Math 170S Homework for Section 6.5 *[†] Instructor: Swee Hong Chan

Note: Homework will not be collected, but the question for the quizzes might be picked from the homework questions.

- 1. Solve Problem 6.5-4.
- 2. Let x_1, \ldots, x_n be (fixed real numbers), let $\epsilon_1, \ldots, \epsilon_n$ be independent normal random variables with mean 0 and variance σ^2 . Let y_1, \ldots, y_n be given by

$$y_i := \alpha + \beta x_i + \epsilon_i,$$

where α and β are given fixed constants. Let $\hat{\alpha}$, $\hat{\beta}$, and $\hat{\sigma}^2$ be the MLEs for the linear regression, i.e., $\hat{\alpha}$, $\hat{\beta}$ is given the formula in Theorem 2 of the lecture notes.

• Show that

$$E[\widehat{\alpha}] = \alpha; \qquad Var[\widehat{\alpha}] = \frac{\sigma^2}{n} \left(\frac{\sum_{i=1}^n x_i^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right)$$

• Show that

$$E[\widehat{\beta}] = \beta; \qquad Var[\widehat{\beta}] = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}.$$

^{*}Version date: Thursday 23rd April, 2020, 21:33.

[†]This homework is based on Hanback Lyu's and Liza Rebrova's homeworks from the previous quarter, and I would like to thank her for her generosity here. "*Nanos gigantum humeris insidentes* (I am but a dwarf standing on the shoulders of giants)".