
A New Approach to the Sensitivity Conjecture

Justin Gilmer
Department of Mathematics

Rutgers University
Piscataway, NJ, USA

jmgilmer@math.rutgers.edu

Michal Koucký
Computer Science Institute

Charles University
Prague, Czech Republic

koucky@iuuk.mff.cuni.cz

Michael Saks
Department of Mathematics

Rutgers University
Piscataway, NJ, USA

saks@math.rutgers.edu

ABSTRACT
One of the major outstanding foundational problems about
boolean functions is the sensitivity conjecture, which (in one
of its many forms) asserts that the degree of a boolean func-
tion (i.e. the minimum degree of a real polynomial that
interpolates the function) is bounded above by some fixed
power of its sensitivity (which is the maximum vertex de-
gree of the graph defined on the inputs where two inputs are
adjacent if they differ in exactly one coordinate and their
function values are different). We propose an attack on the
sensitivity conjecture in terms of a novel two-player commu-
nication game. A strong enough lower bound on the cost of
this game would imply the sensitivity conjecture.

To investigate the problem of bounding the cost of the
game, three natural (stronger) variants of the question are
considered. For two of these variants, protocols are pre-
sented that show that the hoped for lower bound does not
hold. These protocols satisfy a certain monotonicity prop-
erty, and (in contrast to the situation for the two variants)
we show that the cost of any monotone protocol satisfies a
strong lower bound.

Categories and Subject Descriptors
F.1.3 [Computation by Abstract Devices]: Complex-
ity Measures and Classes—Relations among complexity mea-
sures

Keywords
Sensitivity conjecture; degree of Boolean functions; sensitiv-
ity; decision trees; communication complexity

1. INTRODUCTION

1.1 A Communication Game
The focus of this paper is a somewhat unusual cooperative

two player communication game. The game is parameter-
ized by a positive integer n and is denoted Gn. Alice receives

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITCS’15, January 11–13, 2015, Rehovot, Israel.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3333-7/15/01 ...$15.00.
http://dx.doi.org/10.1145/2688073.2688096.

a permutation σ = (σ1, . . . , σn) of [n] = {1, . . . , n} and a bit
b ∈ {0, 1} and communicates to Bob in a very restricted
way (which will be described momentarily). Bob receives
the message from Alice and then outputs a subset J of [n]
that is required to include σn, the last element of the per-
mutation. The cost to Alice and Bob is the size of the set
|J |.

The communication from Alice to Bob is constrained as
follows: Alice has a memory vector v consisting of n cells
which we will refer to as locations, where each location v`
is either empty, denoted by v` = ∗, or is set to 0 or 1.
Initially all locations are empty. Alice gets the input as a
data stream σ1, . . . , σn, b and is required to fill the cells of
v in the order specified by σ. After receiving σi for i < n,
Alice fills location σi with 0 or 1. Upon receiving σn and b,
Alice writes b in location σn.

Once v is filled, Bob inspects v and outputs the subset J .
Given a protocol Π for this game, the cost of the protocol

c(Π) is the maximum of the output size |J | over all inputs
σ1, . . . , σn, b.

For example, consider the following protocol. Let k =
d
√
ne. Alice and Bob fix a partition of the locations of v

into k blocks each of size at most k. Alice fills v as follows:
When σi arrives, if σi is the last location of its block to
arrive then fill the entry with 1 otherwise fill it with 0.

Notice that if b = 1 then the final vector v will have a
single 1 in each block. If b = 0 then v will have a unique all
0 block.

Bob chooses J as follows: if there is an all 0 block, then
J is set to be that block, and otherwise J is set to be the
set of locations containing 1’s. It is clear that σn ∈ J and
so this is a valid protocol. In all cases the size of J will be
at most k and so the cost of the protocol is d

√
ne. We will

refer to this protocol as the AND-OR protocol. In Section
2.1 we remark on this protocol’s connection to the boolean
function

AND-OR(x) =

√
n∧

i=1

√
n∨

j=1

xij .

Let us define C(n) to be the minimum cost of any protocol
for Gn. We are interested in the growth rate of C(n) as a
function of n. In particular, we propose:

Question 1. Is there a δ > 0 such that C(n) = Ω(nδ)?

1.2 Connection to the Sensitivity Conjecture
Why consider such a strange game? The motivation is

that the game provides a possible approach to the well

known sensitivity conjecture from boolean function complex-
ity.

Recall that the sensitivity of an n-variate boolean function
f at an input x, denoted sf (x), is the number of locations
` such that if we flip the bit of x in location ` then the
value of the function changes. (Alternatively, this is the
number of neighbors of x in the hamming graph whose f
value is different from f(x).) The sensitivity of f , s(f), is
the maximum of sf (x) over all boolean inputs x.

The degree of a function f , deg(f), is the smallest degree
of a (real) polynomial p in variables x1, . . . , xn that agrees
with f on the boolean cube.

Conjecture 2. (The Sensitivity Conjecture) There is
a δ > 0 such that for any boolean function f , s(f) ≥
Ω(deg(f)δ).

An easy argument (given in Section 2) connects the cost
function C(n) of the game Gn to the sensitivity conjecture:

Proposition 3. For any boolean function on n variables,
s(f) ≥ C(deg(f)).

In particular, an affirmative answer to Question 1 would
imply the sensitivity conjecture.

