Lower Bounds for the Noisy Broadcast Problem
Extended Abstract

Navin Goyal* Guy Kindlert Michael Saks
Dept. of Computer Science  Institute for Advanced Study  Dept. of Mathematics
Rutgers University Princeton. Rutgers University
Abstract vate input and bits it has heard in previous time steps). Each other

processor receives a noisy copy of the broadcast, which means
We prove the first non-trivial (superlinear) lower bound in the that the received bit is complemented with some fixed probabil-
noisy broadcast model of distributed computation. In this model,ity ¢ < 1/2, independently for each processor. At the end of the

there aren + 1 processorsPy, Py,..., P,. EachP;, for i > protocol, P, computes the output from the bits it has heard. The
1, initially has a private bitz; and the goal is forP, to learn requirement for a correct protocol is that for eacke {0,1}",
f(zx1,...,x,) for some specified functigh At eachtime step, a Py correctly outputs(z) with some fixed probability, say, 2/3.

designated processor broadcasts some function of its private bit In this paper we study the case where the functfoto be

and the bits it has heard so far. Each broadcast is received by thecomputed is the identity function, denotlal . Namely we re-

other processors but each reception may be corrupted by noise. quire that P, learns the input bits of all processors (this is of
In this model, Gallager [16] gave a noise-resistant protocol course the hardest function to compute in this model). A naive

that allows P, to learn the entire input irfD(n log log n) broad- protocol achieves this witt(n log n) broadcasts by having each
casts. We prove that Gallager’s protocol is optimal up to a con- processor broadcast its hilogn times for a sufficiently large
stant factor. constantc. This was improved t@(n loglogn) broadcasts by

Our lower bound follows from a lower bound in a new model, Gallager [16]in 1988. This upper bound was not improved since
the generalized noisy decision tree model, which may be of indethen, and yet no lower-bound was previously known other than
pendent interest. the trivial Q(n). We show that Gallager’s upper bound is best

possible.

1 Introduction 1.1 Other previous results

Coping with noise is a major theme in the theory and prac-
tice of information systems, and gives rise to the following ques-  Kushilevitz and Mansour [19] showed that the majority func-
tion: how much additional resources are needed to obtain reli-tion, MAJ, can be computed witD(n) broadcasts. This pro-
able results in the presence of noise?. This question was studietbcol takes advantage of a rather strong and unrealistic feature
in the context of decision trees [12, 26, 10, 8, 22], formulas andof the model: that the noise occurring in different receptions is
circuits [24, 15, 29, 18, 9], sorting networks [20], cellular au- independent and identically distributed. To obtain results that
tomata [14], quantum computation [2], data structures [13, 4], are less sensitive to assumptions about the distribution of noise,
various communication models [16, 28, 19, 27, 22] and otherFeige and Kilian [11] proposed a stronger adversarial model of
models [1, 7, 23, 17], noise. Roughly speaking, this model allows an omniscient ad-

The noisy broadcast modelk a simple model of distrib- versary to cancel any of the errors introduced by the random
uted computation defined by EI Gamal [6], and popularized by noise, thus preventing the algorithm from taking advantage of
Yao [34]. There aren + 1 processors, consisting afbroadcast-  stochastic regularities in the noise. Feige and Kilian showed

ers,Py,..., P,, and a receiveP,. Initially, each broadcasté?; that even against this stronger adversafiy can be computed
has a private input bit;, and the goal is foP, to evaluate a given  in O(nlog™ n) broadcasts. Newman [22] improved this@gn)
function f(x1, ..., z,). Communication is carried out via noisy broadcasts (although Newman only proved his result for a weaker

broadcasts in synchronous time steps; in each time step a desigdversarial model, his result easily carries over to the stronger ad-
nated broadcaster broadcasts a single bit (as a function of its priversarial model of [11].)
- , , , In closely related models, efficient error resilient protocols
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tSupported by CCR grant’ CCR-0324906 and/DMS-0111298. by Schulman [28], and for noisy communication networks with
fSupported in part by NSF grants CCR-9988526 and CCR-0515201. small degree by Rajagopalan and Schulman [25].




1.2 Our results

In this paper we prove that Gallaghe€xn loglogn) proto-
col for ID is optimal:

Theorem 1 For eache € (0,1/2) there is a numbeng = ng(e)
such that for anyn > ng, any protocol in the noisy broadcast
model that computd®,, against noise probability requires at

Ieastﬁwn Inlnn broadcasts.

Our result is the first non-trivial lower bound in the noisy

The gnd-tree lower bound. LetT be agnd-tree. Assume that
the inputz is uniformly sampled fron{0, 1}". All information
gained up to some pointin an execution is represented by the cur-
rent nodev, which determines a conditional distribution over the
inputs (via Bayes’ rule) that can be thought of as the distribution
over inputs as currently “perceived by the tree”.

Itis easy to verify that upon reaching a leafthe best strategy
for minimizing the probability of error is to output the input
with the maximal perceived likelihood. Moreover, if on path
the tree outputg, then the probability that it is correct is exactly

broadcast model. Because we prove our lower bound in the origthe perceived probability of. To obtain the desired lower bound
inal noise model of EI Gamal, our results apply to the strongeron the depth of gnd-tree computindD , it therefore suffices to

adverserial noise models as well.

