-\frac{n}{\theta}+\frac{n \overline{\mathrm{x}}}{\theta^{2}}
$$

The MLE $\widehat{\theta}$ is a maximizer of $\ell(\widehat{\theta})$, and therefore $\frac{\partial \ell(\widehat{\theta})}{d \theta}=0$.
This gives us (BT)

$$
\begin{aligned}
& 0=-\frac{n}{\widehat{\theta}}+\frac{n \overline{\mathrm{x}}}{\hat{\theta}^{2}} \\
& \widehat{\theta}=\overline{\mathrm{x}}
\end{aligned}
$$

Therefore the MLE for exponential RVs is sample mean, again confirming our intuition.

6 Example: Normal

Suppose that X is a normal RV with unknown mean μ and variance σ^{2},

$$
f_{X ; \mu, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) .
$$

Let $\overline{\mathrm{x}}$ be the sample mean, and v be the variance of the empirical distribution,

$$
v=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\overline{\mathrm{x}}\right)^{2} .
$$

The likelihood function $L\left(\mu, \sigma^{2}\right)$ is ${ }^{2}(\mathrm{BT})$

$$
\begin{aligned}
L\left(\mu, \sigma^{2}\right) & =f_{X ; \mu, \sigma^{2}}\left(x_{1}\right) \ldots f_{X ; \mu, \sigma^{2}}\left(x_{n}\right) \\
& =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x_{1}-\mu\right)^{2}}{2 \sigma^{2}}\right) \\
& =\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right) .
\end{aligned}
$$

The log likelihood function is

$$
\ell\left(\mu, \sigma^{2}\right)=-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
$$

${ }^{2}$ the variable θ is replaced by two variables μ and σ^{2}

To maximize the log likelihood function, we take partial derivatives in μ and σ^{2} : (BT)

$$
\begin{aligned}
\frac{\partial \ell\left(\mu, \sigma^{2}\right)}{d \mu} & =\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)=\frac{n}{\sigma^{2}}(\overline{\mathrm{x}}-\mu) ; \\
\frac{\partial \ell\left(\mu, \sigma^{2}\right)}{d \sigma^{2}} & =-\frac{n}{2} \frac{2 \pi}{2 \pi \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} \\
& =-\frac{n}{2} \frac{1}{\sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} .
\end{aligned}
$$

The MLE $\widehat{\mu}$ and $\widehat{\sigma}^{2}$ satisfies $\frac{\partial\left(\widehat{\mu}, \widehat{\sigma}^{2}\right)}{d \mu}=\frac{\partial\left(\left(\widehat{\mu}, \widehat{\sigma}^{2}\right)\right.}{d \sigma^{2}}=0$. Solving for $\frac{\partial \ell\left(\hat{\mu}, \tilde{\sigma}^{2}\right)}{d \mu}=0$ gives us (BT)

$$
\begin{aligned}
& 0=\frac{n}{\widehat{\sigma}^{2}}(\overline{\mathrm{x}}-\widehat{\mu}) \\
& \overline{\mathrm{x}}=\widehat{\mu} .
\end{aligned}
$$

Solving for $\frac{\partial \ell\left(\hat{\mu}, \hat{\sigma}^{2}\right)}{d \sigma^{2}}=0$ gives us (BT)

$$
\begin{aligned}
0 & =-\frac{n}{2} \frac{1}{\widehat{\sigma}^{2}}+\frac{1}{2 \widehat{\sigma}^{4}} \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}\right)^{2} \\
n \widehat{\sigma}^{2} & =\sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}\right)^{2} \\
\widehat{\sigma}^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\overline{\mathrm{x}}\right)^{2}=v
\end{aligned}
$$

Thus the maximum likelihood estimate $\widehat{\mu}$ is the sample mean, and $\widehat{\sigma}^{2}$ is the variance of the empirical distribution (NOT sample variance!).

7 Unbiased estimator: Bernoulli

Let X be a Bernoulli random variable with unknown parameter p. We have seen that the MLE is equal to

$$
\widehat{\mathrm{p}}=\frac{x_{1}+\ldots+x_{n}}{n} .
$$

We make the following observations:

1. $\widehat{\mathrm{p}}:=\widehat{\mathrm{p}}\left(x_{1}, \ldots, x_{n}\right)$ is a function that depends on the value of $x_{1}, x_{2}, \ldots, x_{n}$;
2. For small n, the MLE \widehat{p} can be very different from the real value p. However, as n gets larger, \widehat{p} should be very close to p.

The samples x_{1}, \ldots, x_{n} is deterministic AFTER we complete the experiment, but BEFORE the experiment they are unknown and it stands to reason to assume that they are random variables.