1.3 Background on the Sensitivity Conjecture
Sensitivity and degree belong to a large class of complexity

measures for boolean functions that seek to quantify, for
each function f , the amount of knowledge about individual
variables needed to evaluate f . Other such measures include
decision tree complexity and its randomized and quantum
variants, certificate complexity, and block sensitivity. The
value of such a measure is at most the number of variables.
There is a long line of research aimed at bounding one such
measure in terms of another. For measures a and b let us
write a ≤r b if there are constants C1, C2 such that for
every total boolean function f , a(f) ≤ C1b(f)r + C2. For
example, the decision tree complexity of f , D(f), is at least
its degree deg(f) and thus deg ≤1 D. It is also known [8]
that D ≤3 deg. We say that a is polynomially bounded by b
if a ≤r b for some r > 0 and that a and b are polynomially
equivalent if each is polynomially bounded by the other.

The measures mentioned above, with the notable excep-
tion of sensitivity, are known to be polynomially equivalent.
For example, in relating block sensitivity, bs(f), to degree
Nisan and Szegedy [9] show that bs(f) ≤2 deg(f). In the
other direction, the bound deg(f) ≤3 bs(f) follows from a
result in [1]. For a survey on many of these results, see [2].
The sensitivity conjecture asserts that s(f) is polynomially
equivalent to all of the measures mentioned in this section,
and for this, it suffices to show that it is polynomially related
to deg(f).

There are a number of equivalent formulations of the sensi-
tivity conjecture. For instance [4] give a graph theoretic for-
mulation by exploring a different relationship between sen-
sitivity and degree than what is presented here. The same
graph theoretic question also appeared somewhat earlier in
[3], however, sensitivity of boolean functions was only men-
tioned as a related problem and no direct connection was
given. For a good survey of many other variations of the
sensitivity conjecture, see [5].

The sensitivity conjecture perhaps more commonly ap-
pears as a question on the relationship between sensitiv-
ity and block sensitivity. For example, Nisan and Szegedy

[9] asked specifically if bs(f) = O(s2(f)) for all functions,
and as of this writing no counterexample has been given.
The best known bound relating sensitivity to another mea-
sure was given by Kenyon and Kutin [6]. They proved that

bs(f) ≤ e
2π
es(f)

√
s(f) for all boolean functions.

1.4 Outline of the Paper
In Section 2 we prove that a positive answer to Ques-

tion 1 would imply the sensitivity conjecture. We also de-
scribe how protocols relate adverserial methods for proving
that boolean functions are evasive (that is have decision tree
complexity D(f) = n). At the end of the section we prove
that it suffices to answer Question 1 for a special subset of
protocols called order oblivious protocols.

In Section 3 we present three stronger variants of Ques-
tion 1. We then show that for two of these variants, there
are protocols that give negative answers to the questions,
and suggest that Question 1 has a negative answer as well.
However, these protocols satisfy a property called mono-
tonicity and in Section 4 we prove an Ω(n1/2) lower bound
on the cost of any monotone protocol, which shows that any
protocol that gives a negative answer to Question 1, must
look quite different from the two protocols that refuted the
strengthenings. In the same section we prove a rather weak
lower bound for a special class of protocols called assignment
oblivious protocols. Finally, in Section 5 we give the con-
struction of the lowest cost protocol that we know, whose
cost is lower than that of the AND-OR protocol by a con-
stant factor.

2. CONNECTION BETWEEN THE SEN-
SITIVITY CONJECTURE AND THE
GAME

In this section we prove Proposition 3, which connects the
sensitivity conjecture with the two player game described in
the introduction.

We will use e` to denote the assignment in {0, 1}n that
is 1 in location ` and 0 elsewhere. Given two assignments
v,w ∈ {0, 1}n we will use v⊕w to denote the assignment for
which each coordinate is the mod-2 sum of the corresponding
coordinates in v and w.

Recall that Alice’s strategy gives the mapping from the
input permutation σ and bit b to a boolean vector v and
Bob’s strategy maps the vector v to a subset of locations in
v. We first observe that for each strategy for Alice there is a
canonical best strategy for Bob. For a permutation σ, we let
ΠA(σ) denote the vector Alice writes down after receiving
σ1, · · · , σn−1 (so the location σn is still labeled with a ∗).
Thus ΠA(σ) can be viewed as an edge in the hamming graph
Hn whose vertex set is {0, 1}n, with two vertices adjacent
if they differ in one coordinate. The edge set E(Π) of a
protocol Π is the set of edges ΠA(σ) over all permutations
σ. This defines a subgraph of Hn. Given Alice’s output v,
the possible values for σn are precisely those locations ` that
satisfy (v,v⊕e`) is an edge in E(Π). Thus the best strategy
for Bob is to output this set of locations. It follows that c(Π)
is equal to the maximum vertex degree of the graph E(Π).

Proposition 3 will therefore follow by showing the follow-
ing: Given a boolean function with degree n and sensitivity
s, there is a strategy Π for Alice for the game Gn such that
the graph E(Π) has maximum degree at most s.

We need a few preliminaries. A subfunction of a boolean
function f is a function g obtained from f by fixing some
of the variables of f to 0 or 1. Note it is clear that if g is
a subfunction of f then s(f) ≥ s(g). We say a function has
full degree if deg(f) is equal to the number of variables of f .
We start by recalling some well known facts.

Lemma 4. For any boolean function f there exists a sub-
function g on deg(f) variables that has full degree.

Proof. If p is the (unique) multilinear real polynomial
that agrees with f on the boolean cube, then p contains a
monomial

∏
`∈S

x` where |S| = deg(f). Let g be the function

obtained by fixing the variables in [n] \ S to 0. Then g is a
function on deg(f) variables that has full degree.

Lemma 5. Given a function f with full degree and a lo-
cation `, there exists a bit b such that the function obtained
from f by fixing x` = b is also of full degree.