This lower bound is deduced from a lower bound in a new cen-

tralized model of noisy function computation which we call the
generalized noisy decision tree modghd-tree model), which

show that when run on a uniformly chosen input, the expected
perceived probability of the input is smaller thap3. In fact,

we show that whatever the tree, if its depth is too small then for
everyinput z, the expected perceived likelihood.ofs less than

seems of potential independent interest. In this model, the al-1/3 (note that even if we fix the input we may still talk about

gorithm seeks to evaluate a given function on boolean input
having no direct access to but having access to a collection
of independent noisy copies of where each bit is flipped with
some fixed probability < 1/2. At each step, based on the in-
formation it has gathered so far, the algorithm selects one of th
copies and chooses an arbitrary function{0,1}" — {0, 1}.
It then is told the value of on the selected copy. (A precise
definition of the model appears in Section 2.)

The restriction of thegnd-tree model in which the queries
are required to be of the forg(yi, ..., y,) = y; for somei is
equivalent to the noisy decision tremdftree) model introduced

by Feige et al. [12]. The power of these two models is not the

same: the majority function requir@4n log n) queries by amd-
tree [12], but can be computed bygad-tree withO(n) queries,

by adapting the aforementioned protocol of Kushilevitz and Man-

sour [19] in the noisy broadcast model.

The functionID can be computed by gnd-tree(indeed, by
annd-tree) withO(n log n) queries (by queryin@(log n) noisy
copies of each variable). Our main technical result says that n
gnd-tree can do better than this:

Theorem 2 Fore € (0,1/3), there is a numbeiy = ng(g) such
that for anyn > ng, any (randomizedjnd-tree that computel®
for noise probabilitye, must have depth at Ieaﬁ%n In(n/3).

The requirement that < 1/3 is made for technical conve-
nience. It is not hard to extend the result upstec 1/2 but we
omit this detail.

1.3 Overview of the proof

Theorem 1 is derived from Theorem 2 via a reduction (The-

orem 3) that shows that protocols for computifgin the noisy
broadcast model providgnd-trees forID . The advantage of
working through thegnd-tree model is that, as a centralized

e

o

its likelihood as it is perceived by a party who thinks the input is
uniformly chosen).

Bounding perceived likelihood gain. Most of the technical
difficulty in our result lies in bounding the expected perceived
likelihood of the input. An obvious approach would be to con-
sider the gain in the likelihood of the input obtained at each step
of the computation, to show that it is small in expectation, and
also that the probability of large deviations is small. This does
not work with the perceived likelihood itself, however, since its
behavior may be erratic at times, growing very slowly for several
steps and then making a large leap that builds on the information
gathered in earlier steps.

We therefore introduce a new function, denofedhat can be
used to bound the perceived likelihood of the input, and which is
easier to handle. The intuition for bounding the expected gain in
L ateach node, is that one cannot learn a lot of information on the
input by making any boolean query to a noisy version of it. For
example, no query to a noisy version of an inpwian distinguish
well betweenz and any of its neighbors (inputs obtained frem
by flipping one coordinate). Once this is formulated precisely,
the proof boils down to a bound on linear-degree coefficients in
the Fourier reperentation of bounded functions. This bound is in
fact a biased-case version of Proposition 2.2 in [32].

Bounding deviations in L. Bounding the expectation df is

not sufficient, as we also need a bound on large deviations. This
turns out not to be trivial: the gains ihat each node are not nec-
essarily positive, ruling out first moment methods. Also, since the
gains inL in different height-levels of the tree can be correlated,
second moment methods (or higher) cannot be directly applied
either. We do manage to breakinto a sum of random variables
L, each measuring the contribution madd.tby queries to the

model, it is easier to quantify the knowledge that the algorithm noisy copy), and to bound the second moment of each offthe
accumulates about the input. By contrast, in the noisy broad-variables.

cast model, different processors have different views of the input,

To get a handle on dependencies betweerd theariables we

which makes it more difficult to define a progress measure for afurther break the gain i, at each node into, roughly speaking,

protocol.

the sum of the “expected gain”, and the “remainder gain” (which



is the difference between the actual gainZirand the expected An s-step protocolA consists of three parts: a sequence
gain). It turns out that the remainder gains at different nodesi!,...,i® € [n]® of (not necessarily distinct) broadcaster in-
have zero covariance, and that the expected gains are always nodices, a sequengg, ..., ¢° of broadcast functionsvhereg’ :
negative. Using these facts together with some specific propertieg0, 1}/ — {0, 1}, and amoutput functiom, on domain{0, 1}*.
of L we obtain the desired large-deviation bound for it. The auxiliarys-noisy vector has lengths and can be thought
of as a sequenc®!, ..., N* of independent-noisy n-vectors,
1.4 Organization one for each time step. In an executionyfat stepj broadcaster
P;; broadcasts a bit’ and each of the other processors receives
In Section 2, we give the details of the noisy broadcast andan independent noisy copy &f. Formally, P, receivesh) =
gnd-tree models. We then give a reduction of the latter to the i N}JL'; P, receives, = b/ @ N;’; andP; “receives"bg — b,

