
Lower Bounds for the Noisy Broadcast Problem
Extended Abstract

Navin Goyal∗

Dept. of Computer Science
Rutgers University

Guy Kindler†

Institute for Advanced Study
Princeton.

Michael Saks‡

Dept. of Mathematics
Rutgers University

Abstract

We prove the first non-trivial (superlinear) lower bound in the
noisy broadcast model of distributed computation. In this model,
there aren + 1 processorsP0, P1, . . . , Pn. EachPi, for i ≥
1, initially has a private bitxi and the goal is forP0 to learn
f(x1, . . . , xn) for some specified functionf . At each time step, a
designated processor broadcasts some function of its private bit
and the bits it has heard so far. Each broadcast is received by the
other processors but each reception may be corrupted by noise.

In this model, Gallager [16] gave a noise-resistant protocol
that allowsP0 to learn the entire input inO(n log log n) broad-
casts. We prove that Gallager’s protocol is optimal up to a con-
stant factor.

Our lower bound follows from a lower bound in a new model,
the generalized noisy decision tree model, which may be of inde-
pendent interest.

1 Introduction

Coping with noise is a major theme in the theory and prac-
tice of information systems, and gives rise to the following ques-
tion: how much additional resources are needed to obtain reli-
able results in the presence of noise?. This question was studied
in the context of decision trees [12, 26, 10, 8, 22], formulas and
circuits [24, 15, 29, 18, 9], sorting networks [20], cellular au-
tomata [14], quantum computation [2], data structures [13, 4],
various communication models [16, 28, 19, 27, 22] and other
models [1, 7, 23, 17],

The noisy broadcast modelis a simple model of distrib-
uted computation defined by El Gamal [6], and popularized by
Yao [34]. There aren + 1 processors, consisting ofn broadcast-
ers,P1, . . . , Pn, and a receiverP0. Initially, each broadcasterPi

has a private input bitxi, and the goal is forP0 to evaluate a given
functionf(x1, . . . , xn). Communication is carried out via noisy
broadcasts in synchronous time steps; in each time step a desig-
nated broadcaster broadcasts a single bit (as a function of its pri-

∗Supported in part by NSF grant CCR-9988526 and a Bevier fellowship of
Rutgers University

†Supported by CCR grantNCCR-0324906 andNDMS-0111298.
‡Supported in part by NSF grants CCR-9988526 and CCR-0515201.

vate input and bits it has heard in previous time steps). Each other
processor receives a noisy copy of the broadcast, which means
that the received bit is complemented with some fixed probabil-
ity ε < 1/2, independently for each processor. At the end of the
protocol,P0 computes the output from the bits it has heard. The
requirement for a correct protocol is that for eachx ∈ {0, 1}n,
P0 correctly outputsf(x) with some fixed probability, say, 2/3.

In this paper we study the case where the functionf to be
computed is the identity function, denotedID . Namely we re-
quire thatP0 learns the input bits of all processors (this is of
course the hardest function to compute in this model). A naive
protocol achieves this withO(n log n) broadcasts by having each
processor broadcast its bitc log n times for a sufficiently large
constantc. This was improved toO(n log log n) broadcasts by
Gallager [16] in 1988. This upper bound was not improved since
then, and yet no lower-bound was previously known other than
the trivial Ω(n). We show that Gallager’s upper bound is best
possible.

1.1 Other previous results

Kushilevitz and Mansour [19] showed that the majority func-
tion, MAJ, can be computed withO(n) broadcasts. This pro-
tocol takes advantage of a rather strong and unrealistic feature
of the model: that the noise occurring in different receptions is
independent and identically distributed. To obtain results that
are less sensitive to assumptions about the distribution of noise,
Feige and Kilian [11] proposed a stronger adversarial model of
noise. Roughly speaking, this model allows an omniscient ad-
versary to cancel any of the errors introduced by the random
noise, thus preventing the algorithm from taking advantage of
stochastic regularities in the noise. Feige and Kilian showed
that even against this stronger adversaryOR can be computed
in O(n log∗ n) broadcasts. Newman [22] improved this toO(n)
broadcasts (although Newman only proved his result for a weaker
adversarial model, his result easily carries over to the stronger ad-
versarial model of [11].)

In closely related models, efficient error resilient protocols
were given for the noisy two party communication complexity
by Schulman [28], and for noisy communication networks with
small degree by Rajagopalan and Schulman [25].

1.2 Our results

In this paper we prove that Gallagher’sO(n log log n) proto-
col for ID is optimal:

Theorem 1 For eachε ∈ (0, 1/2) there is a numbern0 = n0(ε)
such that for anyn ≥ n0, any protocol in the noisy broadcast
model that computesIDn against noise probabilityε requires at
least 1

20 ln(1/ε)n ln ln n broadcasts.

Our result is the first non-trivial lower bound in the noisy
broadcast model. Because we prove our lower bound in the orig-
inal noise model of El Gamal, our results apply to the stronger
adverserial noise models as well.

This lower bound is deduced from a lower bound in a new cen-
tralized model of noisy function computation which we call the
generalized noisy decision tree model(gnd-tree model), which
seems of potential independent interest. In this model, the al-
gorithm seeks to evaluate a given function on boolean inputx
having no direct access tox, but having access to a collection
of independent noisy copies ofx, where each bit is flipped with
some fixed probabilityε < 1/2. At each step, based on the in-
formation it has gathered so far, the algorithm selects one of the
copies and chooses an arbitrary functionq : {0, 1}n −→ {0, 1}.
It then is told the value ofq on the selected copy. (A precise
definition of the model appears in Section 2.)

The restriction of thegnd-tree model in which the queriesq
are required to be of the formq(y1, . . . , yn) = yi for somei is
equivalent to the noisy decision tree (nd-tree) model introduced
by Feige et al. [12]. The power of these two models is not the
same: the majority function requiresΩ(n log n) queries by annd-
tree [12], but can be computed by agnd-tree withO(n) queries,
by adapting the aforementioned protocol of Kushilevitz and Man-
sour [19] in the noisy broadcast model.

The functionID can be computed by agnd-tree(indeed, by
annd-tree) withO(n log n) queries (by queryingO(log n) noisy
copies of each variable). Our main technical result says that no
gnd-tree can do better than this:

Theorem 2 For ε ∈ (0, 1/3), there is a numbern0 = n0(ε) such
that for anyn ≥ n0, any (randomized)gnd-tree that computesID
for noise probabilityε, must have depth at leastε

4

1800n ln(n/3).

The requirement thatε < 1/3 is made for technical conve-
nience. It is not hard to extend the result up toε < 1/2 but we
omit this detail.