Proof. The polynomial (viewed as a function from
{0, 1}n → {0, 1}) for f may be written in the form
p1(x1, x2, · · · ,��x` , · · · , xn) + x`p2(x1, x2, · · · ,��x` , · · · , xn).
Here p1(x1, x2, · · · ,��x` , · · · , xn) indicates that the variable
x` is not an input to the polynomial. If p1 has a non zero
coefficient on the monomial

∏
k 6=`

xk, then we set x` = 0 and

the resulting function will have full degree. For the other
case, note p2 must have a non zero coefficient on

∏
k 6=`

xk be-

cause f has full degree. Thus, setting x` = 1 will work.

We remark that the argument in the above lemma is essen-
tially the same as the standard argument that the decision
tree complexity of any function f is at least deg(f).

We are now ready to prove Proposition 3.

Proof. Given the function f , let g be a subfunction on
deg(f) variables with full degree. We will construct a pro-
tocol Π that satisfies E(Π) ⊆ E(g), where E(g) denotes the
set of sensitive edges for the function g, i.e. the edges of
Hn whose endpoints are mapped to different values by g.
This will imply that c(Π) ≤ s(g) ≤ s(f), and thus prove the
proposition. As Alice receives σ1, σ2, · · · , σn, she fills in v
in such a way so that the function f restricted to the par-
tial assignment written on v remains a full degree function,
which is possible by Lemma 5.

Note that after Alice writes a bit in location σn−1, the
function g restricted to v is now a non-constant function of
one variable, and thus the edge ΠA(σ) is a sensitive edge for
the function g. This implies that E(Π) ⊆ E(g).

Remark: To summarize, the reduction above shows that a
degree n Boolean function having sensitivity s can be con-
verted into a strategy for Alice for the game Gn of cost at
most s. We don’t know whether this connection goes the
other way, i.e., we can’t rule out the possibility that the
answer to Question 1 is negative (there is a very low cost
protocol for Gn) but the sensitivity conjecture is still true.

2.1 Connection to Decision Tree Complexity
We note the connection between protocols Π for the game

Gn and boolean functions on n variables for which D(f) = n
(sometimes referred to as evasive functions). A common

method for showing that a function is evasive is to use an
adversary argument. For example, consider the evasive func-
tion

AND-OR(x) =

√
n∧

i=1

√
n∨

j=1

xij .

To show this function is evasive we simulate the computa-
tion of some decision tree on an input x, except when the
tree queries a variable xij the adversary will respond either
0 or 1 in such a way as to keep the value of the function on
the input x unknown until all variables are queried. For the
AND-OR function, take the adversary that always answers
0 as long as some other variable in the corresponding OR
block remains undetermined, otherwise it answers 1. This
adversary is exactly Alice’s part of the AND-OR protocol
described in the introduction. For more examples of adver-
sary arguments see [7].

Every evasive function by definition admits an adversary
argument which in turn defines a protocol Π. In fact a func-
tion f is evasive if and only if there exists a protocol Π for
which E(Π) ⊆ E(f) (recall E(f) is the set of sensitive edges
of the function f). This work explores the question, can we
use the inherent structure of an arbitrary adversary (or pro-
tocol) to exhibit a lower bound on sensitivity? We provide
some limited evidence that this may be possible by prov-
ing lower bounds for restricted classes of protocols Π (see
Section 4).

2.2 Order Oblivious Protocols
In the game Gn, at each step i < n, the value written

by Alice at location σi may depend on her knowledge up
to that step, which includes both the sequence σ1, · · · , σi
and the partial assignment already made to v at locations
σ1, . . . , σi−1. A natural way to restrict Alice’s strategy is to
require that the bit she writes in location σi depend only on
σi and the current partial assignment to v but not on the
order in which σ1, . . . , σi−1 arrived. A protocol satisfying
this restriction is said to be order oblivious. The following
easy proposition shows that it suffices to answer Question 1
for order oblivious protocols.

Proposition 6. Given any protocol Π there exists an or-
der oblivious protocol Π′ such that E(Π′) ⊆ E(Π). In par-
ticular, c(Π′) ≤ c(Π).

Proof. First some notation. Given a permutation σ let
σ≤k denote the prefix of the first k elements of σ. We let
ΠA(σ≤k) denote the partial assignment written on v after
Alice has been streamed σ1, · · · , σk.

We give a canonical way of obtaining an order oblivious
protocol Π′ from Π. We define Π′ in steps, where step k
refers to what Alice does when she is streamed σk. For step
1, when σ1 arrives, she writes according to what Π does
for that value of σ1. In order to define step k + 1, assume
Π′ is defined for the first k steps. Assume as well that it
satisfies for every permutation σ, there is a permutation τ
of σ1, · · · , σk so that ΠA(τ) = Π′A(σ≤k).

Suppose σk+1 arrives and the current state of the vector is
v := Π′(σ≤k). Note from v Alice can deduce the set of the
first k elements of σ (it is the set of locations not labeled with
a *). Alice then considers all permutations τ of σ1, · · · , σk
such that ΠA(τ) = Π′A(σ≤k) and picks the lexicographically
smallest permutation (call it τ∗) in that set and writes on

location σk+1 according to what Π does after τ∗. Note that
the bit written on location σk+1 does not depend on the
relative order of σ1, σ2, · · · , σk. Using this strategy, Alice
maintains the invariant that for every permutation σ, there
is a permutation τ of σ1, · · · , σk so that Π(τ) = Π′(σ≤k).

Thus, by construction, Π′ is assignment oblivious. Also
for any permutation σ there is a permutation τ for which
ΠA(τ) = Π′A(σ). This implies that E(Π′) ⊆ E(Π).

