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Abstract
We show that a noisy parallel decision tree making O(n)
queries needs Ω(log∗ n) rounds to compute OR of n bits.
This answers a question of Newman [21]. We prove more
general trade-offs between the number of queries and
rounds. We also completely settle a similar question for
computing MAX in the noisy comparison tree model;
these results bring out interesting differences among the
noise models.

1 Introduction
Noise is ubiquitous and there is a vast literature de-
voted to its impact on computation and communication.
Computation in a noisy environment has been studied in
many models including decision trees [12, 25, 10, 8, 21],
formulas and circuits [23, 14, 28, 17, 9] , various kinds
of communication protocols [15, 26, 18, 11, 21], sorting
networks [19], cellular automata [13], quantum compu-
tation [3, 5], and other situations, eg [1, 7, 22, 16, 20, 29].
In this paper we will be concerned with the noisy
boolean decision tree model and the noisy comparison
tree models.

1.1 Noisy Boolean Decision Trees In the usual
(noise-free) model, a boolean function f(x1, . . . , xn) is
to be computed by querying variables in an adaptive
manner. An algorithm in this model is represented by
a decision tree. In the noisy version of the model, each
reported answer may be incorrect. Several models have
been proposed to formalize noise. In the simplest model,
the random noise model, there is a noise parameter
ε ∈ [0, 1/2) and the outcome of each query is incorrect
independently with probability exactly ε. To compute
f in this model means to produce an output that agrees
with f with probability at least 1 − δ where δ > 0 is
fixed.

A noise-free boolean decision tree of depth d can be
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simulated by a noisy decision tree of depth O(d log d):
Each query of a variable in the noise-free setting is
simulated by taking the majority of Ω(log d) noisy
queries of the same variable. Since a noise-free decision
tree can compute any n-variate function in at most n
queries, this shows that any boolean function can be
computed in the noisy model with at most O(n log n)
queries. Feige et al [12] showed that to compute
MAJORITY and PARITY in the noisy decision tree
model Ω(n log n) queries are indeed necessary. In
contrast, they showed that OR, which requires n queries
in the noise-free model, can be computed in O(n) queries
in the noisy model.

There is a natural notion of parallelism for decision
trees [30]. The algorithm works in rounds, and in each
round it makes a set of queries in parallel. The goal is to
keep both the total number of queries and the number
of rounds small. See section 2 for precise definitions.
Noisy parallel decision tree algorithms have been used
to design protocols for the noisy radio broadcast model
[21]; the number of queries in the decision tree model
corresponds to the number of broadcasts needed.

The O(n) query algorithm for OR of Feige et
al [12] runs in O(log n) rounds and this was reduced
to O(log∗ n) rounds by Newman [21]. Newman raised
the question: Is there a noisy decision tree for OR using
O(n) queries and O(1) rounds? In this paper we answer
this question in the negative by showing that any O(n)
query algorithm requires Ω(log∗ n) rounds.

Theorem 1.1. There is an integer n0 depending on ε
such that for all n ≥ n0 and r ≤ (log∗1/ε n)/2, a (possibly
randomized) parallel noisy decision tree computing OR
of n input bits with query complexity ≤ 1

103 n log(r)
1/ε n

needs at least r rounds. In particular, if the query
complexity is ≤ cn for any constant c then Ω(log∗1/ε n)
rounds are necessary.

This is the first non-trivial trade-off lower bound be-
tween the number of rounds and the total number of
queries for noisy parallel decision trees. The results are
tight up to constants in light of the O(log∗1/ε n) algo-
rithm of Newman [21], and similar algorithms for other



points on the trade-off curve are easy to derive.
It has been argued that the assumptions of the ran-