1.3 Overview of the proof

Theorem 1 is derived from Theorem 2 via a reduction (The-
orem 3) that shows that protocols for computingID in the noisy
broadcast model providegnd-trees forID . The advantage of
working through thegnd-tree model is that, as a centralized
model, it is easier to quantify the knowledge that the algorithm
accumulates about the input. By contrast, in the noisy broad-
cast model, different processors have different views of the input,
which makes it more difficult to define a progress measure for a
protocol.

The gnd-tree lower bound. Let T be agnd-tree. Assume that
the inputx is uniformly sampled from{0, 1}n. All information
gained up to some point in an execution is represented by the cur-
rent nodev, which determines a conditional distribution over the
inputs (via Bayes’ rule) that can be thought of as the distribution
over inputs as currently “perceived by the tree”.

It is easy to verify that upon reaching a leafπ, the best strategy
for minimizing the probability of error is to output the inputy
with the maximal perceived likelihood. Moreover, if on pathπ
the tree outputsy, then the probability that it is correct is exactly
the perceived probability ofy. To obtain the desired lower bound
on the depth of agnd-tree computingID , it therefore suffices to
show that when run on a uniformly chosen input, the expected
perceived probability of the input is smaller than1/3. In fact,
we show that whatever the tree, if its depth is too small then for
everyinputx, the expected perceived likelihood ofx is less than
1/3 (note that even if we fix the inputx we may still talk about
its likelihood as it is perceived by a party who thinks the input is
uniformly chosen).

Bounding perceived likelihood gain. Most of the technical
difficulty in our result lies in bounding the expected perceived
likelihood of the input. An obvious approach would be to con-
sider the gain in the likelihood of the input obtained at each step
of the computation, to show that it is small in expectation, and
also that the probability of large deviations is small. This does
not work with the perceived likelihood itself, however, since its
behavior may be erratic at times, growing very slowly for several
steps and then making a large leap that builds on the information
gathered in earlier steps.

We therefore introduce a new function, denotedL, that can be
used to bound the perceived likelihood of the input, and which is
easier to handle. The intuition for bounding the expected gain in
L at each node, is that one cannot learn a lot of information on the
input by making any boolean query to a noisy version of it. For
example, no query to a noisy version of an inputx can distinguish
well betweenx and any of its neighbors (inputs obtained fromx
by flipping one coordinate). Once this is formulated precisely,
the proof boils down to a bound on linear-degree coefficients in
the Fourier reperentation of bounded functions. This bound is in
fact a biased-case version of Proposition 2.2 in [32].

Bounding deviations in L. Bounding the expectation ofL is
not sufficient, as we also need a bound on large deviations. This
turns out not to be trivial: the gains inL at each node are not nec-
essarily positive, ruling out first moment methods. Also, since the
gains inL in different height-levels of the tree can be correlated,
second moment methods (or higher) cannot be directly applied
either. We do manage to breakL into a sum of random variables
Lλ, each measuring the contribution made toL by queries to the
noisy copyλ, and to bound the second moment of each of theLλ

variables.
To get a handle on dependencies between theLλ variables we

further break the gain inL at each node into, roughly speaking,
the sum of the “expected gain”, and the “remainder gain” (which

is the difference between the actual gain inL and the expected
gain). It turns out that the remainder gains at different nodes
have zero covariance, and that the expected gains are always non-
negative. Using these facts together with some specific properties
of L we obtain the desired large-deviation bound for it.

1.4 Organization

In Section 2, we give the details of the noisy broadcast and
gnd-tree models. We then give a reduction of the latter to the
former and, using this reduction, show that Theorem 2 implies
Theorem 1. Section 3 contains some preliminaries for the proof
of Theorem 2 which is given in Section 4. Some details are omit-
ted due to space considerations and will appear in the final paper.

2 Computation models

In this section we define the noisy broadcast and generalized
noisy decision tree models, state a general reduction lemma from
the first model to the second and use this lemma to derive Theo-
rem 1 from Theorem 2.

2.1 Noisy bits

Let ε ∈ [0, 1/2]. An ε-noisy bit is a random variableN that
is 1 with probabilityε and0 otherwise. Ifb ∈ {0, 1} anε-noisy
copy ofb is b⊕ N , whereN is anε-noisy bit and⊕ denotes sum
modulo 2.

For k ∈ N, an ε noisyk-vectorN(k, ε) is a sequence ofk
independentε-noisy bits. The distribution function forN(k, ε)
is denotedµk,ε. Thusµk,ε({x}) = ε|x|(1 − ε)k−|x|, where|x|
denotes the number of 1’s inx. For ak-vectorx, anε-noisy copy
of x is a random variable of the formx ⊕ N(k, ε); if x is itself
randomly generatedN(k, ε) is selected independently ofx.

2.2 Noisy computation

We will consider various models for computing a functionf
on domain{0, 1}n, in presence of noise. Here we fix some ter-
minology common to these models. In each model, an algorithm
works in discrete steps, and its cost is the number of steps. There
is a specified noise parameterε ∈ [0, 1/2] and the execution and
output of an algorithm depend on the inputx, and an auxiliary
ε-noisy vectorN whose length depends on the algorithm and the
model.

An algorithm is said to computef against noiseε if for all
inputsx ∈ {0, 1}n and for auxiliary noise vector chosen with
parameterε, the algorithm outputsf(x) with probability at least
2/3.

2.3 The Noisy Broadcast Model

In this model there aren + 1 processors, consisting of onere-
ceiverP0 andn broadcastersP1, . . . , Pn. Initially, each broad-
casterPi has a private input bitxi. The goal is forP0 to evaluate
a specified functionf atx.

An s-step protocolA consists of three parts: a sequence
i1, . . . , is ∈ [n]s of (not necessarily distinct) broadcaster in-
dices, a sequenceg1, . . . , gs of broadcast functionswheregj :
{0, 1}j −→ {0, 1}, and anoutput functionh on domain{0, 1}s.

The auxiliaryε-noisy vector has lengthns and can be thought
of as a sequenceN1, . . . , Ns of independentε-noisyn-vectors,
one for each time step. In an execution ofA, at stepj broadcaster
Pij broadcasts a bitbj and each of the other processors receives
an independent noisy copy ofbj. Formally,Ph receivesbj

h =
bj ⊕ N j

h; P0 receivesbj
0 = bj ⊕ N j

ij andPij “receives”bj
j = bj.