3. STRONGER VARIANTS OF
QUESTION 1

In this section we propose three natural variants of Ques-
tion 1, and refute two of these variants by exhibiting and
analyzing some specific protocols.

The cost function c(Π) of a protocol is defined based on
the worst case over all choices of σ1, . . . , σn, b. Alternatively,
it is natural to evaluate a protocol based on the average size
of the set Bob outputs, where the average is taken over a
random permutation σ1, . . . , σn and a random bit b. We call
this the expected cost of Π and denote it by c̃(Π). Let C̃(n)
denote the minimum expected cost of a protocol for Gn.

Question 7. Is there a δ > 0 such that C̃(n) = Ω(nδ)?

An affirmative answer to this question would give an af-
firmative answer to Question 1.

We point out that it is well known that the natural prob-
abilistic version of the sensitivity conjecture, where sensitiv-
ity is replaced by average sensitivity (where the average is
taken uniformly over {0, 1}n) is trivially false (for example,
for the OR function). For contrast, consider the protocol Π
where Alice writes a 0 at each step. This protocol is closely
related to the OR function in that Alice’s part of this pro-
tocol is exactly the adversary argument used to prove that
OR is evasive. Note also that E(Π) is exactly the set of
sensitive edges for the OR function. However, the average
cost c̃(Π) is n/2 whereas the average sensitivity of the OR
function is o(1). We currently know of no protocol Π for
which c̃(Π) = o(

√
n).

We also remark that an analog of Proposition 6 holds for
the cost function c̃(Π), and therefore it suffices to answer
the question for order oblivious protocols. (The proof of the
analog is similar to the proof of Proposition 6, except when
modifying the protocol τ∗ is not selected to be the lexico-
graphically smallest permutation in the indicated set, but
rather the permutation in the indicated set that minimizes
the expected cost conditioned on the first k steps.)

There is another natural variant of Question 1 based on
average case. When we run a fixed protocol Π on a random
permutation σ and bit b, we can view the vector v produced
by Alice as a random variable. Let h̃(Π) be the conditional
entropy of σn given v; intuitively this measures the average
number of bits of uncertainty that Bob has about σn after
seeing v. It is easy to show that this is bounded above
by log(c(Π)). Let H̃(n) be the minimum of h̃(Π) over all
protocols Π for Gn. The analog of Question 1 in this setting
asks whether there is a positive constant δ such that H̃(n) =
Ω(δ log(n))? An affirmative answer to this would imply an
affirmative answer to Question 1, however it turns out that
the answer to this new question is negative.

Theorem 8. There is an order oblivious protocol Π for
Gn such that h̃(Π) = O(log log(n)).

Remark: Earlier we showed one can transform any proto-
col into an order oblivious protocol with smaller cost. How-
ever, it is not clear whether or not this transformation can
increase h̃. Instead, we directly provide an example of an
order oblivious protocol for which h̃(Π) is small.

Proof. Before defining the protocol Π we need some
setup. Let k = dlog(n)e and associate each integer ` ∈ [n]
to its binary expansion, viewed as a vector b(`) ∈ Fk2 . Note
that 0 /∈ [n], and thus each vector b(`) is nonzero. Let t > k
be an integer (which we’ll choose to be log2(n)) and for each
S ⊆ [n] of size t, let Z(S) be a maximal subset of S such that∑
`∈Z(S) b(`) is the 0 vector. Observe that by maximality,

Z(S) ≥ |S| − k (otherwise S \ Z(S) would have a linearly
dependent subset which we could add to Z(S)). Finally let

H = {Z(S) : S ∈
(
[n]
t

)
}.

Given T ∈ H and a partial assignment π, we say T is
compatible with π if πi ∈ {1, ∗} for all i ∈ T . The protocol Π
is defined as follows. For i 6= n Alice writes a 0 on location
σi unless doing so makes all T ∈ H not compatible with
the resulting partial assignment written on v, otherwise she
writes a 1.

In an earlier version of this paper, we had defined Π so that
Alice writes 1 on location i if and only if i ∈ Z(S) where S is
the set of the last t locations of σ. The cost of this protocol
is easier to analyze, but it is not order oblivious. Here we
instead analyze the order oblivious protocol you obtain if
Alice writes a 0 as long as she remains consistent with some
partial assignment in the order sensitive protocol.

We note two properties of Π. First, Alice will write a 0
on the first n − t streamed locations. To see this, let S(σ)
denote the set of the last t elements of σ. Then Z(S(σ)) will
be compatible with v for the first n− t steps. We also have:

Claim 9. There is a unique set F ∈ H that is compatible
with the partial assignment ΠA(σ).

Proof. Recall that ΠA(σ) will have a ∗ in location σn.
Suppose that there are two sets F1, F2 that are compatible
with ΠA(σ) and let T be their symmetric difference. First
suppose T − {σn} is non-empty and pick i ∈ T − {σn}.
Then when location i arrived, Alice could have written a
0 since one of F1 or F2 would remain compatible. This
contradicts the construction of the protocol. Now suppose
that T = {σn}. In this case, since

∑
`∈F1

b(`) =
∑
`∈F2

b(`) =

~0, the vector b(σn) must be the zero vector. This is also
impossible because we defined the protocol to have all b(`)
non-zero.

We will refer to the set promised by Claim 9 as the final
set and denote it as F (σ).