dom noise model are inappropriate for designing algo-
rithms, because an algorithm (or circuit, protocol etc)
may exploit this regularity in noise (eg, [11]). Other
stronger models of noise have been proposed which elim-
inate this regularity, and allow the noise to be adver-
sarial. There are at least two such models: (1) Static
adversary model (eg, [11]); this is called the fault tol-
erance model by Newman [21]. (2) Clairvoyant adver-
sary model [11]. (There is no standard terminology,
and sometimes the above names may be used for differ-
ent models.) In the static adversary model the adver-
sary can preset the probability of error for each query,
the only restrictions are that each of these probabilities
is at most ε, and the errors are independent. In the
clairvoyant adversary model, we first produce a set of
noise random variables as in the random noise model:
For each possible query that the algorithm can make,
we have a bit which is 1 with probability ε and 0 with
probability 1 − ε, independent of the other bits. If the
bit corresponding to a query is 1 then the answer to that
query is allowed to be corrupted by the adversary oth-
erwise it is not corrupted. Now with the knowledge of
the decision tree and these bits adversary can choose to
corrupt any set of answers that it is allowed to corrupt.

The random noise model is the weakest of the three
and the clairvoyant adversary model is the strongest.
For upper bounds, one seeks to design algorithms that
tolerate noise in the strongest model possible. Since our
lower bound is proved for the weakest model, they hold
for the other models as well.

Our lower bound for OR is deduced from a lower
bound on a related problem, the “Which half?” prob-
lem. The input to this problem consists of 2n bits, ex-
actly one of which is known to be 1 and the problem
is to determine whether the 1 is in the first or second
half of the bits. We prove that if the location of the 1 is
chosen at random then this problem can’t be answered
with a linear number of queries and few rounds. The
proof is by round elimination: we prove a lemma that
shows that after the first round of queries, we are left
with a problem that is at least as hard as the original
problem on a not much smaller set of inputs. By repeat-
edly applying the lemma we are reduced to a one round
algorithm, for which a lower bound is easy to prove.

1.2 Noisy Comparison Decision Trees In the
familiar comparison decision tree model, the variables
take values from an abstract totally ordered set and
a single query consists of comparing two variables.
The parallel version of this model was considered by
Valiant [30]. The random noise model (and the other

two models of noise) can be adapted in the obvious
way to comparison decision trees. We are interested
in the trade-offs between the total number of queries
and the number of rounds used in computing the MAX
of n inputs by a parallel noisy comparison decision tree.
Such tree were considered by Feige et al [12], but they
did not study the trade-off question. Among other
results they showed that MAX can be computed in
O(log n) rounds using O(n) queries in the random noise
models as well as other stronger models. We briefly
review the known results for MAX in the noise-free
models as we use these results, and also because then
one can then see the impact of noise by comparing these
results with the results in the noisy models.

Valiant showed that for deterministic algorithms
Ω(log log n) rounds are essential if in each round the
algorithm can make at most O(n) queries. He gave
an algorithm running in O(log log n) rounds and mak-
ing O(n log log n) queries. This was improved to
O(log log n) rounds and O(n) queries by Shiloach and
Vishkin [27]. Thus for deterministic parallel decision
trees Θ(log log n) rounds are necessary and sufficient if
the total number of queries is O(n). Reischuk [24] gave
a randomized algorithms with O(1) rounds and O(n)
queries. Clearly this is the best possible. Now we de-
scribe our results.

Theorem 1.2. For computing MAX of n variables us-
ing noisy randomized comparison decision trees making
O(n) queries, Θ(log∗1/ε n) rounds are necessary and suf-
ficient. This is true for all three models of noise.

The lower bound is proved by a reduction from OR; the
upper bound adapts Reischuk’s [24] algorithm to the
noisy case. In the random noise model if the number of
queries is O(n) then O(log∗1/ε n) rounds are sufficient
also for the deterministic algorithms. Deterministic
algorithms in the random noise model have access to
O(n) biased independent random bits, obtained for
example by querying the same variable many times.
These bits can be used to simulate the algorithm in
theorem 1.2 which uses O(n1/3 log n) random bits.

In the fault tolerance or clairvoyant adversary mod-
els this is not possible. Indeed, in these models
a deterministic algorithm making O(n) queries needs
Ω(log log n) queries. This is because the adversary can
choose to introduce no noise, and then the problem be-
comes noise-free and Valiant’s argument applies. We
have

Theorem 1.3. There is a noisy deterministic parallel
comparison decision tree computing MAX of n vari-
ables in O(log1/ε log1/ε n) rounds and O(n) queries in
the fault tolerance and clairvoyant adversary models.



