Math 170S
Lecture Notes Section $6.2{ }^{* \dagger}$
Exploratory Data Analysis
Instructor: Swee Hong Chan

NOTE: The notes is a summary for materials discussed in the class and is not supposed to substitute the textbook. Materials that appear in the textbook but do not appear in the lecture notes might still be tested. Please send me an email if you find typos.

[^0]
1 Stem-and-leaf display

You are asked to help the friendly instructor to analyze the scores of the final exam of a statistic class of 50 people.

93	77	67	72	52	83	66	84	59	63
75	97	84	73	81	42	61	51	91	87
34	54	71	47	79	70	65	57	90	83
58	69	82	76	71	60	38	81	74	69
68	76	85	58	45	73	75	42	93	65

Figure 1: The scores of the final exam of a class from a parallel universe, taken from the textbook.

It is hard to analyze raw data with naked eyes, so we make the ordered stem-and-leaf display.

Table 6.2-2		Ordered stem-and-leaf display of statistics examinations
Stems	Leaves	Frequency
$\mathbf{3}$	48	2
$\mathbf{4}$	2257	4
$\mathbf{5}$	1247889	7
$\mathbf{6}$	0135567899	10
$\mathbf{7}$	0112334556679	13
$\mathbf{8}$	112334457	9
$\mathbf{9}$	01337	5

Figure 2: The ordered stem-and-leaf display for the exam scores presented in Figure 1, taken from the textbook.

Remark 1. Can you find a bell curve hidden somewhere in the plain sight in the table?

The rule for creating this particular display is

- The first digit of the sample value will be the 'stem', while the second digit will be the 'leaf' of the sample value.

For example, a sample value 93 will have a stem of 9 and a leaf of 3.

- We will order the stems vertically in increasing order (from the smallest to largest), and order the leaves horizontally in increasing order.
- We will also record the frequency of each stem, which is equal to the number of its leaves.

2 Order statistics

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a given sample values. We order them from the smallest to the largest:

- y_{1} is the smallest of x_{1}, \ldots, x_{n};
- y_{2} is the second smallest of x_{1}, \ldots, x_{n};
- ...
- y_{n} is the largest of x_{1}, \ldots, x_{n}.

The number y_{k} is called the k-th order statistics of the sample.

Example 2. Suppose that the samples are given by

$$
x_{1}=3 ; \quad x_{2}=8 ; \quad x_{3}=5 ; \quad x_{4}=1
$$

The y_{k} 's are then given by

$$
y_{1}=1 ; \quad y_{2}=3 ; \quad y_{3}=5 ; \quad y_{4}=8
$$

3 Median

Definition 3. The median of $x_{1}, x_{2} \ldots, x_{n}$ is the value m so that half of the sample values are less than m, and the other half are greater than m.

- If $n=2 h+1$ is an odd number, the median is y_{h+1};
- If $n=2 h$ is an even number, the median is $\frac{y_{h}+y_{h+1}}{2}$.

Example 4. Suppose that the samples are

$$
\begin{array}{lllll}
1 & 3 & 5 & 9 & 13 .
\end{array}
$$

Then median is 5 , the number in the middle.
Suppose that the samples are

$$
1 \quad 4 \quad 11 \quad 12 ;
$$

The median is $\frac{4+11}{2}=7.5$, the average of the two numbers in the middle.

Remark 5. The median should NOT be confused with

 the mean of the sample. Indeed, the samples$$
\begin{array}{lll}
1 & 4 & 13
\end{array}
$$

has median 4 but mean $\frac{1+4+13}{3}=6$.

4 Sample percentile

Fix $p \in(0,1)$. The ($\mathbf{1 0 0} \mathbf{p}$)th sample percentile (or sample percentile of order \mathbf{p}) is the value $\widetilde{\pi}_{p}$ such that $n p$ of the sample values are less than, and the rest $n(1-p)$ of them are larger than $\widetilde{\pi}_{p}$.

- If $(n+1) p$ is an integer, then $\widetilde{\pi}_{p}$ is equal to $y_{(n+1) p}$.