The bitbj broadcast byPij at stepj is gj evaluated at thej-vector
consistingPij ’s input bit and thej−1 bits received byPij during
the firstj − 1 rounds. Thusbj = gj(xij , b1

ij , b2
ij , . . . , b

j−1
ij).

The output of the protocol ish(b0
1, . . . , b

0
s), that is, the value

of h on thes-vector of bits received byP0.
Our version of the noisy broadcast model is similar to that of

Gallager [16]. Other variants of this model have been proposed.
For example, there is no receiverP0, and the goal of the compu-
tation is for all of the broadcasters learn the correct value off(x).
These differences are not significant, as protocols in one model
can easily and efficiently be simulated in another.

This model enforces certain properties typically required of
communication protocols in noisy environments. First, protocols
must beoblivious: the sequence of processors who broadcast is
fixed in advance and does not depend on the execution. Without
this requirement, noise could lead to several processors speaking
at the same time. Second, it rules outcommunication by silence:
when it is the turn of a processor to speak, it must speak.

2.4 General Noisy Decision Tree Model

This is a centralized model in which the algorithm seeks to
evaluatef on inputx ∈ {0, 1}n by asking queries. The algorithm
has no direct access to the inputx. Instead, there is a collection
(yλ : λ ∈ Λ) of independentε-noisy copies ofx; hereΛ is an
arbitrary index set. In each step, the algorithm is allowed to make
an arbitrary boolean-valued queryabout any one of the noisy
copies.

Formally, a generalized noisy decision tree algorithm (gnd-
tree) is represented by a rooted labeled binary tree. Each internal
nodev is assigned acopy typeλv ∈ Λ and aquery function
qv : {0, 1}n −→ {0, 1}. The two arcs out of internal nodev
are labeled by 0 and 1. Each leafv is labeled by an output value
outv.

The noisy copiesy1, y2, . . . of x determine a unique root-to-
leaf path as follows: start from the rootr and follow the arc la-
beled by the output ofqr evaluated at noisy copyyλr to a new
node. Upon arriving at internal nodev, evaluateqv(yiv) and fol-
low the indicated arc. The output of the computation is equal to
the output valueoutv labeling the leaf.

We also consider randomizedgnd-trees. For our purposes,
a randomizedgnd-tree is simply a probability distribution over
gnd-trees.

2.5 Reduction between the noisy broadcast andgnd-
tree models

To state the relation between the noisy broadcast model and
the gnd-tree model we need a definition. For a functionf
over {0, 1}n and a setK ⊆ [n], let f/K be the function on
{0, 1}n−|K| obtained by fixing the values ofxi’s to 0, where
i ∈ K.

Theorem 3 Letα > 1 be a constant. If there is a noisy broadcast
protocolP that (k, 1− δ) computesf against noiseε, then there
is a setK = K(P) ⊆ [n] with |K| ≤ n/α andgnd-treeT with
input variables indexed by[n] − K that (3k, 1 − δ)-computes
f/K against noiseεαk/n.

This reduction is obtained as follows (the details of the proof
will be in the final paper). We show how any noisy broadcast pro-
tocol can be simulated reliably in a semi-noisy broadcast model
in which processors can make two kinds of broadcasts: either a
noisy broadcast of its own bit or a noise-free broadcast of a bit
that depends only on the bits it has heard previously but not on its
own bit. We then show that in the semi-noisy broadcast model,
a protocol can be modified so that it has two distinct phases: in
the first phase the only broadcasts are noisy broadcasts of proces-
sors input bits and in the second phase the only broadcasts are
noise-free broadcasts depending on what the processor has pre-
viously received. ChoosingK to be the set of processors that
broadcast more thanαk/n times in the first phase and fixing the
bits of those processors to 0, we show that the situation after the
first phase can be simulated by giving each processor anεαk/n-
noisy copy of the remaining input bits, and the second (non-
noisy) phase can be simulated by agnd-tree that queries these
noisy copies.

Using this reduction we deduce Theorem 1 from Theorem 2.

Proof. (of Theorem 1 from Theorem 2)
Suppose there is ak-step noisy broadcast protocol that com-

putesIDn against noiseε. By Theorem 3 we have
a gnd-tree of depth3k that computesIDd(1−1/α)ne against

noiseεαk/n. Let r = k/n By Theorem 2 for sufficiently large
n,

3k ≥ 1
900

(εαr)4(1 − 1/α)n ln((1 − 1/α)n/3),

3r ≥ 1
1200

ε16r ln(n/4) (choosingα = 4),

3r(
1
ε
)16r ≥ 1

1200
ln(n/4),

Taking logs of both sides it can be seen that forn sufficiently
large (depending onε),

r ≥ 1
20 ln (1/ε)

ln ln n.

This completes the proof of Theorem 1.
�

3 Preliminaries to the proof of Theorem 2

Some notation. We uselog to mean logarithm in base2. The
input with i’th coordinate1 and other coordinates0 is denotedei

and the input with all coordinates0 is denoted0.

We will need the following technical bounds onln(1+x), whose
routine proof we omit from this version.

Lemma 4 Letd ∈ (0, 1). For x ≥ d − 1:

1. | ln(1 + x)| ≤ ln(1/d)
1−d |x|.

2. ln(1 + x) = x + ζ(x)x2, where|ζ(x)| ≤ 2/d.

We will use some basic notions from information theory. In
the expressions below, terms of the form0 log 1

0 or 0 log 0
0 are

assumed to have value0.
Let X be a random variable taking values in a finite set
A. Thebinary entropyof X is given by:

H(X) :=
∑
x∈A

Pr[X = x] log
1

Pr[X = x]
. (1)

For another random variableY , taking values in a finite setB,
with a joint distribution withX , theconditional entropyof
X givenY , is given by:

H(X |Y) :=
∑
y∈B

Pr[Y = y] H(X |Y = y). (2)

For two probability measuresp andq on a finite setA, the
relative entropybetweenp andq, denotedD(p‖q) is given by:

D(p‖q) :=
∑
x∈A

p(x) log
p(x)
q(x)

.

We will use the following well-known facts (see, e.g., [5]).

Fact 5 For X , p, q, andA as above, we have:

D(p‖q) ≥ 0.

H(X) ≤ log |A|.

Bounding the power of a single noisy query. We present a
result that says intuitively that no single query made to aε-noisy
copy of the input vector can be very effective in distinguishing
any fixed inputx from its neighbors. For simplicity, the lemma
is stated for the casex = 0, but the obvious generalization holds
by symmetry.

For a boolean functionf : {0, 1}n → {0, 1}, we define the
following associated probabilities.

p(0) = p(0)(f) := Pr
N∼µε

[f(0 + N) = 1],

and fori ∈ [n],

p(i) = p(i)(f) := Pr
N∼µε

[f(ei + N) = 1].