former and, using this reduction, show that Theorem 2 implies 11 pity7 broadcast by’ at stepj is ¢/ evaluated at thg-vector
Theorem 1. Section 3 contains some preliminaries for the prOOfconsistingP~’s input bit and thej — 1 bits received by?,; during
27 (%

of Theorem 2 which is given in Section 4. Some details are omit- 1, firstj — 1 rounds. Thus’ = g7 (a5, b%, b2, . .. b]."_—l).
ted due to space considerations and will appear in the final paper.  the output of the protocol ia (1 - ’Jb’q)“ that is. the value
. of h on thes-vector of bits received by,.
2 Computation models Our version of the noisy broadcast model is similar to that of

Gallager [16]. Other variants of this model have been proposed.
In this section we define the noisy broadcast and generalized=or example, there is no receivBs, and the goal of the compu-
noisy decision tree models, state a general reduction lemma fromation is for all of the broadcasters learn the correct valug of.
the first model to the second and use this lemma to derive TheoThese differences are not significant, as protocols in one model

rem 1 from Theorem 2. can easily and efficiently be simulated in another.
_ _ This model enforces certain properties typically required of
2.1 Noisy bits communication protocols in noisy environments. First, protocols

must beoblivious the sequence of processors who broadcast is
Lete € [0,1/2]. An e-noisy bitis a random variabléV that  fixed in advance and does not depend on the execution. Without
is 1 with probabilitye and0 otherwise. Ifb € {0,1} ane-noisy  this requirement, noise could lead to several processors speaking
copy ofb isb & N, whereN is ane-noisy bit ands denotes sum gt the same time. Second, it rules eammunication by silence

modulo 2. when it is the turn of a processor to speak, it must speak.
For k € N, ane noisy k-vector N (k,¢) is a sequence of

independent-noisy bits. The distribution function fa (k, ¢)

is denoteduy, .. Thusug.({z}) = el*l(1 — ¢)k~I=I, where|z|

denotes the number of 1's in For ak-vectorz, ane-noisy copy
of z is a random variable of the form® N (k, ¢); if z is itself
randomly generatedy (k, ) is selected independently of

2.4 General Noisy Decision Tree Model

This is a centralized model in which the algorithm seeks to
2.2 Noisy computation evaluatef on inputz € {0, 1}" by asking queries. The algorithm
has no direct access to the inputinstead, there is a collection

We will consider various models for computing a functibpn ~ (y* : A € A) of independent-noisy copies ofr; hereA is an
on domain{0, 1}™, in presence of noise. Here we fix some ter- arbitrary index set. In each step, the algorithm is allowed to make
minology common to these models. In each model, an algorithman arbitrary boolean-valued quergbout any one of the noisy
works in discrete steps, and its cost is the number of steps. Thereopies.
is a specified noise parametee [0, 1/2] and the execution and Formally, a generalized noisy decision tree algorittymd(
output of an algorithm depend on the inpytand an auxiliary  tree) is represented by a rooted labeled binary tree. Each internal
e-noisy vectorN whose length depends on the algorithm and the nodew is assigned aopy type), € A and aquery function

model. g : {0,1}" — {0,1}. The two arcs out of internal node
An algorithm is said to computé against noise if for all are labeled by 0 and 1. Each leafs labeled by an output value
inputsz € {0,1}™ and for auxiliary noise vector chosen with out,.
parametet, the algorithm outputg () with probability at least The noisy copieg’, y2, ... of z determine a unique root-to-
2/3. leaf path as follows: start from the rogtand follow the arc la-
beled by the output of, evaluated at noisy copy*~ to a new
2.3 The Noisy Broadcast Model node. Upon arriving at internal node evaluatey, (y**) and fol-

low the indicated arc. The output of the computation is equal to
In this model there are + 1 processors, consisting of ore> the output valueut, labeling the leaf.
ceiver Py andn broadcastersP,, ..., P,. Initially, each broad- We also consider randomizegphd-trees. For our purposes,
casterP; has a private input bit;. The goal is forP, to evaluate  a randomizedynd-tree is simply a probability distribution over
a specified functiorf atzx. gnd-trees.



2.5 Reduction between the noisy broadcast angnd-
tree models

3 Preliminaries to the proof of Theorem 2

_ _ Some notation. We uselog to mean logarithm in bas2 The
To state the relation between the noisy broadcast model angnput with i’th coordinatel and other coordinatesis denoted;

the gnd-tree model we need a definition. For a functign and the input with all coordinatésis denoted.
over {0,1}" and a setk’ C [n], let f/K be the function on

{0,1}"~ X1 obtained by fixing the values of;’s to 0, where
1€ K.

We will need the following technical bounds ai(1 + ), whose
routine proof we omit from this version.

Theorem 3 Leta > 1 be a constant. Ifthere is a noisy broadcast Lemma4 Letd € (0,1). Forz > d — 1
protocol P that (k, 1 — §) computes’ against noise, then there
isasetK = K(P) C [n] with |K| < n/«a andgnd-tree T with
input variables indexed bjn| — K that (3k,1 — §)-computes
f/K against noise“*/".