The upper bound is obtained by adapting the algorithm
of [27] to the noisy case. The main idea is that the
algorithm of [27] leaves enough room to adjust its
parameters so that one can make additional queries
which make the algorithm robust to the noise.

At high level, our algorithms are robust to adversar-
ial noise because they make decisions based on major-
ity voting. Eg, to estimate a variable we query it some
number of times and take its value to be the majority
of the received bits. It is easy to see that probability of
the estimate obtained this way being correct cannot be
reduced by correcting some bits or reducing the noise
probability.

The rest of this paper is organized as follows.
Section 2 contains a description of the model and some
definitions. Section 3 explains the adversary’s strategy
and the round elimination lemma. Section 4 has the
proof of theorem 1.1. In section 5 we sketch the results
in the comparison tree model. Section 6 concludes with
some open problems.

2 Preliminaries
The boolean decision tree model is an abstraction of al-
gorithms evaluating functions of n boolean variables
x1, . . . , xn using queries to individual variables. We
denote by x = (x1, . . . , xn) the vector of these vari-
ables. A boolean decision tree over boolean variables
{x1, . . . , xn} is a rooted binary tree where each internal
node of the tree is labeled by a variable, and the leaves
are labeled 0 or 1. In a noise-free execution, the compu-
tation starts with the algorithm querying the variable
labeling the root. Then the algorithm queries the left
child if the answer is 0, and queries the right child if
the answer is 1, and so on, until it gets to a leaf when
it announces the label of the leaf as the answer of the
computation. Thus each assignment to the variables
determines a unique root-leaf path.

In the noisy boolean decision tree model [12], on
each fixed input the output of the algorithm is a random
variable determined as follows: Each query is answered
incorrectly (independently of the other queries) with
probability ε, where ε ∈ [0, 1/2) is a constant. We say
that a decision tree computes a function f : {0, 1}n →
{0, 1} if for all inputs x, it outputs f(x) with probability
≥ 2/3, where the probability is taken over the random
noise. Of course, 2/3 is an arbitrary constant, and
we could choose it to be any constant in (1/2, 1) using
standard amplification.

In a parallel noisy decision tree (explicitly defined
by Newman [21]), leaves are labeled 0 or 1 as before.
Each internal node is labeled by a multiset of variables
which corresponds to the queries asked at that node,
and there is a branch from the node for each of the

possible outcomes of the queries. The output of a
noisy parallel decision tree on a given input is a random
variable whose distribution is given as in the sequential
case.

The query complexity of a decision tree can be
defined in several ways. One is the number of queries
made on the worst case input for the worst choice of
noise. This is just the depth of the decision tree. We can
consider for every input the average number of queries
made on it (where the average is over the random noise)
and take the maximum of this over the inputs. Finally,
we can average the number of queries on both the inputs
and the random noise. This last measure depends on
the distribution on the input. (The fourth possibility of
averaging over the input and taking the worst case over
the noise does not seem very interesting.)

For parallel decision trees, we get two complexity
measures; each of them can be considered in the various
average and worst case scenarios as above. One measure
comes from counting the total number of queries made
in a computation; this corresponds to the usual decision
tree query complexity. The other measure comes from
the depth of the leaf reached. This gives the number of
rounds used by the tree.

In this paper for the boolean decision tree case we
are concerned with (1) the query complexity averaged
over the noise and worst case over the input; (2) number
of rounds taken worst case over both noise and input.
(Actually, we can take the query complexity to be
average both over the input and the noise for a certain
distribution over the input but we do not state our
results in that form for simplicity.) One can derive a
trade-off similar to but slightly weaker than the one in
theorem 1.1 if one uses the number of rounds averaged
over the noise and worst case over the input.

All these measures carry over easily to the compari-
son tree case. Here we will use the worst case measures.