The quantity(p(i) − p(0))2 is a measure of how well a noisy
query off distinguishes the input0 from ei.

Theorem 6 For all f : {0, 1}n → {0, 1},

∑
i∈[n]

(p(i) − p(0))2 ≤ 8
ε2

p(0)2 ln(1/p(0)). (3)

(we definep(0)2 ln(1/p(0)) to be0 for p(0) = 0 in the above
inequality.)

The proof of Theorem 6 goes by relating the sum on the left-
hand-side of (3) to the some of weights off on its linear biased-
Fourier coefficients. A bound on this sum can then be obtained
using a technique from [32]. The details of the proof will appear
in the final paper.

4 Proof of Theorem 2

In this section we begin the proof of Theorem 2. We are given
a (possibly randomized)gnd-treeT of depthd that is supposed
to computeIDn. We want to prove that ifd is too small then
there is anx ∈ {0, 1}n such that on inputx the probability that
T outputsx is small. We make use of a common technique for
lower bound proofs for nonuniform models, namely rather than
reason about an arbitrary inputx, we prove the stronger result
that for inputx chosen uniformly at random,T fails to outputx
high probability. It is well known that it suffices to prove such a
result for deterministic trees, so for the entire section, we assume
thatT is a deterministicgnd-tree.

Notation concerningT . The vertex set ofT is denotedV and
the leaf set ofT is denotedleaves.

• v↑ is the set of ancestors ofv, i.e. those nodes other thanv
that belong to the path from the root tov.

• v↓ is the set of descendents ofv, i.e., those nodes other than
v that belong to the subtree rooted atv.

• [u, v), for v ∈ u↓, is the set of nodes on the path inT from
nodeu to nodev, includingu but notv. Similarly, (u, v) is
the set of vertices on the path fromu to v excluding bothu
andv.

• λ(v) is the noisy copy that labels nodev.

• For any subsetW of V we writeWλ for the subset of ver-
tices ofW whose noisy copy isλ. For examplev↑λ is the set
of nodes on the path tov that query copyλ.

The probability space and some notation. The probability
space over which we are working consists of a uniformly chosen
input (denotedX) and independent noise vectors(Nλ : λ ∈ Λ)
whereΛ is the index set of the noisy copies and eachNλ ∈
{0, 1}n. We denote this distribution byR and forx ∈ {0, 1}n

Rx denotes the distributionR conditioned onX = x. Note that
in a considerable protion of this paper we are working over the
distributionR0.

The random variables defined above completely determine the
execution of the tree and specify a root-to-leaf path. The leaf ar-
rived at is a random variable denotedΠ. We define the following
events:

• success is the event that the output of the algorithm (deter-
mined byΠ) is X .

• vis(v) is the event that the nodev is visited.

The letterx is used exclusively to denote a generic element
of {0, 1}n and the letterπ is used exclusively to denote a generic
leaf of the tree. With this convention, we will often abbreviate the
eventX = x as simply “x” and the eventΠ = π as simply “π”.
Thus, for example,Pr[x] meansPr[X = x] andPr[x|π] means
Pr[X = x|Π = π].

The progress function. As with many lower bound proofs, we
will define a function on computation states (in this case, ordered
pairs(v, x) wherex is the input andv is a vertex) that measures
the progress of the computation towards its goal. We then show
that (1) forT to succeed it must be the case that the value of
the progress measure at the final leaf is large, and (2) IfT is too
shallow then for most leaves the value of the progress measure is
small. For vertexv and inputx we define:

Li(v, x) = log
Pr[vis(v)|x]

Pr[vis(v)|x ⊕ ei]

= log
Pr[vis(v) ∧ x]

Pr[vis(v) ∧ (x ⊕ ei)]
,

L(v, x) =
1
n

n∑
i=1

Li(v, x).

A large value ofLi(v, x) indicates that the algorithm is more
likely to reachv on inputx than on inputx ⊕ ei. Hence arriving
atv means that it is more likely that the input isx thanx ⊕ ei. A
large value ofL(v, x) indicates that arriving atv makes it more
likely that the input isx rather than one ofx’s neighbors. Intu-
itively, a successful algorithm on inputx should tend to end at a
leaf π for which L(π, x) is large. This intuition is made precise
by:

Lemma 7 Letθ > 1 andδ ∈ (0, 1). Suppose thatPr[L(Π, x) >
ln(n/θ)|X = x] < δ for all x ∈ {0, 1}n. ThenPr[success] ≤
δ + 1

θ .

Proof. We first show that for any leafπ and inputx,

Pr[π ∧ x] ≤ Pr[π]
eL(π,x)

n
. (4)

Rearranging and taking logs, it suffices to show:

L(π, x) ≥ log(Pr[π ∧ x]) − log(
1
n

Pr[π]). (5)

Using the convexity of the functionlog(z),

L(π, x) =
1
n

n∑
i=1

log(Pr[π ∧ x]) − log(Pr[π ∧ (x ⊕ ei)])

= log(Pr[π ∧ x]) − 1
n

n∑
i=1

log(Pr[π ∧ (x ⊕ ei)])

≥ log(Pr[π ∧ x]) − log(
1
n

n∑
i=1

Pr[π ∧ (x ⊕ ei)])

≥ log(Pr[π ∧ x]) − log(
1
n

Pr[π]),

as required to prove (5) and (4).
Now letA(π, x) denote the condition thatL(π, x) < log(n/θ)

andĀ(π, x) denote the complementary condition. Trivially,

Pr[success] ≤ Pr[Ā(Π, X)] + Pr[success ∧ A(Π, X)]
≤ δ + Pr[success ∧ A(Π, X)].

We now bound the second term by1/θ. Letout(x) denote the
set of leaves that outputx. Then using (4) we have:

Pr[success ∧ A(Π, X)] ≤
∑

x

∑
π∈out(x):A(π,x)

Pr[π ∧ x]

≤
∑

x

∑
π∈out(x):A(π,x)

1
θ

Pr[π].

This sum is at most1/θ since each leafπ belongs to one set
out(x) and

∑
π Pr[π] = 1. �

The main lemma of this section is:

Lemma 8 For anyx ∈ {0, 1}n,

Pr[L(Π, x) > ln(n/θ)|X = x] <
600
ε4

· depth(T)
n ln(n/θ)

.

The rest of the paper is dedicated to the proof of Lemma 8.
But first let us show that it indeed implies Theorem 2.