1 |In(1 +2)| < 23LDa)
2. In(1+ ) =z + ((x)2?, where|((z)| < 2/d.

This reduction is obtained as follows (the details of the proof ~We Will use some basic notions from information theory In
will be in the final paper). We show how any noisy broadcast pro- the expressions below, terms of the fofrtog § or 0log ¢ are
tocol can be simulated reliably in a semi-noisy broadcast model@ssumed to have valie
in which processors can make two kinds of broadcasts: either a Let X be arandom variable taking values in a finite set
noisy broadcast of its own bit or a noise-free broadcast of a bit 4. Thebinary entropyof X is given by:
that depends only on the bits it has heard previously but not on its
own bit. We then show that in the semi-noisy broadcast model,

a protocol can be modified so that it has two distinct phases: in

the first phase the only broadcasts are noisy broadcasts of proces-
sors input bits and in the second phase the only broadcasts are
noise-free broadcasts depending on what the processor has pre-

viously received. Choosing’ to be the set of processors that
broadcast more thamk /n times in the first phase and fixing the

ZPr

z€A

For another random variab}g, taking values in a finite se?,
with a joint distribution withX, theconditional entropyof
X givenY, is given by:

bits of those processors to 0, we show that the situation after the

first phase can be simulated by giving each processef &t -

noisy copy of the remaining input bits, and the second (non-

noisy) phase can be simulated byiad-tree that queries these
noisy copies.

Using this reduction we deduce Theorem 1 from Theorem 2.

Proof. (of Theorem 1 from Theorem 2)

Suppose there is k-step noisy broadcast protocol that com-
putesiD,, against noise. By Theorem 3 we have

a gnd-tree of depth3k that computesDy(;_1/4),) against
noisec**/™. Letr = k/n By Theorem 2 for sufficiently large
n,

1

3k > %(e“ )41 = 1/a)nIn((1 — 1/a)n/3),
3r>—— 1200 e'%"In(n/4) (choosingy = 4),
37“(%)16’" > Tooln(n/él)

Taking logs of both sides it can be seen that fosufficiently
large (depending o#),

r> ; Inlnn
~ 20In(1/e) '

This completes the proof of Theorem 1.

H(X|Y) :

ZPr

yEB

HXY =y). )

For two probability measures and g on a finite set4, the
relative entropybetweerp andg, denoted(p||q) is given by:

= pl)

z€A

D(»llq) : log

We will use the following well-known facts (see, e.g.,

[5]).

Fact5 For X, p, ¢, and A as above, we have:

D(pllg) = 0

H(X) < log A

Bounding the power of a single noisy query. We present a
result that says intuitively that no single query made tereisy
copy of the input vector can be very effective in distinguishing
any fixed inputz from its neighbors. For simplicity, the lemma
is stated for the case = 0, but the obvious generalization holds
by symmetry.

For a boolean functiorf : {0,1}" —
following associated probabilities.

{0,1}, we define the

Pr [f(0+N) = 1],

Neope



and fori € [n], The probability space and some notation. The probability
space over which we are working consists of a uniformly chosen
p(i) = p(i)(f) := Pr [f(es+ N)=1]. input (denotedX) and independent noise vectdrs* : A € A)
Nepe where A is the index set of the noisy copies and edéh e
{0,1}". We denote this distribution b and forz € {0,1}"
R, denotes the distributio® conditioned onX = z. Note that
in a considerable protion of this paper we are working over the
distributionRy.
The random variables defined above completely determine the

The quantity(p(i) — p(0))? is a measure of how well a noisy
query of f distinguishes the input from e;.

Theorem 6 Forall f: {0,1}" — {0,1},

. ] ) execution of the tree and specify a root-to-leaf path. The leaf ar-
> (p(i) — p(0))? < —2P(0)" In(1/p(0)). (3)  rived atis a random variable denotdd We define the following
i€[n] events:

(we definep(0)2In(1/p(0)) to be 0 for p(0) = 0 in the above e success is the event that the output of the algorithm (deter-
inequality.) mined bylI) is X.

) e vis(v) is the event that the nodeis visited.
The proof of Theorem 6 goes by relating the sum on the left-

hand-side of (3) to the some of weights bn its linear biased- The letterz is used exclusively to denote a generic element
Fourier coefficients. A bound on this sum can then be obtainedof {0, 1}" and the letterr is used exclusively to denote a generic

using a technique from [32]. The details of the proof will appear l€af of the tree. With this convention, we will often abbreviate the
in the final paper. eventX = x as simply " and the evenil = 7 as simply “r”.