For reals x ≥ a > 1, and integer r ≥ 0, log(r)
a x

denotes log(log(. . . (log x) . . .)) with r logarithms. In
particular, log0

a x = x. log∗a x denotes minimum integer
r such that log(r)

a x ≤ 1. As usual, [a, b] denotes the set
{a, . . . , b}, and [a] denotes the set [1, a]. For a bit vector
u, denote the number of 1s in it by |u|. Unit vectors are
denoted by e1, . . . , en, so ei denotes the vector with all
except the ith bit 0. The all 0’s vector is denoted by
just 0. The input is denoted x = (x1, . . . , xn). When the
base is not specified the base of logarithm is 2. Notation
O(.), Ω(.) may hide factors depending on ε.

Throughout, we ignore the integrality issues when
dealing with fractions, logarithms etc. This has negligi-
ble effect; and if desired, it is easy, though tedious, to
take integrality explicitly into account.

Instead of working with OR directly, it is more



convenient to work with the following problem which
we call the Which Half? Problem (WHP ).

Definition 2.1. (WHPn) Input: A bit vector x of
length 2n, generated by sampling uniformly from the set
{e1, . . . , e2n}. Output: 0, if the bit with value 1 appears
among the first n bits; 1 otherwise.

Lemma 2.1. If there is a qn-query r-round algorithm
for ORn then there is a qn-query r-round algorithm for
WHPn.

Proof. Let A be a qn-query r-round algorithm for ORn.
Now if we feed A with the last n bits of the input to
WHPn then it computes the answer to WHPn.

3 The round elimination lemma

As stated in the introduction, the round elimination
lemma says that if there is an r-round algorithm for
WHPn using at most qn queries then there is an
r − 1-round algorithm for WHPn′ with at most qn
queries whose error probability is not much larger. The
precise statement of this lemma requires two additional
parameters θ and λ, which should be thought of as large
real numbers.

Lemma 3.1. (Round elimination) Let θ ≥ 10, λ ≥
10, n, q be positive integers such that

√
n > λθ (1/ε)θq.

If there is an r-round deterministic algorithm for
WHPn with qn queries and error probability δ, then
there is an (r − 1)-round deterministic algorithm for
WHPn′ with qn queries and error probability ≤ δ/(1 −
4/θ − e−2(λ−1)2), where n′ = (1 − 1/θ)εθqn/2.

Proof. We introduce an oracle who at the end of the first
round of queries, provides some additional information
to the algorithm, which includes revealing the true
values of some of the variables. Clearly this can not
increase the complexity of the algorithm (since the
algorithm can ignore this information.) The behavior
of the oracle depends on the integer parameters θ and
λ mentioned in the lemma. We will show that (1) with
probability close to 1, the location of the 1 is among
the unrevealed variables, (2) the number of unrevealed
variables in each half is the same and both are at least
n′, (3) conditioned on the results of the first round of
queries and the information provided by the oracle, and
conditioned on the event that the location of the 1 has
not been revealed, the location of the 1 is uniformly
distributed among the unrevealed locations.

Let k be the (random) index such that xk = 1.
The first round of queries is specified by a vector m =
(m1, . . . , mn) where mi is the number of times xi is
queried. By hypothesis m1 + . . . + mn ≤ qn.

Let B1 (resp. B2) consist of the bn/θc indices
among the first half (resp. second half) of the variables
that are queried most often (breaking ties arbitrarily).
(Henceforth we omit b·c brackets.) The oracle reveals
all of the values xi for i ∈ B = B1 ∪ B2. If k ∈ B this
ends the algorithm. Otherwise, let A1 = [n] − B1 and
A2 = [n + 1, 2n] − B2. It follows from the definition of
B1 and B2 that |A1| = |A2| = (1 − θ)n and for i ∈ A,
mi ≤ θq. For each i ∈ A = A1∪A2, the oracle performs
θq−mi additional queries to xi whose answers are given
to the algorithm for “free”. Thus the algorithm gets
exactly θq noisy values of xi for each i ∈ A. Let mi

be the number of reported values of xi that are 1. For
j ∈ {1, 2}, let Sj be the set of indices i ∈ Aj for which
mi = mk. The oracle reveals the values of the variables
outside of S = S1 ∪ S2.