Proof of Theorem 2 from Lemma 8. AssumeT correctly out-
putsX with probability at least2/3. Then by Lemma 7, there is
an inputx such thatPr[L(Π, x) > ln(n/θ)|X = x] ≥ 1/3. By
Lemma 8,T must have depth at leastε

4

1800n ln(n/θ).

By symmetry it suffices to prove the tail bound forx = 0, so
we restrict to this case. For simplicity we writeL(π) for L(π,0)
andLi(π) for Li(π,0). Also we writeL for the random variable
L(Π). Since we are interested in the behavior ofL conditioned
on X = 0, through the rest of the paper the probabilities we
evaluate are with respect to the distributionR0 unless otherwise
stated .

4.1 The contribution to knowledge by specific noisy
copies

In this section we show how to decomposeLi(π) as a sum
of variablesLi

λ(π), for λ ∈ Λ. Intuitively, Li
λ(π) is the con-

tribution of nodes inVλ to Li(π). We then defineLλ(π) =
1
n

∑
i∈[n] L

i
λ(π); thusL is the sum of theLλ’s. Intuitively, Lλ

represents the contribution of vertices inVλ to the progress of the
computation.

Let us first remark that the choice of all of the noisy vectors
determines the answers to all of the queries at all of the nodes,
even though only those onΠ are actually asked. Forx ∈ {0, 1}n

andS ⊆ V we define:

• A(x, S) is the tuple of answers to the queries at nodes inS
when the input isx. Note thatA(x, S) is a random vari-
able depending on the noise variables. Forv ∈ V , we write
A(x, v) for A(x, {v}).

• A(x, S) → π is the event that answers to the queries at
nodes inS are consistent with the leafπ. More precisely,
for all verticesv ∈ S ∩ π↑ A(x, v) is 0 if π is a left descen-
dent ofv and1 if π is the right descendent. By definition
Pr[A(x, S) → Π] = 1.

Since the noise for different copies is independent, for leafπ
in T we have

Pr[π|x] =
∏
λ

Pr[A(x, π↑
λ) → π].

Hence

Li(π) =
∑

λ

ln
Pr[A(0, π↑

λ) → π]

Pr[A(ei, π
↑
λ) → π]

. (6)

We can now separate the contributions of different processors to
Li(π) andL(π) in a natural manner. LetLi

λ(π) denote the sum-
mand in the above sum, and defineLλ(π) := 1

n

∑n
i=1 Li

λ(π).
Define random variablesLi

λ = Li
λ(Π) andLλ = Lλ(Π). Clearly

L =
∑

λ

Lλ,

and for eachi, Li =
∑

λ Li
λ.

We now prove bounds on the random variablesLλ’s. First we
have:

Lemma 9 For every noisy copyλ, i ∈ [n], andv ∈ V we have

|Li
λ(v)| ≤ ln

(
1 − ε

ε

)
.

Consequently, the same bound holds for|Lλ(v)| and, in particu-
lar, for |Lλ| = |Lλ(Π)|.
We omit the simple proof of Lemma 9. The next lemma gives
an upper bound on|E[Lλ]|: Denote byNλ̂ the set of random
variables{Nκ : κ ∈ Λ − {λ}}.

Lemma 10 For eachλ ∈ Λ,

|E[Lλ]| ≤ 16
ε3

· H(Π|Nλ̂)
n

. (7)

The quantityH(Π|Nλ̂) can be thought of as the contribution
of Nλ to the entropy ofΠ.

Proof. Let ηλ̂ denote an assignment toNλ̂. We will prove:

|E[Lλ|Nλ̂ = ηλ̂]| ≤ 16
ε3n

H(Π|Nλ̂ = ηλ̂); (8)

the lemma is then obtained by averaging overηλ̂.
Since we have fixed the noisy copies for all copies butλ, the

treeT reduces to agnd-treeTηλ̂
whose leaf set is a subset of the

leaf set ofT and whose computation is completely determined
by the noisy inputsηλ̂. For leafπ in Tηλ̂

, define functionfπ :
{0, 1}n → {0, 1} by: f(y) = 1 if when ηλ = y the result of
the computation byTηλ̂

is π, andf(y) = 0 otherwise. Define
pπ(x) := Pr[fπ(x + Nλ) = 1], andδπ(ei) := pπ(ei) − pπ(0).
In this new notation we can rewrite

Lλ(π) =
1
n

∑
i∈[n]

ln
(

1 +
δπ(ei)
pπ(0)

)
.

In the sums below the range ofπ is over all leaves inTηλ̂
. We

have,|E[Lλ|Nλ̂ = ηλ̂]|is equal to∣∣∣∣∣
∑

π

pπ(0)Lλ(π)

∣∣∣∣∣ =
1
n

∣∣∣∣∣∣
∑

π,i∈[n]

pπ(0) ln
(

1 +
δπ(ei)
pπ(0)

)∣∣∣∣∣∣
≤ 1

n

∣∣∣∣∣∣
∑

π,i∈[n]

δπ(ei)

∣∣∣∣∣∣+
2(1 − ε)

nε

∣∣∣∣∣∣
∑

π,i∈[n]

pπ(0)
(

δπ(ei)
pπ(0)

)2
∣∣∣∣∣∣

(using Lemma 4 and the fact that1 + δπ(ei)
pπ(0) ≥ ε

1−ε)

≤ 1
n

∣∣∣∣∣∣
∑
i∈[n]

(∑
π

δπ(ei)

)∣∣∣∣∣∣+
16
nε3

∑
π

pπ(0) ln
1

pπ(0)
,

using Theorem 6.

Each inner sum in the first part is0 as
∑

π pπ(0) =
∑

π pπ(ei)
for all i ∈ [n]; the sum in the second part is the entropy (except
that the logarithm is natural not binary) of the density function
given bypπ(0). Changing the logarithms to binary we get

16
nε3

∑
π

pπ(0) ln
1

pπ(0)
≤ 16 ln 2

ε3
· H(Πηλ̂

)
n

≤ 16
ε3n

· H(Πηλ̂
).

This completes the proof of (8), and hence of Lemma 10. �
The next lemma states a similar bound onE[L2

λ].

Lemma 11 Under the same notations as in Lemma 10, it holds
for eachλ ∈ Λ that

E[L2
λ] ≤ 32

ε4
· H(Π|Nλ̂)

n
. (9)

The proof of Lemma 11 is similar to that of Lemma 10, and will
appear in the final paper.