Thus, for examplePr[z] meansPr[X = z] andPr[z|x] means
Pr|X = x|l = «].
4 Proof of Theorem 2 | | ]
_ _ _ ~ The progress function. As with many lower bound proofs, we

In this section we begin the proof of Theorem 2. We are given wjl| define a function on computation states (in this case, ordered
a (possibly randomized)nd-treeT" of depthd that is supposed  pairs(v, 2) wherez is the input and is a vertex) that measures
to computelD,,. We want to prove that it/ is too small then  the progress of the computation towards its goal. We then show
there is anz € {0,1}" such that on input the probability that  that (1) for 7" to succeed it must be the case that the value of
T outputsz is small. We make use of a common technique for the progress measure at the final leaf is large, and (2)i$ftoo

lower bound proofs for nonuniform models, namely rather than shallow then for most leaves the value of the progress measure is
reason about an arbitrary inpuf we prove the stronger result  small. For vertex and inputz we define:

that for inputz chosen uniformly at randonf, fails to outputz

high probability. It is well known that it suffices to prove such a , Prvis(v)|]
result for deterministic trees, so for the entire section, we assume L'(v,x) = log P
thatT is a deterministignd-tree. r[‘;SE ”(x )@ e‘]]
Ir\VvIs
| | | = Ps) A (G e’
Notation concerningZ’. The vertex set of" is denoted” and Lo
the leaf set of" is denotedeaves. I — AN
o) = -3 L),

e v! is the set of ancestors of i.e. those nodes other than

that belong to the path from the rootto A large value ofL*(v, z) indicates that the algorithm is more

likely to reachv on inputz than on input: & e;. Hence arriving
e v is the set of descendentsafi.e., those nodes otherthan atv meansthatitis more likely that the inputighanz © e;. A

v that belong to the subtree rootediat large value ofL(v, z) indicates that arriving at makes it more
likely that the input isz rather than one af’s neighbors. Intu-
e [u,v), forv € u!, is the set of nodes on the pathdhfrom itively, a successful algorithm on inputshould tend to end at a
nodeu to nodev, includingu but notv. Similarly, (u, v) is leaf 7 for which L(r, ) is large. This intuition is made precise
the set of vertices on the path fromto v excluding bothu by:
ando. Lemma 7 Letd > 1 andé € (0,1). Suppose thar[L(II, z) >
) ) 111(n/9)|X =z] < dforall z € {0,1}". ThenPr[success] <
e \(v) is the noisy copy that labels node 5+
9
e For any subsetV of V' we write W, for the subset of ver-  Proof. We first show that for any leaf and inputz,
tices of W whose noisy copy i3. For example& is the set L)
of nodes on the path tothat query copy. Pr[r A 2] < Pr[n] (4)

n



Rearranging and taking logs, it suffices to show: 4.1 The contribution to knowledge by specific noisy

) copies
L(m,x) > log(Pr[r A x]) — log(— Pr[n]). (5)
n In this section we show how to decompak&n) as a sum
Using the convexity of the functiolog(z), of variablesLi (r), for A\ € A. Intuitively, L (r) is the con-
Lo tribution of nodes inV, to Li(w). We then defineLy(r) =
L(m,z) = - Zlog(Pr[” Az]) = log(Pr[r A (z & e;)]) & 2icpy LA(7); thus L is the sum of theLy’s. Intuitively, L
niz represents the contribution of verticesipto the progress of the
1 computation.
= log(Pr[r A x]) — - > log(Prlm A (z @ e1)]) Let us first remark that the choice of all of the noisy vectors
i=1 determines the answers to all of the queries at all of the nodes,
1< even though only those di are actually asked. Fare {0,1}"
> log(Prlr A z]) —log(—~ D PrlrA(z@e) andS C V we define:
=1

e A(z, S) is the tuple of answers to the queries at nodesS in
when the input isc. Note thatA(z, S) is a random vari-

as required to prove (5) and (4). able depending on the noise variables. #a V', we write
Now let A(r, z) denote the condition that(r, z) < log(n/0) Alz,v) for A(z, {v}).

andA(w, z) denote the complementary condition. Trivially,

> log(Prlx Ax]) ~ log(~ Prlx])

o A(z,S) — = is the event that answers to the queries at
nodes inS are consistent with the leaf. More precisely,

Prfsuccess] < Pr[A(IL, X)] + Prfsuccess A A(II, X)] for all verticeSU_e S_m l A_(x,v) isOif 7 is a left des_cgn—
dent ofv and1 if 7 is the right descendent. By definition
< 0+ Pr[success A A(I1, X)]. Pr[A(z, ) — IT] = 1.

We now bound the second term byf. Letout(x) denote the

set of leaves that output Then using (4) we have: Since the noise for different copies is independent, for teaf
in T"we have
PI‘[SUCCESS AN A(H, X)] < Z Z PI‘[?T N J,‘] PI‘[T(|])] = H Pr[A(x, 7'(1\) — 7'('].
T mweout(x):A(m,x) A
1
< Z Z 7 Prln]. Hence '
z wcout(x):A(m,x) Li(ﬂ) _ Zln Pr[A(Ovﬂk) _ 7T] (6)
ol '
This sum is at mosl /6 since each leafr belongs to one set 5 PriAesm) = 7
out(x) and)_Pr[r] = 1. O We can now separate the contributions of different processors to
The main lemma of this section is: L'(7) andL(r) in a natural manner. Let’ (7) denote the sum-
' mand in the above sum, and defibg(r) := 1 3" | L} ().
Lemma 8 Foranyz € {0,1}", Define random variables = L} (IT) andLy = Ly(IT). Clearly
600 depth(T)
Pr[L(II 1 X = — . =
LML) > In(n/O)|X = 2] < - 9 L ;LM

The rest of the paper is dedicated to the proof of Lemma 8.

