
Math 170S

Lecture Notes Section 6.4 ∗†

Maximum likelihood estimation

Instructor: Swee Hong Chan

WARNING: We have now reached possibly the most

important concept in 170S. Please please please ask me

questions if you are lost at any point.

∗Version date: Sunday 11th October, 2020, 20:41.
†This notes is based on Hanbaek Lyu’s and Liza Rebrova’s notes from the

previous quarter, and I would like to thank them for their generosity. “Nanos
gigantum humeris insidentes (I am but a dwarf standing on the shoulders of
giants)”.
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1 Example of MLE: motivation

The friendly instructor owns an unknown random vari-

able X for you to guess. He gives you three hints:

• X is a Bernoulli random variable for some unknown

parameter p, with pmf

fX(x) = P [X = x] = px(1− p)1−x x = 0, 1.

• p is one of these four numbers,

p ∈ {0, 0.2, 0.7, 1}.

• 5 sample values x1, x2, x3, x4, x5 are given.

Your job is to guess the unknown parameter p.
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Here are some possible scenarios:

• x1 = x2 = . . . = x5 = 0. In this case, most people

would guess p = 0.

• x1 = x2 = . . . = x5 = 1. In this case, most people

would guess p = 1.

• x1 = 1, x2 = 0, x3 = 0, x4 = 1, x5 = 1. Intuitively,

most people would guess p = 3
5 = 0.6. However,

0.6 is not an option for p, so we choose the closest

value p = 0.7.

These guesses are indeed the best guess one can make, in

a manner to be made precise.
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Let X be the Bernoulli random variable with unknown

parameter p.

Suppose that the samples are x1 = 1, x2 = 0, x3 = 0,

x4 = 1, x5 = 1.

The probability for this particular outcome is: (BT)

P [X1 = x1, X2 = x2, X3 = x3, X4 = x4, X5 = x5]

= P [X1 = x1] P [X2 = x2] . . . P [X5 = x5]

= px1(1− p)1−x1 px2(1− p)1−x2 . . . px5(1− p)1−x5

= px1+x2+x3+x4+x5 (1− p)5−(x1+x2+x3+x4+x5)

= p3(1− p)2.

We call this function L(p).
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Let us test the value of L(p) for four choices of p:

• When p = 0,

L(p) = 03(1− 0)2 = 0.

So if p = 0, the probability to see this particular

outcome is 0. Clearly not a good choice.

• When p = 1, we have

L(p) = 13(1− 1)2 = 0.

Again the probability to see this particular outcome

is 0. Also not a good choice.
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• When p = 0.2, we have

L(p) = (0.2)3(1− 0.2)2 = 0.00512.

• When p = 0.7, we have

L(p) = (0.7)3(1− 0.7)2 = 0.03087.

Our particular outcomes can occur for both p = 0.2 and

p = 0.7, but it is six times as likely if p = 0.7! That is

why we choose p = 0.7.

The best guess for p would be the value that

maximizes the function L(p).
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2 The problem

• Assumption: X is a random variable with dis-

tribution fX;θ with unknown θ.

• Problem: Predict the unknown θ, and thus the

unknown random variable X ;

• Input: Samples x1, . . . , xn.

Our strategy is to find θ that maximizes the likelihood

function.
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3 Maximum likelihood estimate

The likelihood function L(θ) := L(x1, . . . , xn; θ) is

L(θ) := fX;θ(x1)fX;θ(x2) . . . fX;θ(xn).

Here x1, x2, . . . , xn are fixed values, only θ is variable.

The log likelihood function `(θ) is

`(θ) := logL(θ).

The maximum likelihood estimate (MLE) is the

value of θ that maximizes L(θ), or equivalently `(θ). The

MLE is usually denoted θ̂.

8



4 Example: Bernoulli

Let X be a Bernoulli RV with unknown p ∈ [0, 1].

Let x1, x2, . . . , xn be unknown samples of X .

Let x be the sample mean x1+...+xn
n .

The likelihood function L(p)1 for Bernoulli is (BT)

L(p) = fX;p(x1) . . . fX;p(xn)

= px1(1− p)1−x1 px2(1− p)1−x2 . . . pxn(1− p)1−xn

= px1+...+xn(1− p)n−(x1+...+xn)

= pn x(1− p)n−n x.

The log likelihood function is

`(p) = log
(
pn x(1− p)n−n x

)
= n x log p + (n− n x) log(1− p).

1We substitute θ for p here
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To maximize the log likelihood function, we take the par-

tial derivatives in p:

∂`(p)

dp
=
n x

p
− n− n x

1− p
.

The MLE p̂ is a maximizer of `(p), so ∂`(p̂)
dp = 0. This

gives us (BT)

0 =
n x

p̂
− n− n x

1− p̂
n x

p̂
=

n− n x

1− p̂
1− p̂

p̂
=

n− n x

n x
1

p̂
− 1 =

1

x
− 1

p̂ = x .