For example, suppose that $n=99$ with samples

$$
\begin{array}{llllll}
1 & 2 & 3 & \ldots & 98 & 99 .
\end{array}
$$

Let $p=0.42$. Then

$$
(n+1) p=(99+1)(0.42)=42,
$$

which is an integer. Then $\widetilde{\pi}_{p}$ is equal to

$$
\widetilde{\pi}_{p}=42 .
$$

- $(n+1) p$ is not an integer, but is equal to

$$
(n+1) p=r+\delta,
$$

where r is an integer, and δ is a real number such that $0 \leq \delta<1$ (such r and δ always exist, and is unique). Then $\tilde{\pi}_{p}$ is equal to

$$
\widetilde{\pi}_{p}:=(1-\delta) y_{r}+\delta y_{r+1}=y_{r}+\delta\left(y_{r+1}-y_{r}\right)
$$

That is to say, $\widetilde{\pi}_{p}$ is a linear interpolation between y_{r} and y_{r+1}.

Figure 3: The location of the 100 p-th percentile with respect to y_{r} and y_{r+1}.

For example, suppose $n=99$ with samples

$$
\begin{array}{llllll}
1 & 2 & 3 & \ldots & 98 & 99 .
\end{array}
$$

Let $p=0.347$. Then

$$
(n+1) p=34.7=34+0.7=r+\delta
$$

so $r=34$ and $\delta=0.7$. Then $\widetilde{\pi}_{p}$ is equal to

$$
\begin{aligned}
\widetilde{\pi}_{p} & =y_{r}+\delta\left(y_{r+1}-y_{r}\right) \\
& =(34)+(0.7)[(35)-(34)]=34.7
\end{aligned}
$$

Remark 6. Percentiles is NOT defined when $p<\frac{1}{n+1}$ or when $p>\frac{n}{n+1}$.

- In the former case, we have $(n+1) p=r+\delta$ with $r=0$, so $\widetilde{\pi}_{p}$ is a linear interpolation between y_{0} and y_{1}. However, y_{0} does NOT exist.
- In the latter case, we have $(n+1) p=r+\delta$ with $r=n$, so $\tilde{\pi}_{p}$ is a linear interpolation between y_{n} and y_{n+1}. However, y_{n+1} does NOT exist.

Remark 7. The reason why in the definition of percentile we use the $(n+1) p$ rather than $n p$ is so that median is equal to the 50th percentile.

5 Quartiles

Special names are given to certain sample percentiles.
The 25th, 50th, and 75th percentiles are called the first, second, and third quartiles, respectively. We also use special notations for them:

$$
\widetilde{\pi}_{1}=\widetilde{\pi}_{0.25}, \quad \widetilde{\pi}_{2}=\widetilde{\pi}_{0.5}, \quad \widetilde{\pi}_{3}=\widetilde{\pi}_{0.75}
$$

Remark 8. There is no universal agreement on selecting quartile values. For this course, we will always use the definition presented here.

6 Box plot: Example

When one reads a financial report, one often sees data presented in the form of box plots. We discuss how to interpret these pictures here.

Figure 4: The box plot of the stock's value of a fictional company, taken from www.qt.io.

7 Five number summary

The five-number summary are these five numbers:

- First quartile $\widetilde{\pi}_{1}$;
- Second quartile $\widetilde{\pi}_{2}$;
- Third quartile $\widetilde{\pi}_{3}$;
- The minimum value y_{1}; and
- The maximum value y_{n}.

The interquartile range (IQR) is the difference between the first and third quartile,

$$
I Q R:=\widetilde{\pi}_{3}-\widetilde{\pi}_{1}
$$

8 Box plot

The box plot or box-and-whisker diagram is a diagram that records the five-number summary as follows:

- The vertical line at the middle is the second quartile;
- The vertical line at the left side is the first quartile;
- The vertical line at the right side is the third quartile;
- the left end of the horizontal line is the minimum;
- the right end of the horizontal line is the maximum.

Note that the interquartile range $I Q R$ is equal to the length of the box in the box plot.

Figure 6.2-I Box plot of fluoride concentrations

Figure 5: Box plot of the five point summary, taken from textbook

From the box plot we learn that

$$
y_{1}=0.85, \quad \widetilde{\pi}_{1}=0.89, \quad \widetilde{\pi}_{2}=0.92, \quad \widetilde{\pi}_{3}=0.97, \quad y_{n}=1.06
$$

[^0]: *Version date: Sunday $4^{\text {th }}$ October, 2020, 16:17.
 ${ }^{\dagger}$ This notes is based on Hanbaek Lyu's and Liza Rebrova's notes from the previous quarter, and I would like to thank them for their generosity. "Nanos gigantum humeris insidentes (I am but a dwarf standing on the shoulders of giants)".