Therefore, we replace deterministic numbers x_{1}, \ldots, x_{n} with random numbers X_{1}, \ldots, X_{n}, which are are independent Bernoullis with (unknown) parameter p. Then

$$
\widehat{\mathrm{p}}\left(X_{1}, \ldots, X_{n}\right)=\frac{X_{1}+\ldots+X_{n}}{n}
$$

Taking the expectation of \widehat{p} as a random variable,

$$
\begin{aligned}
E\left[\widehat{\mathrm{p}}\left(X_{1}, \ldots, X_{n}\right)\right] & =E\left[\frac{X_{1}+\ldots+X_{n}}{n}\right] \\
& =\frac{E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]}{n} \\
& =\frac{p+p+\ldots+p}{n}=p
\end{aligned}
$$

Therefore, if we repeat the experiment often enough, the MLE $\widehat{\mathrm{p}}\left(X_{1}, \ldots, X_{n}\right)$ is indeed equal to p on average!

Not all MLEs have this property, and the one that does is called unbiased estimator.

8 Unbiased estimator

Let X be a random variable with parameter θ.
Let $\widehat{\theta}:=\theta\left(x_{1}, \ldots, x_{n}\right)$ be an MLE for X.
Let X_{1}, \ldots, X_{n} be independent random variables with the same distribution as X.

Then $\widehat{\theta}$ is an unbiased estimator if

$$
E\left[\widehat{\theta}\left(X_{1}, \ldots, X_{n}\right)\right]=\theta .
$$

9 Unbiased estimator: Normal

Let X be a normal random variable with mean μ and variance σ^{2}. The MLEs are

$$
\begin{aligned}
\widehat{\mu}\left(x_{1}, \ldots, x_{n}\right) & =\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} ; \\
\widehat{\sigma}^{2}\left(x_{1}, \ldots, x_{n}\right) & =\frac{x_{1}^{2}+\ldots+x_{n}^{2}}{n}-\left(\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}\right)^{2} .
\end{aligned}
$$

We check if $\widehat{\mu}$ is an unbiased estimator: (BT)

$$
\begin{aligned}
E\left[\widehat{\mu}\left(X_{1}, \ldots, X_{n}\right)\right] & =E\left[\frac{X_{1}+\ldots+X_{n}}{n}\right] \\
& =\frac{E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]}{n} \\
& =\frac{\mu+\mu+\ldots+\mu}{n}=\mu .
\end{aligned}
$$

Indeed $\widehat{\mu}$ is an unbiased estimator for μ.

We check if $\widehat{\sigma}^{2}$ is an unbiased estimator: (BT)

$$
\begin{aligned}
& E\left[\widehat{\sigma}^{2}\left(X_{1}, \ldots, X_{n}\right)\right] \\
= & E\left[\frac{X_{1}^{2}+\ldots+X_{n}^{2}}{n}-\left(\frac{X_{1}+\ldots+X_{n}}{n}\right)^{2}\right] \\
= & E\left[\frac{X_{1}^{2}+\ldots+X_{n}^{2}}{n}-\left(\frac{X_{1}^{2}+\ldots+X_{n}^{2}}{n^{2}}+\sum_{1 \leq i \neq j \leq n} \frac{X_{i} X_{j}}{n^{2}}\right)\right] \\
= & E\left[\frac{n-1}{n^{2}}\left(X_{1}^{2}+\ldots+X_{n}^{2}\right)-\sum_{1 \leq i \neq j \leq n} \frac{X_{i} X_{j}}{n^{2}}\right] \\
= & \frac{n-1}{n^{2}}\left(E\left[X_{1}^{2}\right]+\ldots+E\left[X_{n}^{2}\right]\right)-\sum_{1 \leq i \neq j \leq n} \frac{E\left[X_{i}\right] E\left[X_{j}\right]}{n^{2}} \\
= & \frac{n-1}{n^{2}}\left(E\left[X^{2}\right]+\ldots+E\left[X^{2}\right]\right)-\sum_{1 \leq i \neq j \leq n} \frac{E[X] E[X]}{n^{2}} \\
= & \frac{n-1}{n^{2}} n E\left[X^{2}\right]-n(n-1) \frac{E[X] E[X]}{n^{2}} \\
= & \frac{n-1}{n}\left(E\left[X^{2}\right]-(E[X])^{2}\right)=\frac{n-1}{n} \sigma^{2} .
\end{aligned}
$$

So $\widehat{\sigma}$ is a biased estimator for the variance σ^{2} !