Let sj = |Sj |. If min{s1, s2} < n′ then the oracle
reveals xk, ending the computation. Otherwise, the
oracle chooses |s1 − s2| indices at random from the
larger of S1, S2 and reveals those values. Let S′

1, S
′
2

be the subsets of S1, S2 that remain unrevealed. It is
immediate from the definition of the oracle that if the
oracle does not reveal xk, then |S′

1| = |S′
2| ≥ n′ and

conditioned on the query answers and the information
provided by the oracle, the value of k is uniformly
distributed on |S′

1 ∪ S′
2|.

We next give an upper bound on the probability
that the oracle reveals xk. There are three ways this
can happen: (E1) xk ∈ B; (E2) min(s1, s2) ≤ n′, (E3)
xk is among the |s1 − s2| variables of S1 ∪ S2 revealed.
We bound each of these probabilities.

For E1 Since there are a total of at most qn queries,
at most n/θ variables are queried more than θq times,
so Pr[xk ∈ B] ≤ 1/θ.

For E2 and E3, assume that E1 does not happen.
For i ∈ A, let Yi be the indicator of the event that
mi = mk. Yk = 1 and conditioned on mk and the
event i 6= k, the probability p that Yi = 1 is at least
εmi(1 − ε)θq−mi ≥ εqθ.

Let Z denote the random variable which is the sum
of n(1 − 1/θ) independent Bernoulli random variables
with probability p. Then s1 (resp. s2) has a distribution
of the form Z+W where W is a positive random variable
that is at most 1 which accounts for the contribution of
Yk. Let µ = (1− 1/θ)np, which is the expectation of Z.
Let Fj be the event that |sj −µ| ≤ λ

√
n(1 − 1/theta)+

1.
By a version of the Chernoff bound for biased

random variables (see, e.g., [4], corr. A.1.7, page 266),

Pr[F̄j ] ≤ Pr |Z − µ| ≤ λ
√

n(1 − 1/θ)

≤ 2e−2(λ−1)2 .

Thus, conditioned on E1 not happening, F1 and F2



both hold with probability at least 1 − 4e−2(λ−1)2 . For
the given value of λ, F1 and F2 imply that s1, s2 ≥ n′

and so E2 holds.
Finally conditioned on E1, F1, F2, the probability

that the event E3 occurs if xk is among the |s1 − s2|
variables of S1 ∪ S2 that the oracle reveals, and this
happens with probability |s1 − s2|/|s1 + s2|. Given F1

and F2 this is at most (λ
√

n(1 − 1/θ) + 1)/n′ which
is bounded below by 3/θ from our assumption

√
n >

λθ (1/ε)θq.
So the probability of xk getting revealed in the first

round is ≤ 1
θ + 4e−2(λ−1)2 + 3

θ = 4
θ + 4e−2(λ−1)2 = t.

Therefore, with probability 1− t, the algorithm gets an
instance of WHPm for m such that p(v)(1 − 1/θ)n −
λ
√

(1 − 1/θ)n ≤ m ≤ (p(v)n − λ
√

n).
The algorithm has r − 1 rounds to work on this

instance and the error probability δ′ that it can afford
is such that δ′(1 − t) ≤ δ, hence δ′ ≤ δ/(1 − t). Since
p(v) ≥ εqθ, this gives us an (r − 1)-round, qn-query, δ′-
error probability algorithm for WHPn′ , where n′ is as
in the statement of the theorem.

4 Proof of the main theorem
In this section we prove the main theorem using
lemma 3.1. For i ≥ 0, define,

θi = (100)2i,

di = 10θi,

λi = 10 + i.

Lemma 4.1. Let i ∈ [r], and let ni be such that
log(i−1)

1/ε ni ≥ 10
ε2 . If there is an i-round algorithm

for WHPni with error probability δ ≤ 1/3, and av-

erage number of queries ≤ log
(i)
1/ε

ni

dr−i
, then there is an

(i − 1)-round algorithm for WHPni−1 with ni−1 =

ε
log(i)

1/ε
n

10 ni/4 and error probability δi−1 ≤ δi/(1 −
4/θr−i − e−2(λr−i−1)2) and average number of queries

≤ log
(i−1)
1/ε

ni−1

dr−i+1
.

