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ABSTRACT General Terms

We consider a multicast game played by a set of selfish noncoop-Algorithms, Theory

erative players (i.e., nodes) on a rooted undirected graph. Players

grrive one by_ope_ a_nd t_aach co.nnects to the ro_ot by greedily Choqs'Keywords

ing a path minimizing its cost; the cost of using an edge is split

equally among all users using the edge. How large can the sum ofPrice of Anarchy, Shapley Value, Best Response, Nash Equilib-
the players’ costs be, compared to the cost of a “socially optimal” rium.

solution, defined to be a minimum Steiner tree connecting the play-

ers to the root? We show that the ratiad¢log? n) andQ2(log n), 1. INTRODUCTION

when there arex players. One can view this multicast game as
a variant ofONLINE STEINER TREE with a different cost sharing
mechanism.

Furthermore, we consider what happens if the players, in a sec
ond phase, are allowed to change their paths in order to decreas
their costs. Thus, in the second phase players play best respons
dynamics until eventually a Nash equilibrium is reached. We show

that the price of anarchy i9(log® n) andQ(log n). :
We also make progress towards understanding the chalIengingplay.ers.use edge thgn each player pa_y$e)/k for usinge. Suc_h .
case where arrivals and path changes by existing terminals are inter-egalItarlan cost-sharing was recently introduced in an algorithmic

leaved. In particular, we analyze the interesting special case Wheregame-theoretlc context by Anshelevich et al. [2] and further stud-

the terminals fire in random order and prove that the cost of the ied by [3, 4, 5]. (Itis also the outcome of the Shapley value; see

solution produced (with arbitrary interleaving of actions) is at most [14] for de_talls.) S
O(polylog(n)/n) times the optimum The offline structure minimizing the total cost to all the players
' (the so-called “social optimum?”) is the minimum Steiner tree on

. . . X U {r}. How much larger is the cost of the structure resulting
Categones and SUbJeCt DeSCI’IptOI’S from a sequence of selfish choices of cost-minimizing paths? The

F.2.0 [Analysis of Algorithms and Problem Complexity]: Gen- answer turns out to be polylogarithmic: here, we prove that its cost
eral is larger by a factor which is no larger thé{(log? ») (Theorem 1),

*Supported in part by ISF grant 1366/07 and BSF grant 2002276. and that the_re are instances for which it is larger _by a factor of
Part of this work was done while visiting Microsoft Research. Q(logn). This dramatically improves upon the previously known

er and lower bounds @ 1 and (1 log 1
TThis work was supported in part by NSF grant CCF-0515201. Part l[JSF;p W . (Vnlogn) (logn/loglogn)

of this work was done while visiting Microsoft Research.

Given an undirected connected rooted graph= (V, E) with
nonnegative edge costée) for e € E, consider a sequencé =
_t1,...,t, Of players or terminal vertices, who arrive in an online
ashion; each new terminal greedily chooses a path connecting it to
ihe rootr so as to minimize its payment, as determined byethedi-
arian (or Shapley) model: the cost of an edge is split evenly among
the players currently using it in their paths to the root. Thus; if

Our upper bound is proven by a gap-revealing linear program,
an argument which we find appealingly simple. Our lower bound
is proven by relating the problem to tl@@NLINE STEINER TREE
Permission to make digital or hard copies of all or part of this work for Problem, whose competitive ratio [7] is known to®¢€log n). (Re-
personal or classroom use is granted without fee provided that copies arecall that thecompetitive ratioof an online algorithmA is the worst
not made or distributed for profit or commercial advantage and that copies case, over all input sequencés of the value ofA for input X,
bear this notice and the full citation on the first page. To copy otherwise, to djvided by the value of the optimal offline solution faft.)
repub_llsh, to post on servers or to redistribute to lists, requires prior specific Naturally, later arriving terminals may render certain paths more
permission and/or a fee. . . :

attractive and produce some regret for terminals who have previ-
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Copyright 2008 ACM 978-1-59593-973-9/08/065.00. ously chosen paths which are no longer cheapest for them. In order



to deal with such regret, Chekuri et al. [3], following a first phase that the cost of the solution produced (with arbitrary interleaving of
in which the players arrive one by one, proposed adding a secondactions) is at mosD(polylog(n)+/n) times the optimum.
phase during which any existing player may change its path to a dif-

ferent, currently cheapest path (i.e., Umsst response dynamjcs 2. ONLINE MULTICASTWITHEGALITAR-
that is, once all players have arrived, players are allowed to “refire” IAN COST SHARING: UPPER BOUND

or “replay” an arbitrary number of times and in arbitrary order, un-

til a Nash equilibrium is reached, in the sense that no player has

any incentive to deviate unilaterally from its currently-chosen path. Theorem 1 The greedy algorithm for online multicast with egali-
This defines a two-phase multicast game. The inefficiency result- tarian cost sharing has competitive ratio(log® n).

