Math 170S Homework for Section 6.4 *†

Instructor: Swee Hong Chan

Note: Homework will not be collected, but the question for Quiz 2 might be picked from the homework questions.

- 1. Let X be the binomial random variable with parameter n and p, where n is known but p is not. Let x_1, \ldots, x_n be sample values for X.
 - (a) Compute the log likelihood function $\ell(p)$ for X.
 - (b) Show that the MLE for p is $\frac{x_1 + \dots + x_n}{n}$.
- 2. Let X be the geometric random variable with unknown parameter p. Let x_1, \ldots, x_n be sample values for X.
 - (a) Compute the log likelihood function $\ell(p)$ for X.
 - (b) Show that the MLE for p is $\frac{n}{x_1 + \dots + x_n}$.
- 3. Let X be the Poisson random variable with unknown parameter λ . Let x_1, \ldots, x_n be sample values for X.
 - (a) Compute the log likelihood function $\ell(\lambda)$ for X.
 - (b) Show that the MLE for λ is $\frac{x_1 + \dots + x_n}{n}$.
- 4. Let X be the uniform random variable on the interval $[0, \theta]$ with unknown parameter θ .
 - (a) Let x_1, \ldots, x_n be sample values for X. Show that the MLE for θ is given by

$$\theta(x_1,\ldots,x_n) = \max(x_1,\ldots,x_n).$$

(b) Show that $\hat{\theta}$ is a biased estimator for θ .

- 5. Show that maximum likelihood estimation and method of moments give the same estimators for $N(\mu, \sigma^2)$.
- 6. Solve Problem 6.4-7 in the textbook.
- 7. Solve Problem 6.4-17 in the textbook.

^{*}Version date: Saturday 11th April, 2020, 20:14.

[†]This homework is based on Hanback Lyu's and Liza Rebrova's homeworks from the previous quarter, and I would like to thank her for her generosity here. "*Nanos gigantum humeris insidentes* (I am but a dwarf standing on the shoulders of giants)".