But first let us show that it indeed implies Theorem 2. and for each, L" = 3, L.

We now prove bounds on the random variallg$. First we

have:
Proof of Theorem 2 from Lemma 8. Assumél’ correctly out-

pUtSX with probablllty at |eaSE/3. Then by Lemma 7, there is Lemma 9 For every noisy Copy, = [n], andv € V we have
an inputz such thar[L(IT, z) > In(n/0)|X = z] > 1/3. By

Lemma 8,1 must have depth at |ea§%nln(n/9). L (v)] < In (1 - 5) .
By symmetry it suffices to prove the tail bound for= 0, so ¢
we restrict to this case. For simplicity we writgr) for L(w,0) ~ Consequently, the same bound holds|for(v)| and, in particu-

andL*() for L*(,0). Also we writeL for the random variable |ar, for |L,| = |L,(IT)|.

L(IT). Since we are interested in the behaviotZoonditioned

on X = 0, through the rest of the paper the probabilities we We omit the simple proof of Lemma 9. The next lemma gives
evaluate are with respect to the distributiBp unless otherwise  an upper bound ofi£[L,]|: Denote byNj the set of random
stated . variables{ N, : K € A — {A}}.



Lemma 10 For each) € A, 4.2 Overview of the rest of the proof

16 H(II|Ny)

o3 % (7) Our goal at this point is to bound from above the probability
that the random variablg is large. The upper bound dZ{L ]
obtained above gives an upper bound®f| = >, E[L,]. This
upper bound is small enough so thakifvere nonnegative valued
then Markov’s inequality, which says that for nonnegative ran-
dom variablel” Pr[V > T] < E[V]/T, would give a tail bound

[E[LA]| <

The quantityH(IT| N ) can be thought of as the contribution
of N, to the entropy oflI.

Proof. Letn; denote an assignment 6. We will prove:

IE[LA|N; = n3]| < 16 H(IT| N5 = 73); (8) on L that is strong enough for our purposes. Unfortunatelig
A AT e AR not always nonnegative.
the lemma is then obtained by averaging aygr So we can try instead to get an upper boundih?], and

Since we have fixed the noisy copies for all copieshuhe  use the tail boundr[L > T] < E[L%/T% Now, L? =
tree7' reduces to gnd-treeT;,, whose leaf set is a subset of the ~ L3 +2 ZA# L,L,. Above, we found a good upper bound
leaf set ofT" and whose computation is completely determined for E[L3]. If we could show thai[L,L,] is not much bigger
by the noisy inputs);. For leafr in T, , define functionf; : thanE[L,]E[L,] (i.e., the covariance df , andL,, is small) this

{0,1}™ — {0,1} by: f(y) = 1if whenn, = y the result of  again would be good enough to give the bound we want. But we
the computation by, is 7, and f(y) = 0 otherwise. Define  don’t know whether this is true.

px(2) = Pr[fz(z + Nx) = 1], andéx(ei) := px(ei) — px(0). Since we can’'t make either of these approaches work, we find
In this new notation we can rewrite a way to combine them. More precisely we show how to decom-
1 Ox(e;) pose eacll, as a sum of two random variabl&s andZ, such
Li(m) = n Z In <1 + pw—(O)> : that: (1) Z, is nonnegative valued, (B[Y,] = 0, and therefore
i€n] E[Z)] = E[L,], (3) E[Y2] has an upper bound similar to that on
In the sums below the range ofis over all leaves ir7;,, . We E[L3], and (4)Cov[Yy, Y] = 0 forall A # k.
have,|E[L | N5 = ny]|is equal to DefiningZ =", ZyandY =}, Y\ we haveL = Z + Y,
(@) and we get a tail bound fof using Markov’s i2nequality and tail
1 or(€; bound forY using Markov’s inequality for“; together these
;p”(O)LA(ﬂ T n Z p(0)In (1 + pw(0)> give the desired tail bound fdr.
w,i€n] The decomposition of., into Y, + Z, is accomplished as
1 2(1 —¢) 5(e))> follows. The random variablé, represents the amount of evi-
<~ D Galen)|+ o > p(0) (p (0)> dence that copy. provides towards showing that the inputois
m,i€[n] m,i€[n] " conditioned on the input bein@ This evidence accumulates the

results of all queries ta. We first decomposé , as a sum of
random variableg,,. Herev comes from the set of nodes which
are on the path taken by the computation and are laki&)ehd

(using Lemma 4 and the fact that- ‘;“ﬂ((%‘)) > 1)

1 16 1 L, represents the evidence provided by the query & nodev.
. Z <Z On (ei)> T3 > p(0)In = (0)’ (The definition ofL,, appears in Section 4.4)
€n] \ 7T i Next we decomposg, into Y, + Z,. The event that the node
using Theorem 6. v is on the computation path conditions the distribution. Con-
Each inner sum in the first partdsasy™_ p(0) = 3" px(e;) ditioned on this event we consider the expectatiorl.of This

1 . . .
for all i € [n]; the sum in the second part is the entropy (except conditional expectation represents how much evidence one ex-

that the logarithm is natural not binary) of the density function PECtS the query at to provide given the previous answers. We
given byp,(0). Changing the logarithms to binary we get can view this conditional expectation as a random variable which

depends only on the outcomes of the queries at the ancestors of
v. This random variable ig,,. We then defin&,, = L, — Z, and

11, . .
1—63 > px(0)In 1 < 161;12 H(ILy, ) < ? CH(I,, ). Y, andZ, in the obvious way.
ne p=(0) € n en The details of this argument are given in Sections 4.3, 4.4
This completes the proof of (8), and hence of Lemma 10. O and 4.5.