ing from such a non-cooperative game is quantified byptee Let H(n) = 1+1/2+1/3 + -+ 1/n, be thenth harmonic

of anarchy[8], the worst-case ratio between the cost of a Nash ber. A the terminal labeled so that thei val ord
equilibrium and the cost of the optimum Steiner tree. Here, as a humber. Assume the terminals are fabeled so that tneir arrival order

corollary of Theorem 1, we prove that the ratiadglog® n) when IS < 1, t2, ..., tn >. Denote byei(", -) the distance function on the
all initial firings precede the first refiring; and our lower bound ex- graphG as defined by the edge cast).

tends to prove that the worst-case ratio is &ltog n). Again, this
dramatically improves upon the previous bound©gf/n log® n)
andQ(logn/loglogn) [3], also proven in the case in which all
initial firings precede the first refiring.

We emphasize that in our game all players must arrive before any n
player refires. Thus, we do not talk about a Nash equilibrium until max Z b(i) s.t.
all nodes have arrived, each firing once. Only then does the second i=1
phase, of refirings, begin, and then we discuss a Nash equilibrium.

Lemma 1 The total cost of all edges used by the terminals’ paths is
bounded above by the optimal value of the following “gap-revealing”
linear program with variables(1), ..., s(n), b(1), ..., b(n):

In the last section, we pose as an open problem the case in which s(j) —s() +b()/2 < d(i,j) V1<i<j<n
arbitrary intermingling of initial firings and refirings is allowed. Z s(i) — Z b(i)H(n) < 0
For the two-phase multicast game with egalitarian cost sharing, i i
we have thus proven that the Nash equilibria thatreaehableby s(0)=0b0) = 0 (for the root)
our best response dynamics (all initial firings before any refirings) s(i),b(i) > 0 Vi<i<n

have cost no more than a polylogarithmic factor times the optimum.

In contrast, for this game there do exist Nash equilibria of the tradi-

tional kind, without any issue of reachability, with cost larger than

the optimum by a factor ofi: consider an instance [2] with two

nodes,s andr, and two parallel edges betweeandr, one of cost

n, one of costl + . Now suppose that players use the heavy

edge, each shouldering ongh of the burden. This configuration N . ) .

has costh, whereas the optimal cost is+ €. Yet, no player will s(0) = Z cl@)/{is(eeP)nl <<

move to the light edge, and so this is a Nash equilibrium; hence

the price of anarchy is (at least) In a dynamic environment as ~ and letb(i) to be the sum o(e) over thosee that were used for

modeled by our gamehis equilibrium simply cannot be reached  the first time byP;.

since we start from an initial empty configuration. We claim that this choice Osf(z), b(z) is feasible for the LP. The
The latter example motivated Anshelevich et al. to introduce the first set of constraints is equivalent to an observation of Chekuri et

notion of price of stability the ratio of the cost of theheapest  al. [3]: For any two terminals andj, 1 <i < j <n,

Nash equilibrium to the cost of the optimal solution. They showed . . , .

that this ratio isO(logn) for the multicast game on undirected s(7) < (i, ) + () = b(2)/2.

graphs, a bound slightly improved by Agarwal and Charikar [1] To see this, note that when terminaelects his path, one option

to O(log n/ loglog n), and by Fiat et al. [5] t@ (log logn) in the is to select the shortest path#gcostingd(s, 7)), and then follow

special case in which every node in the graph is a terminal. How- the same path selected hywhich costs at most(:) — b(¢) /2 since

ever, the proof of the logarithmic upper bound on the price of sta- the cost share tp of using edges that were first useddig at most

bility of [2] heavily relies on the assumption that the starting point  b(¢) /2.

is an optimal (or near optimal) Steiner tree on the terminals. For the second set of constraints, observe that the total of all cost
In light of this prior work, one can view our result either as a shares for the selected path by each termingpon arrival is at

result abouONLINE STEINER TREE with egalitarian cost sharing ~ most:

(Phase 1 alone), or as a result about the modest price of anarchy

in a multicast game in which price of anarchy is defined only over . . .

configurations which are reachable from the initial empty configu- ¢ = Z(b(z) +s(1) < Z c(e)H (n) = Z b(i)H (n).

ration, albeit in a specific way (all initial firings preceding all refir- ‘ eV b !

ings). Finally, the total cost of the selected tree is giveny b(i),
Extending our analysis to the more general case in which termi- which is the value of the objective functionm

nals may refire before all terminals have arrived, seems to be sur-

prisingly challenging. In this case, the online sequence is an arbi- To get an upper bound on the optimal value of this LP, we con-

trary sequence of "firings” of the terminals, with repetitions, where sider a relaxation of this LP, and construct a solution to the dual of

the first firing corresponds to the arrival of the terminal. We make the relaxation.