4.2 Overview of the rest of the proof

Our goal at this point is to bound from above the probability
that the random variableL is large. The upper bound onE[Lλ]
obtained above gives an upper bound onE[L] =

∑
λ E[Lλ]. This

upper bound is small enough so that ifL were nonnegative valued
then Markov’s inequality, which says that for nonnegative ran-
dom variableV Pr[V ≥ T] ≤ E[V]/T , would give a tail bound
on L that is strong enough for our purposes. Unfortunately,L is
not always nonnegative.

So we can try instead to get an upper bound onE[L2], and
use the tail boundPr[L ≥ T] ≤ E[L2]/T 2. Now, L2 =∑

λ L2
λ + 2

∑
λ6=κ LλLκ. Above, we found a good upper bound

for E[L2
λ]. If we could show thatE[LλLκ] is not much bigger

thanE[Lλ]E[Lκ] (i.e., the covariance ofLλ andLκ is small) this
again would be good enough to give the bound we want. But we
don’t know whether this is true.

Since we can’t make either of these approaches work, we find
a way to combine them. More precisely we show how to decom-
pose eachLλ as a sum of two random variablesYλ andZλ such
that: (1)Zλ is nonnegative valued, (2)E[Yλ] = 0, and therefore
E[Zλ] = E[Lλ], (3) E[Y 2

λ] has an upper bound similar to that on
E[L2

λ], and (4)Cov[Yλ, Yκ] = 0 for all λ 6= κ.
DefiningZ =

∑
λ Zλ andY =

∑
λ Yλ we haveL = Z + Y ,

and we get a tail bound forZ using Markov’s inequality and tail
bound forY using Markov’s inequality forY 2; together these
give the desired tail bound forL.

The decomposition ofLλ into Yλ + Zλ is accomplished as
follows. The random variableLλ represents the amount of evi-
dence that copyλ provides towards showing that the input is0
conditioned on the input being0. This evidence accumulates the
results of all queries toλ. We first decomposeLλ as a sum of
random variablesLv. Herev comes from the set of nodes which
are on the path taken by the computation and are labeledC, and
Lv represents the evidence provided by the query toλ at nodev.
(The definition ofLv appears in Section 4.4)

Next we decomposeLv into Yv + Zv. The event that the node
v is on the computation path conditions the distribution. Con-
ditioned on this event we consider the expectation ofLv. This
conditional expectation represents how much evidence one ex-
pects the query atv to provide given the previous answers. We
can view this conditional expectation as a random variable which
depends only on the outcomes of the queries at the ancestors of
v. This random variable isZv. We then defineYv = Lv −Zv and
Yλ andZλ in the obvious way.

The details of this argument are given in Sections 4.3, 4.4
and 4.5.

4.3 The variablesLv

Let us now continue with the proof of Lemma 8.

Pr[π|x] =
∏

v∈π↑
Pr[A(x, v) → π | A(x, v↑) → π]. (10)

In the above equation we adopt the convention that the term in
the product corresponding to the root isPr[A(x, v) → π]. Since
A(x, v) only depends on the answers to the queries to copyλ(v)
that were posed at the ancestors ofv, and not to the other copies,
we get

(10)=
∏

v∈π↑
Pr[A(x, v) → π | A(x, v↑ ∩ Vλ(v)) → π].

We are going to assign fixed weights to the edges in the tree
T . To the outgoing edge from vertexv in directiona ∈ {0, 1}
we will assignLv(a). This can be thought of as the measure
of information the tree gains when it traverses that edge. Using
Lv(a) we will then define random variablesLv. Note that

Pr[A(x, π↑ ∩ Vλ) → π]

=
∏

v∈π↑∩Vλ

Pr[A(x, v) → π | A(x, v↑ ∩ Vλ) → π].

We can therefore rewriteL(π) using (6) as

L(π) =
∑
v∈π↑

1
n

∑
i∈[n]

ln
Pr[A(0, v) → π | A(0, v↑) → π]
Pr[A(ei, v) → π | A(ei, v↑) → π]

=
∑
v∈π↑

1
n

∑
i∈[n]

ln
Pr[A(0, v) → π | A(0, v↑ ∩ Vλ(v)) → π]
Pr[A(ei, v) → π | A(ei, v↑ ∩ Vλ(v)) → π]

(11)

Fora ∈ {0, 1} and nodev ∈ V (T), define the constantsLv(a)
mentioned above

Lv(a) :=
1
n

∑
i∈[n]

ln
Pr[A(0, v) = a | A(0, v↑ ∩ Vλ(v)) → v]
Pr[A(ei, v) = a | A(ei, v↑ ∩ Vλ(v)) → v]

.

(12)

Define random variableLv = Lv(A(0, v)). ThusLv is just
Lv(a) chosen according to the probability that the answer of the
query atv is a. For leafπ andv ∈ π↑, let Lv(π) = Lv(a),
wherea = 0 if π is a left descendent ofv and1 otherwise. con-
fusion. Note that with the above notationLv(Π) coincides with
Lv(A(0, v)). We have

L(π) =
∑
v∈π↑

Lv(π), (13)

Lλ(π) =
∑

v∈π↑∩Vλ

Lv(π), (14)

L =
∑

v∈Π↑
Lv(Π). (15)

4.4 Breaking the variableLv into Yv and Zv

We break the variablesLv into a sum of new random variables
Lv = Yv + Zv, and then use these variables for the definition of

Yλ andZλ. Forv ∈ VT , define

Zv := E[Lv | v ∈ Π↑]

Zλ :=
∑

v∈Π↑∩Vλ

Zv.

Note that theZv ’s are constants. In words,Zv is the expectation
of Lv conditioned on the event that the execution visits nodev.
Also, define

Yv := Lv − Zv,

Yλ :=
∑

v∈Π↑∩Vλ

Yv = Lλ − Zλ.

It follows imediately from the definitions that

E[Yv | v ∈ Π↑] = 0. (16)

We can bound the large deviation ofLλ in terms of those ofYλ

andZλ:

Pr[
∑

λ

Lλ ≥ ln(n/θ)]

≤ Pr[
∑

λ

Yλ ≥ ln(n/θ)/2] + Pr[
∑

λ

Zλ ≥ ln(n/θ)/2]. (17)

In the next section we complete the proof of Lemma 8, by bound-
ing each of the two terms above in the RHS separately.

Before we can complete the proof of Lemma 8, we need to
establish some properties ofZv ’s andYv ’s.

Lemma 12 For all noisy copiesλ we haveE[Lλ] = E[Zλ],
which implies thatE[Yλ] = 0.