So p̂ is either 0, x, or 1.
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These three options give us

`(0) = −∞;

`(p) = n x log x−(n− n x) log(1− x);

`(1) = −∞;

So the MLE for Bernoulli is p̂ = x, which is the sample

mean. This confirms our usual intuition.
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5 Example: Exponential

Let X be the exponential random variable with unknown

parameter θ ∈ [0,∞],

fX;θ(x) =


θ−1e−x/θ if x ≥ 0;

0 if x < 0.

Let x1, . . . , xn be (nonnegative) samples.

The likelihood function is (BT)

L(θ) =fX;θ(x1)fX;θ(x2) . . . fX;θ(xn)

=θ−1e−x1/θ θ−1e−x2/θ . . . θ−1e−xn/θ

=θ−ne−(x1+...+xn)/θ = θ−ne−n x /θ.

The log likelihood function is

`(θ) = log
(
θ−ne−θn x

)
= −n log θ − n x

θ
.
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To maximize the `(θ), we take partial derivatives in θ:

∂`(θ)

dθ
= −n

θ
+
n x

θ2
.

The MLE θ̂ is a maximizer of `(θ̂), and therefore ∂`(θ̂)
dθ = 0.

This gives us (BT)

0 =− n

θ̂
+
n x

θ̂
2

θ̂ = x

Therefore the MLE for exponential RVs is sample mean,

again confirming our intuition.
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6 Example: Normal

Suppose that X is a normal RV with unknown mean µ

and variance σ2,

fX;µ,σ2(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
.

Let x be the sample mean, and v be the variance of the

empirical distribution,

v =
1

n

n∑
i=1

(xi − x)2.
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The likelihood function L(µ, σ2) is2 (BT)

L(µ, σ2) = fX;µ,σ2(x1) . . . fX;µ,σ2(xn)

=

n∏
i=1

1√
2πσ2

exp

(
−(x1 − µ)2

2σ2

)
= (2πσ2)−n/2 exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2

)
.

The log likelihood function is

`(µ, σ2) = −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2.

2the variable θ is replaced by two variables µ and σ2
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To maximize the log likelihood function, we take partial

derivatives in µ and σ2: (BT)

∂`(µ, σ2)

dµ
=

1

σ2

n∑
i=1

(xi − µ) =
n

σ2
(x−µ);

∂`(µ, σ2)

dσ2
= − n

2

2π

2πσ2
+

1

2σ4

n∑
i=1

(xi − µ)2

= − n

2

1

σ2
+

1

2σ4

n∑
i=1

(xi − µ)2.

The MLE µ̂ and σ̂2 satisfies ∂`(µ̂,σ̂2)
dµ = ∂`(µ̂,σ̂2)

dσ2 = 0. Solv-

ing for ∂`(µ̂,σ̂2)
dµ = 0 gives us (BT)

0 =
n

σ̂2(x− µ̂)

x = µ̂ .
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Solving for ∂`(µ̂,σ̂2)
dσ2 = 0 gives us (BT)

0 = − n

2

1

σ̂2 +
1

2 σ̂4

n∑
i=1

(xi − µ̂)2

n σ̂2 =

n∑
i=1

(xi − µ̂)2

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2 =
1

n

n∑
i=1

(xi − x)2 = v.

Thus the maximum likelihood estimate µ̂ is the sample

mean, and σ̂2 is the variance of the empirical distribution

(NOT sample variance!).
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7 Unbiased estimator: Bernoulli

Let X be a Bernoulli random variable with unknown pa-

rameter p. We have seen that the MLE is equal to

p̂ =
x1 + . . . + xn

n
.

We make the following observations:

1. p̂ := p̂(x1, . . . , xn) is a function that depends on

the value of x1, x2, . . . , xn;

2. For small n, the MLE p̂ can be very different from

the real value p. However, as n gets larger, p̂ should

be very close to p.
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The samples x1, . . . , xn is deterministic AFTER we com-

plete the experiment, but BEFORE the experiment

they are unknown and it stands to reason to assume that

they are random variables.

Therefore, we replace deterministic numbers x1, . . . , xn

with random numbers X1, . . . , Xn, which are are inde-

pendent Bernoullis with (unknown) parameter p. Then

p̂(X1, . . . , Xn) =
X1 + . . . + Xn

n
.
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Taking the expectation of p̂ as a random variable,

E[p̂(X1, . . . , Xn)] = E

[
X1 + . . . + Xn

n

]
=
E[X1] + . . . + E[Xn]

n

=
p + p + . . . + p

n
= p.

Therefore, if we repeat the experiment often enough, the

MLE p̂(X1, . . . , Xn) is indeed equal to p on average!