Proof. Let r ≤ (log∗1/ε n)/2. Note that for all suffi-
ciently large n, the assumption

√
n > λθ (1/ε)θq in

lemma 3.1 is satisfied for (λ, θ) = (λi, θi), and qi =
log

(i)
1/ε

ni

dr−i
, where i ∈ [r]. Below we assume that our

n’s will be large enough to satisfy this assumption.
By lemma 3.1, with the adversary choosing θ = θr−i

and λ = λr−i there is an (i − 1)-round algorithm for

WHPni−1 with total
log

(i)
1/ε

ni

dr−i
n queries and error proba-

bility δi−1 = δi/(1 − 4/θr−i − e−2(λr−i−1)2), where

ni−1 = (1 − 1/θr−i)ε
θr−i

log(i)
1/ε

n

dr−i n/2 > ε
log(i)

1/ε
n

10 n/4.

The average number of queries used by this algorithm
is

log(i)
1/ε ni

dr−i

ni

ni−1
≤

4 log(i)
1/ε ni

dr−i

(
1
ε

) log(i)
1/ε

ni

10

≤
4 log(i)

1/ε ni

dr−i
(log(i−1)

1/ε ni)1/10

≤
log(i−1)

1/ε ni−1

dr−i+1
.

The last inequality follows from our assumption that
log(i−1)

1/ε ni ≥ 10
ε2 . This completes the proof of the lemma.

Let n = nr satisfy log(r−1)
1/ε nr ≥ 10

ε2 . Suppose that
we have an r-round algorithm for WHPnr with error
probability δr ≤ 1/3, and average number of queries

≤ log
(r)
1/ε

nr

d0
, then applying lemma 4.1 repeateadly r times

we obtain a 0-round algorithm (that is an algorithm
which makes no queries) for WHPn0 , where

n0 =
n

22(r−1)
ε

1
10 (log

(r)
1/ε

nr+...+log
(1)
1/ε

n1)

≥ n

22(r−1)
ε

1
10 (log

(r)
1/ε

n+...+log
(1)
1/ε

n)

≥ n1/4.

This algorithm has error probability

δ0 ≤ δr/(
r∏

j=1

(1 − 4/θj − 4e−2(λj−1)2))

≤ δr/(1 −
r∑

j=1

(4/θj + 4e−2(λj−1)2))

≤ δr/(1 − 4/200− 1/100)

≤ δ(1 + 1/10) ≤ 1
3

11
10

=
11
30

.

By lemma 3.1 this gives a 0-round algorithm for WHPn1

with error probability 11
30 < 1/2. But this is impossible,

as clearly any 0-round algorithm (that is, an algorithm
which does not look at the input) for WHPn, with
n ≥ 1, has error probability ≥ 1/2. Hence our
initial assumption about the algorithm for WHPnr

was invalid. Hence any deterministic algorithm for
WHPn working in r rounds must use (n log(r)

1/ε n)/d0 =

(n log(r)
1/ε n)/103 queries.



Since we have given a single distribution that is
hard for all deterministic algorithms, it follows (by an
appropriate variant of Yao’s Lemma [31]) that the lower
bound extends to randomized decision trees.

For the “in particular” part of the theorem, let r =
(log∗1/ε n)/2, then for any constant c for all sufficiently

large n we have 1
103 log(r)

1/ε n > cn. Hence by the first
part of the theorem at least r = Ω(log∗1/ε n) rounds are
necessary if the number of queries is cn.

Remark 4.1. Theorem 1.1 and its proof easily gener-
alize to the following setting where the algorithm has a
helper who is allowed to set the error probability of each
query to any number in [ε, 1/2]. This generalization will
be useful in the proof of lower bound for MAX.