We now obtain an upper bound on the conditional entropy
of σn given v. Let L be the random variable that is 1 if
σn ∈ F (σ) and 0 otherwise. We have:

H(σn|v) ≤ H(σn, L|v)

= H(L|v) +H(σn|v, L)

≤ 1 +H(σn|v, L)

= 1 +H(σn|v, L = 1) Pr[L = 1]

+H(σn|v, L = 0) Pr[L = 0]

We first bound the second term. Note that given L = 1 we
have that σn is in the final set F (σ) and that Bob can deduce

F (σ) given the vector v. To see this, let W be the set of
locations ` for which v is set to 1 and let Γ =

∑
`∈W b(`). If

Γ is ~0, then F (σ) must be the set of locations that are set to
1. Otherwise Γ will be equal to b(`∗) for some unique `∗, and
F (σ) is then the set of locations set to 1 union `∗. In either
case, the number of possible values for σn is no more than t
and so the second term is at most H(σn|v, L = 1) ≤ log(t).

To bound the third term we first show the following:

Claim 10. The probability that L = 0 is at most k/t.

Remark: This claim is very easy to see for the order sen-
sitive version mentioned earlier (L = 0 is exactly the event
that σn ∈ S − Z(S)). The fact that it still works for the
order oblivious version seems quite intuitive because Alice
writing some additional 0’s should only help the probability.
For completeness, we provide a rigorous proof of this below.

Proof. Recall that L = 0 means that σn ∈ S \ F (σ).
As before let σ≤j denote the prefix of the first j elements
of σ and let T (σ≤j) denote the set of the first j elements
of σ. Given a prefix τ of length n − l we let M(τ) denote
max
E
|T (τ)− E| where the max is over all sets E that are

compatible with ΠA(τ). For integers l and m let f(l,m) de-
note min

τ
(Pr[L = 0|σ≤n−t = τ]) where the minimum is over

all prefixes τ of length n− ` for which M(τ) = m . We will
show that f(`,m) ≤ m/` for all `,m. In particular, since
every Z(S) has size at least t−k, showing that f(t, k) ≤ k/t
will prove the claim. We proceed by induction on `+m. As
a base case, it is easy to see that if m = 0 the probability is
0, and if ` = m then the probability is 1.

Let τ be any prefix of length n − ` for which M(τ) = m
and suppose that σ≤(n−`) = τ . Note that if Alice writes a
0 next, then M(σ≤(n−`+1)) ≤M(σ≤(n−`))− 1. Also if Alice
writes a 1 next, then M(σ≤(n−`+1)) = M(σ≤(n−`)). Let p
denote the probability that Alice will write a 0 on location
σn−`+1. Then p ≥ m/` (if there is exactly one set T that
is compatible then p = m/` and with additional sets the
probability only increases). Thus

f(`,m) ≤ Pr[L = 0|σ≤n−` = τ]

≤ pf(`− 1,m) + (1− p)f(`− 1,m− 1).

≤ m

`

m− 1

`− 1
+
`−m
`

m

`− 1
(by the I.H.)

= m/`

Note that trivially H(σn|v, L = 0) ≤ log(n), thus the
claim implies that the third term is at most log(n) · k

t
. By

choosing t = log2(n) the second term is O(log log(n)) and
the third term is O(1).

For our last variant, suppose Alice can communicate to
Bob with a ternary alphabet instead of a binary alphabet.
We will show that Question 1 is false in this setting. The
setup is the same as before: Alice is streamed a permutation
σ, only when σi arrives she may write a 0,1, or 2 on location
σi in v. When b ∈ {0, 1, 2} arrives she is forced to write b
at location σn. Bob sees v and has to output a set J which
must contain σn. The cost is the maximum size of J for any
σ and b.

Theorem 11. There is a protocol Π using a ternary al-
phabet that has cost O(log(n)).

Proof. Let t < n be a parameter to be chosen later (we
will end up showing that the cost is less than t).

Alice begins by writing 0 on the first n − t locations
streamed to her. After this, Alice writes only 1’s and 2’s
(as described below). Clearly if the final input b is not 0,
Bob will see exactly t locations that are not labeled a 0 and
know the last t elements. Consider then the case that b = 0.
We’ll show that Alice can write the 1’s and 2’s in such a way
that Bob can then determine σn exactly. In what follows, a
binary string will refer to a string of 1’s and 2’s.

Consider the graph defined on t element sets where two
sets are joined if they have symmetric difference 2. The
degree of this graph is trivially less than n2 so it has a proper
coloring with at most n2 colors.

Now let us encode each of these colors by a binary string
of length t. Write E(c) for the encoding of color c. We want
our encoding to have the following property: for any two
colors c, d if you delete any single bit from the encoding of
E(c) (which leaves a t − 1 bit string) and delete any single
bit from the encoding of E(d) then they are still different.

Claim 12. There is such an encoding for t = 5 log(n).

Proof. Consider the graph defined on binary strings of
length t, where two strings s1, s2 are joined if there is a way
of deleting a symbol from s1 and a symbol from s2 to arrive
at the same string of length t− 1. The degree of this graph
is trivially less than 2t2, thus there is a proper coloring with
at most 2t2 colors. Thus there is a color class of size at least
2t

2t2
strings. If t > 5 log(n) then there is a color class of size

at least n2. Picking n2 strings in this color class will give us
the desired encoding E(c).

After Alice writes the first (n− t) 0’s, she knows the final
t positions denoted j1 < . . . < jt. She determines the color c
of that set and the encoding E(c). She then writes the bits
of E(c) in the positions j1, . . . , jt (writing the bits in this
order and not in the σ order of the last t elements).

If b = 0, Bob only sees t − 1 of the bits. However, by
the property of the encoding, this is enough to recover E(c)
and therefore c. Furthermore, knowing c and t − 1 out of
the last t elements, the property of the coloring allows Bob
to recover the missing element, which is σn. This concludes
the construction.