Not all MLEs have this property, and the one that does

is called unbiased estimator.
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8 Unbiased estimator

Let X be a random variable with parameter θ.

Let θ̂ := θ(x1, . . . , xn) be an MLE for X .

Let X1, . . . , Xn be independent random variables with

the same distribution as X .

Then θ̂ is an unbiased estimator if

E
[
θ̂(X1, . . . , Xn)

]
= θ.
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9 Unbiased estimator: Normal

Let X be a normal random variable with mean µ and

variance σ2. The MLEs are

µ̂(x1, . . . , xn) =
x1 + x2 + . . . + xn

n
;

σ̂2(x1, . . . , xn) =
x2

1 + . . . + x2
n

n
−
(x1 + x2 + . . . + xn

n

)2

.

We check if µ̂ is an unbiased estimator: (BT)

E[µ̂(X1, . . . , Xn)] = E

[
X1 + . . . + Xn

n

]
=
E[X1] + . . . + E[Xn]

n

=
µ + µ + . . . + µ

n
= µ.

Indeed µ̂ is an unbiased estimator for µ.
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We check if σ̂2 is an unbiased estimator: (BT)

E[σ̂2(X1, . . . , Xn)]

= E

[
X2

1 + . . . + X2
n

n
−
(
X1 + . . . + Xn

n

)2
]

= E

X2
1 + . . . + X2

n

n
−

X2
1 + . . . + X2

n

n2
+

∑
1≤i 6=j≤n

XiXj

n2


= E

n− 1

n2

(
X2

1 + . . . + X2
n

)
−

∑
1≤i 6=j≤n

XiXj

n2


=
n− 1

n2

(
E[X2

1 ] + . . . + E[X2
n]
)
−

∑
1≤i 6=j≤n

E[Xi]E[Xj]

n2

=
n− 1

n2

(
E[X2] + . . . + E[X2]

)
−

∑
1≤i 6=j≤n

E[X ]E[X ]

n2

=
n− 1

n2
nE[X2]− n(n− 1)

E[X ]E[X ]

n2

=
n− 1

n

(
E[X2]− (E[X ])2

)
=

n− 1

n
σ2.

So σ̂ is a biased estimator for the variance σ2!
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To correct this bias, we use the sample variance,

s2 =
n

n− 1

(
n∑
i=1

X2
i −

(
∑n

i=1Xi)
2

n2

)

as the MLE σ̂2. Indeed, by using σ̂2 = s2:

E[σ̂2] = E

[
n

n− 1

(
X2

1 + . . . + X2
n

n
−
(
X1 + . . . + Xn

n

)2
)]

=
n

(n− 1)

(n− 1)

n
σ2 = σ2,

which is indeed an unbiased estimator.
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10 Method of moments: Intro

Before the method of MLE was popularized by Fischer

in the beginning of 20th century, the method of mo-

ments was widely used.

In the modern era we still use method of moments some-

times, as it is more computationally efficient than MLE.

Recall that the k-th moment of X is the quantity E[Xk].
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11 Method of moments

• Assumption: X is a random variable with un-

known parameter θ and moments

M1(θ) := E[X ], M2(θ) := E[X2], . . . .

• Problem: Predict the unknown parameter θ.

• Input: Samples x1, . . . , xn sampled from X .

• Solution: Our guess for θ is a value θ̃ such that

M1(θ) =
x1 + . . . xn

n
;

M2(θ) =
x2

1 + . . . x2
n

n
;

...

It can be impractical to check for all moments of X , and

one usually stops at the second moment.
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12 Method of moments: Gamma

Let X be a gamma random variable with unknown pa-

rameters α, β,

fX;α,β(x) =


βα

Γ(α)x
α−1e−βx if x ≥ 0;

0 otherwise.

where Γ(x) is the function

Γ(x) :=

∫ ∞
0

txe−t dt.

The MLE for this random variable is

L(α, β) =

[
βα

Γ(α)

]n
(x1x2 . . . xn)α−1 exp

(
−β

n∑
i=1

xi

)
.

Maximizing the function above is not meant for mortals,

because the term Γ(x) in L(α, β) is hard to compute.
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Instead, we use the fact that Γ(α, β) has moments:

M1(α, β) =
α

β
; M2(α, β) =

α + α2

β2
.

Solving for the first moment, (BT)

M1(α̃, β̃) =
x1 + . . . xn

n
α̃

β̃
=
x1 + . . . xn

n
= x .

Solving for the second moment,

M2(α̃, β̃) =
x2

1 + . . . x2
n

n
α̃+ α̃2

β̃
2 = v + x2
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Substituting the first equation into the second equation,

α̃+ α̃2

β̃
2 = v +

α̃2

β̃
2

α̃

β̃
2 = v.

Combining α̃

β̃
2 = v and α̃

β̃
= x, we then conclude that

α̃ =
x2

v
; β̃ =

x

v
.
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