Proof. We have

E[Lλ] = E

[∑
v∈Π↑∩Vλ

Lv

]
=
∑
v∈Vλ

Pr[vis(v)] E[Lv | v ∈ Π↑]

=
∑
v∈Vλ

Pr[vis(v)] Zv = E

[∑
v∈Π↑∩Vλ

Zv

]
= E[Zλ].

The second statement is now immediate from the definitions of
Lλ, Zλ, andYλ. �

Lemma 13 For all distinct copiesλ andκ we have

E[YλYκ] = 0. (18)

Proof. We have

E[YλYκ] = E

[(∑
u∈Π↑∩Vλ

Yu

)(∑
v∈Π↑∩Vκ

Yv

)]

=
∑

u,v:u∈Vλ,v∈Vκ∩u↓
Pr[vis(v)]E[YuYv|vis(v)]

+
∑

u,v:v∈Vλ,u∈Vκ∩v↓
vis(u)E[YuYv|vis(u)]. (19)

Consider the summand in the first sum in the RHS corresponding
to u, v. Conditioned onv being visited,Yu is fixed to a constant
denotedyu,v sincev is a descendent ofu. Now (16) gives

E[YuYv|u, v ∈ Π↑] = yu,vE[Yv|vis(v)] = yu,v · 0 = 0.

Similarly all the terms in the RHS of (19) are0 implying
E[YλYκ] = 0. �

The following lemma shows what one would intuitively expect:
on average, the knowledge of the tree that the input is indeed0
does not decrease.

Lemma 14 For nodesv ∈ VT we haveZv ≥ 0.

The simple proof goes by writingZv as a sum of relative en-
tropies. We omit the details in this version.

Now using the above lemmas and the properties of theLλ’s
andLv ’s proven in the previous section we can bound from above
the second moments ofZλ andYλ, which will in turn yield the
desired bound on the RHS of (17).

Lemma 15 For every noisy copyλ, E[Z2
λ] ≤ 96

ε4 · H(Π|Nλ̂)

n .

Proof. We expressZλ as a sum ofZv ’s and then use the lemmas
proved above to obtain the desired bound.

E[Z2
λ] = E


(∑

v∈Π↑∩Vλ

Zv

)2



=
∑
v∈Vλ

Pr[vis(v)]Z2
v +

∑
u,v∈Vλ:v∈u↓

2 Pr[vis(v)]ZuZv. (20)

We have,Z2
v ≤ maxw∈VT [|Zw|]|Zv|. By Lemma 9 we know that

maxv[|Lv|] ≤ ln
(

1−ε
ε

) ≤ ln(1/ε), and sinceZv = E[Lv | v ∈
Π↑], the same bound holds formaxv[|Zv|]. Also, by Lemma 14
we know thatZv is nonegative, hence we have|Zv| = Zv. From
these considerations, and rearrangement of the second sum in the
RHS in (20) we have,

(20)≤ 2 ln(1/ε)
∑
v∈Vλ

vis(v) Zv

+ 2
∑

u∈Vλ

(
Pr[vis(u)]Zu

∑
v∈u↓∩Vλ

Pr[vis(v)|vis(u)]Zv

)

= 2 ln(1/ε)E[Zλ]

+ 2
∑

u∈Vλ

(
Pr[vis(u)]Zu E

[∑
v∈(u,Π)∩Vλ

Lv

∣∣∣ vis(u)
])

.

Now |∑v:v∈(u,Π)∩Vλ
Lv(π)| = |Lλ(Π) − Lλ(u)| ≤ |Lλ(Π)| +

|Lλ(v)|, which is at most2 ln(1/ε) by Lemma 9, and thus

≤ 2 ln(1/ε)E[Zλ] + 4 ln(1/ε)
∑

u∈Π↑∩Vλ

vis(u)Zu

≤ 2 ln(1/ε)E[Zλ] + 4 ln(1/ε)E[Zλ]
≤ 6 ln(1/ε)E[Lλ] (Lemma 12)

≤ 6 ln(1/ε)
16
ε3

H(Π|Nλ̂)
n

(Lemma 10)

≤ 96
ε4

· H(Π|Nλ̂)
n

(usingln
1
ε
≤ 1

ε
).

�

Lemma 16 For every noisy copyλ,

E[Y 2
λ] ≤ 136

ε4
· H(Π|Nλ̂)

n
.

Proof. We have

E[Y 2
λ] = E[(Lλ − Zλ)2] = E[L2

λ] − 2E[LλZλ] + E[Z2
λ].

We know by Lemma 9 that|Lλ| ≤ ln(1/ε), hence

|E[LλZλ]| ≤ ln(1/ε)E[|Zλ|],
now by Lemmas 14, 12, and 10 we get

E[|Zλ|] = E[Zλ] = E[Lλ] ≤ 4
ε3

· H(Π|Nλ̂)
n

,

hence

|E[LλZλ]| ≤ ln(1/ε)
4
ε3

· H(Π|Nλ̂)
n

≤ 4
ε4

· H(Π|Nλ̂)
n

.

We know by Lemma 11 thatE[L2
λ] ≤ 32

ε4 · H(Π|Nλ̂)

n , and by

Lemma 15 thatE[Z2
λ] ≤ 96

ε4 · H(Π|Nλ̂)

n . These observations to-
gether give

E[Y 2
λ] ≤

(
32
ε4

+
8
ε4

+
96
ε4

)
H(Π|Nλ̂)

n
≤ 136

ε4
· H(Π|Nλ̂)

n
.

�
We need one more observation before putting things together

to complete the proof of Lemma 8.

Lemma 17 Let T be agnd-tree, and letΠ denote the random
variable denoting the leaf reached by executingT on input0. We
have, ∑

λ

H(Π|Nλ̂) = H(Π). (21)

The proof follows by induction on the number of internal
nodes inT , where the inductive step is obtained by removing
two sibling leaves from the tree. The details will appear in the
full paper.

4.5 Completing the proof of Lemma 8

We separately upper bound the two probabilities in the RHS
of (17).

Pr
[∑

λ

Yλ ≥ ln(n
θ)

2

]
≤ Pr[4(

∑
λ

Yλ)2 ≥ ln2(n/θ)]

(1)

≤ E
[
4(
∑

λ Yλ)2
]

ln2(n/θ)

(2)

≤ 4
∑

λ E[Y 2
λ]

ln2(n/θ)
(3)

≤ 544
∑

λ H(Π|Nλ̂)
ε4n ln2(n/θ)

(4)
=

544 H(Π)
ε4n(ln(n/θ)2)

(5)

≤ 544 depth(T)
ε4n(ln(n/θ)2)

, (22)

where (1) uses Markov’s inequality, (2) follows from Lemma 13,
(3) follows from Lemma 16, (4) from Lemma 17 and (5) from the
fact thatH(Π) ≤ log |leaves| ≤ depth(T).