4. LOWER BOUNDS FOR RESTRICTED
PROTOCOLS

In the previous section we formulated two stronger vari-
ants of Question 1 that turned out to be false. This may
suggest that the original question is also false. In this sec-
tion however, we will prove a lower bound which implies
that any counterexample to Question 1 will need to look
quite different from the two protocols provided in the last
section.

An order oblivious protocol can be specified by a sequence
of maps A1, · · · , An where each Ai maps partial assignments
on the set [n] to a single bit. When location σi arrives,
the bit Alice writes is Aσi(v). For partial assignments α
and β, we say that β is an extension of α, denoted as β ≥
α, if β is obtained by starting from α and possibly fixing
more variables. An order oblivious protocol is monotone if

each of the maps A1, · · · , An are monotone with respect to
the extension partial order. That is, if β ≥ α are partial
assignments, then Ai(β) ≥ Ai(α) for each i. As a remark,
when running the protocol there may be assignments that
are never written on v, however defining each Ai to have
domain all partial assignments is still valid and simplifies
notation.

Both the AND-OR protocol described in the introduction
and the protocol constructed in Theorem 8 are examples
of monotone protocols. This definition easily generalizes to
protocols on alphabets of size k, in which case the ternary
protocol given in the previous section can be seen to be
monotone. Our main result in this section is that monotone
protocols on binary alphabets have cost Ω(

√
n). In partic-

ular, Question 1 is true for such protocols. For the rest of
the paper, all protocols will be on binary alphabets.

Before proving the theorem we’ll need some new defini-
tions. Recall that an edge e ∈ Hn may be written as a
vector in {0, 1, ∗}n for which e` = ∗ on exactly one location
`. We call this location ` the free location of that edge. We
say two edges e, e′ collide if e` = e′` for all ` that is not a
free location of either edge. Equivalently, two edges collide
if they share at least one vertex (each edge collides with it-
self). Both of the lower bounds in this section will follow by
finding an edge e ∈ E(Π) that collides with m other edges
in E(Π). This implies at least one of the vertices in e has
degree at least m/2 in the graph E(Π), which in turn lower
bounds the cost of the protocol.

Finally, given a permutation σ we will use ` <σ k to denote
that the element ` comes before the element k in σ.

Theorem 13. All monotone protocols have cost Ω(
√
n).

Proof. Let Π be a monotone protocol.
For a permutation σ denote by bumpk(σ) the permutation

obtained from σ by “bumping” the element k to the end of
σ and maintaining the same relative order for the rest of σ.
For example, bump1(321654) = 326541.

We let w(σ) denote the vector ΠA(σ) with the entries
sorted in σ order. In other words, w(σ) is the vector de-
fined by w(σ)i = (ΠA)σi . Our proof follows by repeated
application of the following:

Claim 14. Let σ be any permutation and let τ be obtained
from σ by performing some sequence of bumps on σ. Suppose
that τ and m < n satisfies the following:

• The elements τ1, τ2, · · · , τm were never bumped.

• Alice originally wrote a 0 on the locations τ1, · · · , τm,
that is ΠA(σ)τi = 0 for all i ≤ m.

Then ΠA(τ)τi = 0 for all i ≤ m. Equivalently, w(τ) begins
with m 0’s.

Proof. The claim follows easily by induction on i. Sup-
pose we have already shown that w(τ) begins with (i − 1)
0’s. Let v(σ, k) denote the partial assignment written on v
just before Alice receives the index k (here the reader should
take care to distinguish this from the partial assignment just
before Alice receives σk). Consider the partial assignment
v(τ, τi). It follows from the first assumption and the induc-
tive hypothesis that v(σ, τi) is an extension of v(τ, τi). Thus,
since Alice originally wrote a 0 on location τi, by monotonic-
ity she continues to write a 0 on that location when being
streamed τ (that is ΠA(τ)τi = 0).

Let σ be the permutation for which w(σ) is lexicographi-
cally smallest.

Claim 15. w(σ) consists of a string of 0’s followed by a
string of 1’s, followed by a single *.

Proof. Suppose for contradiction that there is a a 0 that
comes after a 1, and let k be the least index such that
w(σ)k = 1 and w(σ)k+1 = 0. Let τ be obtained from σ
by bumping all of the locations ` for which ` <σ k and
ΠA(σ)` = 1. Let m denote the number of locations ` for
which ` <σ k and ΠA(σ)` = 0. Then by Claim 14, w(τ)
begins with (m+1) 0’s. This contradicts the choice of σ

Let n−t be the number of initial 0’s in w(σ) and t−1 be the

number of 1’s. For k between 1 and n, let τ (k) = bumpk(σ).
Let x be the assignment obtained from ΠA(σ) by setting
location σn (which is a *) to 1.

Claim 16. The edges ΠA(τ (k)) and ΠA(σ) intersect at
the input x for all k among the last t elements of σ. In
particular x has degree at least t in the graph E(Π).

Proof. Fix k among the last t elements of σ. Clearly
w(τ (k)) has the first n − t bits 0, and so by the choice of

σ all other locations in w(τ (k)) must be labeled 1. Thus

w(τ (k)) = w(σ). This means that the edges ΠA(σ) and

ΠA(τ (k)) agree at all locations except for σn and σk (which
are the free location of the edges respectively). Since

ΠA(σ)σk = ΠA(τ (k))σn = 1, the two edges meet at x.

To conclude the proof of the theorem we will find an assign-
ment y that has degree at least (n− t)/(t+ 1) in the graph
E(Π).