5 Comparison Trees

Proof. (sketch for theorem 1.2)
Lower bound. As mentioned before, we prove the
trade-off lower bound for MAX by reducing OR to
it. We are given the input x = (x1, . . . , xn) for
OR, we define input yi := xi + i/2n for the MAX
problem. Adding i/2n ensures that all the inputs are
distinct. To compute OR(x), it is sufficient to compute
MAX(y) because, if say yi is the answer returned by
the algorithm for MAX then we can just query xi

log n times and get its value, which is the value of OR,
reliably. To find MAX(y) we simulate the comparison
queries of the algorithm for MAX using the boolean
queries: To compare yi and yj we query xi and xj ,
call the returned values x′

i and x′
j , and return yi if

x′
i + i/2n > x′

j + j/2n, else return yj .
In the above simulation, the probability of error for

the comparison query is not a fixed constant and may
depend on the values of xi and xj . Eg, if (x1, x2) =
(0, 0), then (y1, y2) = (1/2, 1), and so y1 > y2. The
probability that y1 is the answer of comparison between
x1 and x2 is ε(1 − ε) corresponding to the event
(x′

1, x
′
2) = (1, 0). On the other hand, if (x1, x2) = (0, 1),

then (y1, y2) = (1/2, 3/2), and so y1 > y2. But now
the probability that y1 is the answer of comparison
between x1 and x2 is ε2, again corresponding to the
event (x′

1, x
′
2) = (1, 0). This issue can be resolved by

remark 4.1: Helper manipulates the error probability
for the boolean queries in the range [ε, 1/2], so that the
error probabilities for the comparison queries are all the
same. Thus we get a lower bound for MAX in the
random noise model.
Upper bound. We borrow the sampling idea used
by Reischuk [24] to give a noise-free algorithm working
in O(1) rounds and O(n) queries. We use a subroutine
called APXM(S, x) (for approximate maximum), where
S ⊆ U , and x ∈ U . APXM(S, x) returns a set

T ⊆ S such that with high probability, say > 99/100,
|T | ≤ 2(n − rank(S, x)) and max(S) ∈ T and x ∈ T .
rank(S, x) is the number of elements in S smaller than
x. It runs in O(log∗1/ε n) rounds and O(n) queries.
APXM is closely related to the OR problem, and uses
ideas from the log∗ n-round algorithm of Newman [21]
for OR.

We assume that ε < 1/4. APXM(S, x) works
as follows. Let S be the set of input variables.
APXM(S, x) produces sets S = S0 ⊇ S1 ⊇ S2 ⊇ . . ..
Set ni = |Si|, q0 = 100, and qi = 100(n/ni)2−(i+1). In
round i, it produces Si by doing qi comparisons for each
variable in Si−1 with x, choosing the variables which
come out greater in the majority of comparisons. Com-
putation continues until ni+1 > 104e−qi/8ni. If Sr is the
last set produced then APXM(S, x) returns Sr ∪ {x}.

We briefly indicate the analysis. By the Chernoff
bound, the probability that in the ith round for a vari-
able in Si the majority vote of comparisons yields wrong
answer is ≤ e−qi/8. Hence, by another application of
the Chernoff bound, ni+1 ≈ nie

−qi/8 with high proba-
bility, provided that (n − rank(S, x)) � ni+1. Hence,
qi+1 ≈ qie

qi/8. This shows that qi grows as a tower of
height i. Hence there are O(log∗1/ε n) rounds. The prob-
ability that max(S) gets eliminated ≈ ∑

i≥0 e−qi/8 � 1.
In the algorithm we also need to compute the

maximum of sets of size O(n1/3). This can be done
in a straightforward manner: Compare c logn times all
O(n2/3) pairs, for each pair choose that variable as the
greater of the two which comes greater in the majority of
comparisons. For large constant c this gives the correct
total order on the variables with probability 1−1/nΩ(1).
This procedure uses O(n2/3 log n) comparison.

Now we can present our algorithm for MAX . Let
T denote the set of inputs.