The next lemma states a similar bound®{d.3 . .
. . . 4.3 The variablesL,
Lemma 11 Under the same notations as in Lemma 10, it holds

for each\ € A that Let us now continue with the proof of Lemma 8.

2 II| Ny
E[L3] < 3—4 RLICIY) A). (9)
S n
The proof of Lemma 11 is similar to that of Lemma 10, and will  Pr[rlz] = ] PrlA(z,v) — 7 | A(z,v") — 7. (10)

appear in the final paper. venT



In the above equation we adopt the convention that the term iny, angz, . Forv € Vi, define

the product corresponding to the roois[A(x, v) — =]. Since
A(z,v) only depends on the answers to the queries to cdpy
that were posed at the ancestorsond not to the other copies,
we get

(10)= H Pr[A(z,v) — 7 | A(z,v" N Vy() — .

ven!

Zy :=E[L, |v eIl

Yz,

vEIITNVy

Note that theZ,’s are constants. In wordg;, is the expectation
of L, conditioned on the event that the execution visits nede
Also, define

We are going to assign fixed weights to the edges in the tree

T. To the outgoing edge from vertexin directiona € {0,1}
we will assignL,(a). This can be thought of as the measure

of information the tree gains when it traverses that edge. Using

L, (a) we will then define random variablds,. Note that

Pr[A(z, 7' NVy) — 7]
I PrAG@.v) — 7| A@v V) — ]

verTNVy

We can therefore rewrité () using (6) as

Z Zl Pr 0,v —>7T|A(O,UT)—>7T]
= ze[n] ( — | Ale;,v!) — 7]
0,v) — m | A(0,v" N Vy(,)) — 7]
U%; Z Alei,v) — 7| Ales, vT N V() — 7]

(11)

Fora € {0,1} and node € V(T'), define the constanfs,(a)
mentioned above

Ly(a) := % Z In

i€[n]

Pr[A(0,v) = a | A(0,v" N Vi) — ©]
Pr[A(e;,v) = a|A(es, v N Vi) — 0]

(12)

Define random variablé, = L,(A(0,v)). ThusL, is just

L,(a) chosen according to the probability that the answer of the

query atv is a. For leafr andv € 7', let L,(7) = L,(a),
wherea = 0 if 7 is a left descendent af and1 otherwise. con-
fusion. Note that with the above notatidn (II) coincides with
L,(A(0,v)). We have

= Ly(m) (13)
ven!
La(m)= > Ly(n), (14)
verTNVy
L= Z LU(H) (15)
velll

4.4 Breaking the variableL, into Y, and Z,

We break the variables, into a sum of new random variables

L, =Y, + Z,, and then use these variables for the definition of

Y, :
Y)\I

Lv - Zvv

Z Y, = Ly — Z,.
vellTNVy

It follows imediately from the definitions that

E[Y, |v € II'] = 0. (16)

We can bound the large deviation b, in terms of those ot
andZy:

Pr[z Ly > 1n(n/0))
A

<Pr[> Yy >1In(n/0)/2] + Pr>_ Zy >1In(n/0)/2]. (17)
A A

In the next section we complete the proof of Lemma 8, by bound-
ing each of the two terms above in the RHS separately.

Before we can complete the proof of Lemma 8, we need to
establish some properties &f’s andY,,’s.

Lemma 12 For all noisy copiesA we haveE[L,] = E[Z,],
which implies thaE[Y,] = 0.
Proof. We have
IE[LA]—IE{ > ] > Prlvis(v)] E[L, [ v € II']
vellTNVy vEV)
=Y Pr[vis(v)] Z, —IE{ > Zv] = E[Z,].
vEVy vellTNVy

The second statement is now immediate from the definitions of

L,\,Z)\,andY,\. O
Lemma 13 For all distinct copies\ andx we have
E[Y,\Y,] =0. (18)
Proof. We have
ww=e|( 3 (%, )]
uelITNVy vellTNV,
= > Pr[vis(v)]E[Y,, Yy |vis(v)]
w,v:u€Va,veV,Nut
+ > vis(u)E[Y, Y, vis(u)]. (19)

w,v:veVy,ueV,,Nut



Consider the summand in the first sum in the RHS corresponding O

to u,v. Conditioned orv being visitedY,, is fixed to a constant

denotedy,, , sincev is a descendent af. Now (16) gives
E[Y,Y,|u,v € TT'| = yu, o E[Y,|Vis(v)] = yu.p - 0 = 0.