Claim 17. For k among the first n − t elements of σ,
w(τ (k)) has the first n − t − 1 bits equal to 0, and has at
most one 0 among the next t bits (and last bit *).

Proof. The fact that the first n − t − 1 bits of w(τ (k))
are labeled 0 follows by directly by Claim 14.

Suppose for contradiction that there are at least 2 0’s
among the next t locations and denote the locations of the
first and second 0 to be `1 and `2 respectively. Take all of
the locations that are labeled 1 in ΠA(τ (k)) and bump them
to the end and let this new permutation be ρ. Once again by
applying Claim 14 we have ΠA(ρ)`1 = ΠA(ρ)`2 = 0. Thus
w(ρ) has the first n−t+1 locations set to 0 which contradicts
the choice of σ.

Now classify each of the first n− t elements of σ into t+ 1
types n − t, . . . , n. Element k is of type n if w(τ (k)) has t

1’s. Otherwise w(τ (k)) has (t − 1) 1’s, and the type of k
is equal to the index j between n − t and n − 1 such that
w(τ (k))j = 0.

Some type occurs at least m := (n− t)/(t+ 1) times, call
it j∗, and let k1, k2, · · · , km be the m elements that are type
j∗. For 1 ≤ i ≤ m let y(i) be the assignment obtained by
taking the edge ΠA(τ (ki)) and assigning the ∗ to 0.

Claim 18. The assignments y(i) are all equal.

Proof. By the definition of the bump operation the per-
mutations τ (ki) all have the same elements at positions

n− t, n− t+1, · · · , n−1 (they have the same suffix with the
exception of the last element). Since they are all of the same

type it follows that the y(i) all agree on locations in the set
{τ (k1)(j) | j ∈ n−t, · · · , n−1}. For all other locations, each

y(i) is set to 0, thus they are the same assignment.

Therefore there are m distinct edges in the graph E(Π) that

are incident with the assignment y := y(1). Thus y has
degree at least m = (n − t)/(t + 1). This implies that cost
of Π is at least max(t, (n− t)/(t+ 1)) = Ω(

√
n).

As demonstrated by the AND-OR protocol, Theorem 13 is
tight up to a constant factor. We remark that the monotone
protocols we consider here seem to have no general connec-
tion to the class of monotone boolean functions, and our
result for monotone protocols seems to be unrelated to the
easy and well known fact that the sensitivity conjecture is
true for monotone functions.

We conclude this section with a lower bound for a sec-
ond class of protocols. Although the lower bound is only
logarithmic, we point out that proving a logarithmic lower
bound for all protocols with a strong enough constant would
imply new bounds relating degree and sensitivity.

For a permutation σ let Sk(σ) denote the set of elements
` that satisfy ` <σ k. For example, if σ = 321654 then
S1(σ) = {2, 3}. We say a protocol is assignment oblivious if
the bit written by Alice in location k only depends on the set
Sk(σ). Such protocols can be described by a collection of n
hypergraphs H1, H2, · · · , Hn, where each H` is a hypergraph
with vertex set [n] \ {`}. When k arrives, Alice writes a 1 if
and only if the set Sk(σ) is in Hk.

Theorem 19. Every assignment oblivious protocol Π has
c(Π) ≥ log2(n)/2.

Proof. Let Π be an assignment oblivious protocol.
Given a permutation σ = σ1σ2 · · ·σn and k ∈ [n] we

define swapk(σ) to be the permutation obtained by swap-
ping the positions of the elements k and σn within σ and
keeping every other element in the same place. For ex-
ample, swap3(654321) = 654123. The lemma will follow
by constructing a permutation σ such that that ΠA(σ) and
ΠA(swapk(σ)) collide for each k ∈ {σn−1, · · · , σn−dlog2(n)e}

We build up such a σ in a greedy manner. We start with
setting σn−1 = 1. With σn−1 fixed, the bit Alice writes
in location 1 is completely determined by σn (and does
not depend on the values we later choose for σ1, · · · , σn−2).
This holds by the assignment oblivious property and because
S1(σ) = {` : ` 6= 1, σn}. Let R1 be the locations ` for which
setting σn = ` results in Alice writing a 1 in location 1. At
least one of |R1|, |Rc1| are bigger than d(n− 1)/2e, let T1 be
that set. Now we fix σn−2 to be any element in T1.

Having fixed σn−1 and σn−2, the bit Alice writes on lo-
cation σn−2 also only depends on the value of σn. Now
let R2 be the subset of indices j in T1 such that setting
σn = j would cause Alice to write a 1 in location σn−2.
At least one of |R2|, |Rc2| are bigger than d(|T1| − 1)/2e, let
T2 ⊆ T1 be that set. This process is iteratively repeated. At
step i we set σn−i to be an arbitrary element of Ti−1. With
σn−1, · · · , σn−i now fixed, the value written in location σn−i
depends only on the value of σn. The set Ri is defined to be
all such values of σn that result in Alice writing a 1 in loca-
tion σn−i and Ti ⊆ Ti−1 is defined to be the larger of |Ri|

and |Rci |. We proceed until the set Ti has only one element
in it, in this case we assign σn to be that element. This pro-
cess will take at least dlog2(n)e steps. We then assign the
remaining elements to σ1, · · · , σn−i−1 in an arbitrary order.

We now claim that ΠA(σ) and ΠA(swapk(σ)) collide for
k = σn, σn−1, · · · , σn−dlog2(n)e.

Claim 20. Let i < dlog2(n)e, and let k = σn−i. Then
ΠA(σ)` = ΠA(swapk(σ))` for all ` 6= k, σn.