1 Uniformly randomly choose T1 ⊂ T of size n1/3.
m1 = max(T1).
T2 = APXM(T, m1).
If |T2| > 10n2/3, HALT with ERROR.

2 Uniformly randomly choose T3 ⊂ T2 of size n1/3.
m2 = max(T3).
T4 = APXM(T3, m2).
If |T4| > 10n1/3, HALT with ERROR.

3 Output max(T4).

The above algorithm uses randomness for choosing
T1 and T3. For each of these it needs O(log

(
n

n1/3

)
) =

O(n1/3 log n) random bits. It can be simulated by
a O(n)-query, log∗1/ε n-round deterministic algorithm
which has access to O(n) biased random bits. Simu-
lation requires some care, and can be done for example
by approximating the distributions for T1 and T2.



Proof. (sketch for theorem 1.3) We describe a determin-
istic algorithm computing MAX in O(n) queries and
O(log log n) rounds in the fault-tolerance and clairvoy-
ant adversary models. The algorithm is obtained by
modifying the algorithm of [27] for the same problem in
the noise-free model.

The algorithm works in two phases. The first
phase has 2 log log n rounds, and is similar to the NBA
tournament type algorithm of Feige et al [12]. Divide
the input variables into groups of size 2. For each group
ask 3 times which variable is greater. For each group
choose the variable which is greater in the majority of
comparisons. These variables participate in the second
round, where we again divide these variables into groups
of size 2, and for each groups ask 5 queries, and so
on. In general, in the ith round, each comparison is
made 2i + 1 times. So after 2 log log n rounds we have
n′ = n/(logn)2 variables.

For the second phase consider a leveled rooted tree
T (not to be confused with a decision tree) with n′

leaves. An internal node with ` leaves as descendents
has

√
` children. It is easy to see that such a tree has

height log log n′. In the second phase the algorithm
assigns the n′ variables from the first phase to the
n′ leaves of T . Now the algorithm proceeds level by
level starting from the leaves. Leaves have height 0.
We inductively describe round i of the second phase.
From the previous rounds the algorithm has assigned a
variable to each node in T at height i − 1. For each
node v at level i we have a group of variables which
correspond to the children of v. Now the algorithm
will find the maximum of each group and assign it
to the node at level i associated with the group. It
remains to specify how this maximum is found. This
is done in the most simple way: For each pair make
c1 log n comparisons for some constant c1, and choose
the variable which comes out greater in the majority of
comparisons as greater. If it does not get a total order
on the elements in a group then it halts with error. Else,
if it gets a total order on the elements of the group
then choose the maximum variable in this total order.
Choose the maximum variable in this total order. The
variable labeling the root is the answer.

Clearly the number of rounds taken by this algo-
rithm is 2 log log n+log log n′ < 3 log log n. The number
of queries in the first phase is O(n), because in round i
the number of queries is (2i+1)n/2i. For each round in
the second phase, the number of queries is n′ log n. The
number of rounds in the second phase is < log log n.
So the total number of queries in the second phase is
< n′ log n log log n = n

(log n)2 log n log log n < n.
By the Chernoff bound the probability that the

maximum gets eliminated in the ith round of the first

phase is ≈ ci
2 for some small constant c2 which can be

chosen to be small by choosing ε to be small. Hence
the probability of the maximum getting eliminated in
the first round is ≈ ∑

i≥1 ci
2 < 2c2 � 1. In the

second phase by choosing c1 large enough, again by the
Chernoff bound we get that the probability of error for
any pair is ≤ 1/n5. Since the total number of pairs being
compared is O(n), with probability 1− 1/n4 answer for
every pair is correct, and for each group the right total
order is found, and the maximum is computed correctly.
The algorithm is robust to adversarial noise because it
makes decisions based on majority voting.

6 Further Work
There are several results about the query complexity
(without restriction on rounds) of some specific boolean
functions, eg, MAJORITY and PARITY. This paper
gives trade-off results between rounds and queries for
OR function. It would be nice to obtain general
characterizations for query complexity and trade-off for
any given boolean function.

For the noisy comparison tree model, one can ask
similar questions, as we studied above for MAX , for
SELECTION. Note that answers to these questions
are known for the noise-free comparison tree model by
Ajtai et al [2] and Reischuk [24] for deterministic and
randomized algorithms respectively.
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