Similarly all the terms in the RHS of (19) areé implying
E[Y,\Y,] =0. d

The following lemma shows what one would intuitively expect:

Lemma 16 For every noisy copy,

136 HAIN)
n

E[Y?] <
Proof. We have

E[Y?] = E[(Lx — Zx)?] = E[L] - 2E[LAZ,] + E[Z3].

on average, the knowledge of the tree that the input is indeed We know by Lemma 9 thdf,| < In(1/¢), hence

does not decrease.
Lemma 14 For nodesy € Vi we haveZ, > 0.

The simple proof goes by writing,, as a sum of relative en-

tropies. We omit the details in this version.
Now using the above lemmas and the properties offtk's

IE[LxZ)]| < In(1/e)E[|Z,]],
now by Lemmas 14, 12, and 10 we get
4 H(IINy)

E[|Z,\]] = E[Z\] = E[L)\] < — o

andL,’s provenin the previous section we can bound from above hopce

the second moments ¢f, andY), which will in turn yield the
desired bound on the RHS of (17).
H(II|N5)

Lemma 15 For every noisy copy, E[Z3] < 28 . Z—=—=32

Proof. We expres¥/, as a sum of,,’s and then use the lemmas

proved above to obtain the desired bound.

E[Z}] =E [< > ZU)Q}

veIITNVy

= > Pris(w)]Z;+ Y. 2 Pris(v)]ZuZ,. (20)

vEVy u,vEVy:weult

We have Z2 < MaXuevy [|Zw|]|Z,|. By Lemma 9 we know that

max,[|L,[] < In(1=£) < In(1/e), and sinceZ, = E[L, | v €
'], the same bound holds fatax,[|Z,|]. Also, by Lemma 14
we know thatZ, is nonegative, hence we ha\@,| = Z,. From

4 H@NG) _ 4 KON

n e n
(HlN )

|E[L)\Z,\]| < ln(l/ )

We know by Lemma 11 thaE[L3] < 2 -

Lemma 15 thaf£[Z3] < 2 . %
gether give

, and by
. These observatlons to-

32 8 96\ H(II|Ns) _ 136 H(II|N;)
E[Yf]g(6—4+—+€—4)7A L e S

gt n o n

O

We need one more observation before putting things together
to complete the proof of Lemma 8.

Lemma 17 Let T be agnd-tree, and letll denote the random
variable denoting the leaf reached by execuflihgn input0. We

these considerations, and rearrangement of the second sum in the

RHS in (20) we have,
(20)< 2In(1/2) > vis(v) Z,

veEVy
+2 Z (Pr[vns )] Z., Z Pr[vis(v)|vis(u )]Z)
u€Vy veEulNVy

= 21n(1/)E[Z)]
+2Y (Pr[vis(u)]ZuE{ Y oL

vis(u)D .
u€Vy v€(u, )NV

NOW | 3 e (umnva Lo(m)] = |LA(IL) = La(w)| < [LA(ID] +
|Lx(v)|, which is at mos21n(1/¢) by Lemma 9, and thus

<2In(1/e)E[Z)] +4In(1/e) > vis(u)Z,

uellTNVy
<2In(1/e)E[Z)\] + 41n(1/e)E[Z)]
<6In(l/e)E[L)] (Lemma1l12)

II| Ny
<6In(1/e )16¥ (Lemma 10)
< 9_3 M (usinglnl < 1)
9 n S S

> H(IN;) = H(II). (21)
A
The proof follows by induction on the number of internal
nodes inT', where the inductive step is obtained by removing
two sibling leaves from the tree. The details will appear in the
full paper.
4.5 Completing the proof of Lemma 8

We separately upper bound the two probabilities in the RHS
of (17).

{Zy 1“% } < P> Ya)? = n(n/0)]
A
E[4(E>\ Y/\)Q} (2 42/\ [ ]

—
IN=

In?(n/6) = In%(n/6)
(@) 5443, HATIN) @ _ 544 H(IT)
- etnln’(n/f)  e*n(ln(n/6)?)
(5) 544 depth(T")

(22)

etn(In(n/0)?)’



where (1) uses Markov’s inequality, (2) follows from Lemma 13, [12] U. Feige, P. Raghavan, D. Peleg, E. Upfal. Computing with Noisy
(3) follows from Lemma 16, (4) from Lemma 17 and (5) from the

fact thatH (IT) < log |leaves| < depth(T).

For the second upper bound, we can apply Markov’s inequal-

[16]

[17]

ity, since we know by Lemma 14 that ti&’s are positive.
R
A
(23)
Lemmas 12 and 11 together now give
2 S\E[Z)] 25, ElL] _ 250, HIN)
In(n/0)  In(n/6) nln(n/6)
8 H(II) 8 depth(T') (24)
~ e3nln(n/0) ~ e3nln(n/0)
Using (22), (23), and (24) in (17), we get
544 depth(T) ~ 8 depth(T)
Pr[%: Ixz/0] = i) * Sninin0)
600 depth(T")
= einln(n/0)

This

completes the proof of Lemma 8 and thus also of Theorem 2

and of Theorem 1.

[22]
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