Proof. Let σ′ = swapk(σ). If ` <σ k then S`(σ) =
S`(σ

′) and so Alice writes the same bit to location ` under
both permutations.

Suppose that ` >σ k. Let j be such that σn−j = `. Note
that σn−1 = σ′n−1, · · · , σn−j = σ′n−j . Recall that holding
σn−1, · · · , σn−j fixed, the bit Alice writes at location ` de-
pends only on the value of σn, and furthermore that bit is the
same as for all settings of σn ∈ Tj . Since both σn and σ′n = k
are in the set Tj , it follows that ΠA(σ)` = ΠA(σ′)`.

By the above claim, σ collides with swapk(σ) for at least
dlog2(n)e values of k. Furthermore, at least one of the ver-
tices in ΠA(σ) has degree more than dlog2(n)/2e. This con-
cludes the proof.

5. A PROTOCOL WITH LOWER COST
THAN THE AND-OR PROTOCOL

In this section we present a construction of a protocol

with c(Π) ≤
√

999
1000

√
n which is the lowest cost protocol

we know. The construction is a variant of the AND-OR
protocol defined in the introduction.

Assume n and k are integers where n − k is a perfect
square. A set of assignments {xS ∈ {0, 1}n|S ∈

(
[n]
k

)
} is

an (n, k)-proper code if the hamming distance between any
xS ,xS′ is at least 2

√
n and each xS is 0 on the locations

i ∈ S. Let {xS |S ∈
(
[n]
k

)
} be an (n, k)-proper code. We

construct a protocol Π as follows: Alice writes 0 at loca-
tions σ1, · · · , σk. Alice then takes the set S = {σ1, · · · , σk}
and splits [n] \S into

√
n− k disjoint blocks of size

√
n− k.

When Alice continues and receives σj (for k < j < n) she
writes the mod-2 sum of the bit bj and the bit in location
σj of xS , where bj is 1 if σj is the last element in its block,
and 0 otherwise.

We claim that upon receiving vector v, Bob knows that
the value of σn is one of

√
n− k possible locations. First

note that the vector v is within distance
√
n− k of the vector

xS , and thus Bob may decode v to learn the assignment xS
(and thus the set S as well). Consider the assignment v⊕xS
restricted to the locations outside of S. If the final bit b is
0, then exactly one of the

√
n− k blocks will be all 0’s. Bob

can output J to be that block. If the final bit b is 1, then
every block will have exactly a single 1 in it. Bob can output
J to be the set of locations that are set to 1. In each case
|J | =

√
n− k.

To conclude the construction of this protocol we prove
the existence of an (n, n/1000)-proper code. Consider the

following random code indexed by the sets S ∈
(
[n]
k

)
: Each

xS is set to 0 on locations in S, and set to an independently
and uniformly chosen random bit on locations outside of
S. We claim that with nonzero probability this set is a
proper code. The second property holds by definition, it only
remains to check the pairwise distances of the code words.

Given sets S, S′ let ES,S′ be the event that d(xS ,xS′) <
2
√
n. This may be upper bounded by the probability that

xS ,xS′ differ on less than 2
√
n locations in the set [n] \

(S∪S′). This probability is exactly the probability that two
random n−|S∪S′| bit strings are within distance 2

√
n. Since

n−|S∪S′| ≥ n/2 this probability is at most exp(−n/32) by a
standard Chernoff bound. By a union bound the probability
of any event ES,S′ occurring is at most(

n

n/1000

)2

exp(−n/32) < 1.

Thus with nonzero probability this is a proper code.

Corollary 21. There is an ε > 0 and a protocol Π for
which c(Π) ≤ (1− ε)

√
n.

6. ACKNOWLEDGEMENTS
We thank Ran Raz for helpful discussions. The first au-

thor was supported by NSF grant CCF 083727. The sec-
ond author was supported in part by (FP7/2007-2013)/ERC
Consolidator grant LBCAD no. 616787, a grant from Neu-
ron Fund for Support of Science, and the project 14-10003S
of GA ČR. The third author was supported by NSF grants
CCF-083727 and CCF-1218711, and the Simons Foundation
under award 332622.

7. REFERENCES
[1] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and

R. De Wolf. Quantum lower bounds by polynomials.
Journal of the ACM (JACM), 48(4):778–797, 2001.

[2] H. Buhrman and R. de Wolf. Complexity measures and
decision tree complexity: a survey. Theor. Comput.
Sci., 288(1):21–43, 2002.

[3] F. R. Chung, Z. Füredi, R. L. Graham, and P. Seymour.
On induced subgraphs of the cube. Journal of
Combinatorial Theory, Series A, 49(1):180–187, 1988.

[4] C. Gotsman and N. Linial. The equivalence of two
problems on the cube. Journal of Combinatorial
Theory, Series A, 61(1):142–146, 1992.

[5] P. Hatami, R. Kulkarni, and D. Pankratov. Variations
on the Sensitivity Conjecture. Number 4 in Graduate
Surveys. Theory of Computing Library, 2011.

[6] C. Kenyon and S. Kutin. Sensitivity, block sensitivity,
and `-block sensitivity of boolean functions.
Information and Computation, 189(1):43–53, 2004.

[7] L. Lovasz and N. E. Young. Lecture notes on
evasiveness of graph properties. arXiv preprint
cs/0205031, 2002.

[8] G. Midrijanis. Exact quantum query complexity for
total boolean functions. arXiv preprint
quant-ph/0403168, 2004.

[9] N. Nisan and M. Szegedy. On the degree of boolean
functions as real polynomials. Computational
Complexity, 4:301–313, 1994.