To correct this bias, we use the sample variance,

$$
s^{2}=\frac{n}{n-1}\left(\sum_{i=1}^{n} X_{i}^{2}-\frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n^{2}}\right)
$$

as the MLE $\widehat{\sigma}^{2}$. Indeed, by using $\widehat{\sigma}^{2}=s^{2}$:

$$
\begin{aligned}
E\left[\hat{\sigma}^{2}\right] & =E\left[\frac{n}{n-1}\left(\frac{X_{1}^{2}+\ldots+X_{n}^{2}}{n}-\left(\frac{X_{1}+\ldots+X_{n}}{n}\right)^{2}\right)\right] \\
& =\frac{n}{(n-1)} \frac{(n-1)}{n} \sigma^{2}=\sigma^{2}
\end{aligned}
$$

which is indeed an unbiased estimator.

10 Method of moments: Intro

Before the method of MLE was popularized by Fischer in the beginning of 20th century, the method of moments was widely used.

In the modern era we still use method of moments sometimes, as it is more computationally efficient than MLE.

Recall that the k-th moment of X is the quantity $E\left[X^{k}\right]$.

11 Method of moments

- Assumption: X is a random variable with unknown parameter θ and moments

$$
M_{1}(\theta):=E[X], M_{2}(\theta):=E\left[X^{2}\right], \ldots
$$

- Problem: Predict the unknown parameter θ.
- Input: Samples x_{1}, \ldots, x_{n} sampled from X.
- Solution: Our guess for θ is a value $\tilde{\theta}$ such that

$$
\begin{aligned}
& M_{1}(\theta)=\frac{x_{1}+\ldots x_{n}}{n} \\
& M_{2}(\theta)=\frac{x_{1}^{2}+\ldots x_{n}^{2}}{n}
\end{aligned}
$$

It can be impractical to check for all moments of X, and one usually stops at the second moment.

12 Method of moments: Gamma

Let X be a gamma random variable with unknown parameters α, β,

$$
f_{X ; \alpha, \beta}(x)= \begin{cases}\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

where $\Gamma(x)$ is the function

$$
\Gamma(x):=\int_{0}^{\infty} t^{x} e^{-t} d t .
$$

The MLE for this random variable is

$$
L(\alpha, \beta)=\left[\frac{\beta^{\alpha}}{\Gamma(\alpha)}\right]^{n}\left(x_{1} x_{2} \ldots x_{n}\right)^{\alpha-1} \exp \left(-\beta \sum_{i=1}^{n} x_{i}\right) .
$$

Maximizing the function above is not meant for mortals, because the term $\Gamma(x)$ in $L(\alpha, \beta)$ is hard to compute.

Instead, we use the fact that $\Gamma(\alpha, \beta)$ has moments:

$$
M_{1}(\alpha, \beta)=\frac{\alpha}{\beta} ; \quad M_{2}(\alpha, \beta)=\frac{\alpha+\alpha^{2}}{\beta^{2}}
$$

Solving for the first moment, (BT)

$$
\begin{aligned}
M_{1}(\widetilde{\alpha}, \widetilde{\beta}) & =\frac{x_{1}+\ldots x_{n}}{n} \\
\frac{\widetilde{\alpha}}{\widetilde{\beta}} & =\frac{x_{1}+\ldots x_{n}}{n}=\overline{\mathrm{x}} .
\end{aligned}
$$

Solving for the second moment,

$$
\begin{aligned}
M_{2}(\widetilde{\alpha}, \widetilde{\beta}) & =\frac{x_{1}^{2}+\ldots x_{n}^{2}}{n} \\
\frac{\widetilde{\alpha}+\widetilde{\alpha}^{2}}{\widetilde{\beta}^{2}} & =v+\overline{\mathrm{x}}^{2}
\end{aligned}
$$

Substituting the first equation into the second equation,

$$
\begin{aligned}
\frac{\widetilde{\alpha}+\widetilde{\alpha}^{2}}{\widetilde{\beta}^{2}} & =v+\frac{\widetilde{\alpha}^{2}}{\widetilde{\beta}^{2}} \\
\frac{\widetilde{\alpha}}{\widetilde{\beta}^{2}} & =v .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Combining } \frac{\widetilde{\alpha}}{\widetilde{\beta}^{2}}=v \text { and } \frac{\widetilde{\alpha}}{\widetilde{\beta}}=\overline{\mathrm{x}} \text {, we then conclude that } \\
& \qquad \widetilde{\alpha}=\frac{\overline{\mathrm{x}}^{2}}{v} ; \quad \widetilde{\beta}=\frac{\overline{\mathrm{x}}}{v} .
\end{aligned}
$$