For the second upper bound, we can apply Markov’s inequal-
ity, since we know by Lemma 14 that theZλ’s are positive.

Pr

[∑
λ

Zλ ≥ ln(n/θ)/2

]
≤ 2 E [

∑
λ Zλ]

ln(n/θ)
=

2
∑

λ E[Zλ]
ln(n/θ)

(23)

Lemmas 12 and 11 together now give

2
∑

λ E[Zλ]
ln(n/θ)

=
2
∑

λ E[Lλ]
ln(n/θ)

≤ 2
∑

λ H(Π|Nλ̂)
n ln(n/θ)

≤ 8 H(Π)
ε3n ln(n/θ)

≤ 8 depth(T)
ε3n ln(n/θ)

(24)

Using (22), (23), and (24) in (17), we get

Pr[
∑

λ

Lλ ≥ ln(n/θ)] ≤ 544 depth(T)
ε4n(ln(n/θ)2)

+
8 depth(T)
ε3n ln(n/θ)

≤ 600 depth(T)
ε4n ln(n/θ)

.

This completes the proof of Lemma 8 and thus also of Theorem 2
and of Theorem 1.

References

[1] M. Ajtai. The invasiveness of off-line memory checking.STOC
2002, 504–513.

[2] D. Aharonov, M. Ben-Or. Fault Tolerant Quantum Computation
with Constant Error.STOC1997, 176–188.

[3] N. Alon, J. Spencer. The Probabilistic Method. Second Edition.
Wiley, 2000.

[4] Y. Aumann and M. A. Bender. Fault Tolerant Data Structures.Pro-
ceedings of the 37th Annual Symposium on Foundations of Com-
puter Science (FOCS), 580–589, 1996.

[5] T. Cover, J. Thomas. Elements of Information Theory.Wiley, 1991

[6] A. El Gamal. Open problems presented at the 1984 workshop on
Specific Problems in Communication and Computation sponsored
by Bell Communication Research.

[7] W. Evans, C. Kenyon, Y. Peres, L. J. Schulman. Broadcasting on
trees and the Ising model. Annals of Applied Probability, 10(2),
2000, pp. 410–433.

[8] W. S. Evans, N. Pippenger. Average-Case Lower Bounds for
Noisy Boolean Decision Trees.SIAM J. Comput., 28(2): 433–446
(1998).

[9] W. S. Evans., L. J. Schulman. Signal propagation and noisy cir-
cuits. IEEE Transactions on Information Theory, 44(3), May 1998,
1299–1305.

[10] U. Feige. On the Complexity of Finite Random Functions.Inf.
Process. Lett., 44(6): 295–296 (1992).

[11] U. Feige, J. Kilian. Finding OR in a noisy broadcast network.Inf.
Process. Lett.73(1-2): 69–75 (2000).

[12] U. Feige, P. Raghavan, D. Peleg, E. Upfal. Computing with Noisy
Information.SIAM J. Comput., 23(5): 1001–1018 (1994).

[13] I. Finocchi, G. F. Italiano. Sorting and searching in the presence
of memory faults (without redundancy).STOC2004.

[14] P. Gács. Reliable Cellular Automata with Self-Organization.
FOCS1997, 90–99.

[15] P. Gács, A. Gál. Lower bounds for the complexity of reliable
Boolean circuits with noisy gates.IEEE Transactions on Infor-
mation Theory, Vol. 40, No. 2, 1994, pp. 579–583.

[16] R. G. Gallager. Finding parity in simple broadcast networks.IEEE
Transactions on Information Theory, Vol. 34, 1988, 176–180.

[17] A. Kalai, R. Servedio. Boosting in the Presence of Noise.35th
Annual Symposium on Theory of Computing (STOC), 2003, pp.
196–205.

[18] D. J. Kleitman, F. T. Leighton, Y. Ma. On the Design of Reli-
able Boolean Circuits That Contain Partially Unreliable Gates.J.
Comput. Syst. Sci.55(3): 385–401 (1997)

[19] E. Kushilevitz, Y. Mansour. Computation in Noisy Radio Net-
works. SODA1998: 236–243.

[20] F. T. Leighton, Y. Ma. Tight Bounds on the Size of Fault-Tolerant
Merging and Sorting Networks with Destructive Faults.SIAM J.
Comput., 29(1): 258–273 (1999).

[21] E. Mossel. Survey: Information flow on trees.In Graphs, Mor-
phisms and Statistical Physics. DIMACS series in discrete mathe-
matics and theoretical computer science J. Nestril and P. Winkler
editors.(2004).

[22] I. Newman. Computing in fault tolerance broadcast networks. 19th
IEEE Annual Conference on Computational Complexity, 2004,
113–122.

[23] A. Pelc. Searching games with errors—fifty years of coping with
liars. Theoret. Comput. Sci., 270 (2002), no. 1-2, 71–109.

[24] N. Pippenger. On the Networks of Noisy Gates.FOCS1985, 30–
36.

[25] S. Rajagopalan, L. J. Schulman. A coding theorem for distributed
computing.STOC1994, 790–799.

[26] R. Reischuk, B. Schmeltz. Reliable Computation with Noisy
Circuits and Decision Trees—A Generaln log n Lower Bound.
FOCS 1991: 602–611.

[27] A. Russell, M. Saks, D. Zuckerman. Lower Bounds for Leader
Election and Collective Coin-Flipping in the Perfect Information
Model. SIAM Journal on Computing, 31(6):1645–1662, 2003.

[28] L. Schulman. Coding for Interactive Communication.IEEE Trans.
Information Theory, 42(6) Part I, 1745–1756, Nov.1996.

[29] D. A. Spielman. Highly Fault-Tolerant Parallel Computation.
FOCS1996, 154–163.

[30] M. Szegedy, X. Chen. Computing Boolean Functions from Multi-
ple Faulty Copies of Input Bits.LATIN2002, 539–553.

[31] M. Talagrand. On Russo’s approximate zero-one law.Ann.
Probab.22 (1994), no. 3, 1576–1587.

[32] M. Talagrand. How much are increasing sets positively correlated?
Combinatorica 16(1996), no. 2, 243–258.

[33] A. Yao. Probabilistic computations: Towards a unified measure of
complexity, In Proceedings of the Seventeenth IEEE Conference
on Foundations of Computer Science, 1977, pages 222–227.

[34] A. Yao. “On the Complexity of Communication under Noise”.
Invited talk in the5th ISTCS conference, 1997.