some progress towards understanding this case by studying the ver- In what follows, we view the root as a terminak, that ar-

sion where the firing sequence is random. For this version we proverived before any other terminal and defifé = X U {to} =

PROOF It suffices to construct a feasible solution to the above
LP whose objective function value equals the total cost of the edges
used by the terminals. Far < ¢ < n, let P; denote the path
selected by terminal. Lets(:) be the cost share df; upon arrival
of t;, specifically,

ecP;



{to,...,tn}. LetT be a tree on vertex séV rooted att, (not
necessarily a subgraph of the network) such that for gaghX,
its parentp(j) in T arrived beforej. For a nodej, let C(j) de-
note the set of children iff". Consider the relaxation of the LP in
Lemma 1, denoted Pr, where for the first set of constraints we
only keep those in which= p(j). The dual of this linear program,
DLPr, has dual variable§z; : j € X} U {y} and has the form:

min Y d(p(5),5)z St

JEX

—Hn)y+ Y 2/2 LYieWw

JEC(4)
yt+z— Y oz
JEC(d)
Zi
Y
For any choice of” and any feasible solution tB L Pr we get

Y

0VieWw

\Y]

0vVieWw
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> 0

let D(j) be the set of terminals that appear betwgemdp(j) in
m order together with the member 6f, p(j)} that appears first in
m order. By repeated use of the triangle inequality, p(j)) <
> ien() d(i, f(4)) and therefore

Y dG.p() <D dG, f@){i: i € D3}

jeX 1€X

Claim 3 For any two terminalsj, 5/, if D(j) N D(j') # 0 then
p(7) is an ancestor 0p(j) or p(5') is an ancestor op(5).

To prove the claim, suppose, for contradiction that the least com-
mon ancestok of p(j) andp(j’) is distinct from both, and without
loss of generality () is in the left subtree of andp(j’) is in the
right subtree. Ther andp(j) both precedg’ andp(j’) in = or-
der and sadD(j) N D(j') is empty, a contradiction that proves the
claim.

From the claim it follows that for any terminalthere is a single
root to leaf path that contains the parents of all terminassich
that: € D(j). Such a path contains at magtlog | terminals, of
which at most[log n] have two children, s&{j : i € D(j)|| <

an upper bound on the optimal value of the LP in Lemma 1 and (; | 1)[logn]. We conclude that
therefore an upper bound on the cost of tree produced by the algo-

rithm.
The next lemma constructs a specific rooted fféavith some

nice properties. We then show how to construct a low cost feasible

solution toD L Py that yields the upper bound of Theorem 1.
When we writed(, j), we mean the distance in the underlying

network (not in the tred” being constructed). Thevelof a node

is one more than its distance from the root in the ffégso the

root is at level 1). Foj € X we writep(5) for the parent ofj in’.

Lemma 2 Letr be a positive integer. There exists a rooted ffée
(not necessarily a subgraph of the input graph) on thelget=
{to, ..., tn} wWith roott, such that:

1. For every terminalt # to, the parent oft arrived earlier
thant.

2. Every node has at most two children.
3. Every node: with two children is at level divisible by.

4. > iex A(7,p(5)) < 2(7 + 1)[logn] - OPT.

PROOF Select a minimum Steiner tré@ on the network. Let
7 = (7(0),w(1),...,m(n)) be the ordering of¥ that lists the
terminals in order of first appearance along an Eulerian tout of
that starts fromo. We haver(0) = to and)_, d(w (i), 7(i+1)) <
2-OPT.

The construction of” is recursive. LetS be the set of- ter-
minals, to, . .., t-—1 with earliest arrival time (listed in increasing
order of arrival time). Letr’ be the sequence obtained frotrby
deletingS. Split 7’ into two sequences; , m» of nearly equal size,
sothatm | < |m2| < |m|+1. Fori € {1,2}, letr; be the terminal
in 7; that arrived first. Recursively build treds for 1 with root
r1 andT: for w2 with root . The output tred” consists of the
union of the patho, ..., t-—1, the edges$t-_1,71) and(t-—1,72)

S dGp() <

JEX

(7 + 1)[logn] Z d(i, f(i))

2(1 + 1)[logn]OPT,

IN

as required to complete the proof of the lemmm.

Note that in the previous lemma,is a free parameter. We now
complete the proof of Theorem 1 by fixingand defining a specific
feasible solution taD L Py, for the treeT” defined in Lemma 2.
The value of that solution will be the required upper bound.

For the moment we leave unspecified and also introduce an-
other positive parameter that will be fixed shortly. Lety =
ﬁ. For each integeg satisfyingl < g < , for every termi-
nal j whose level is congruent tpmod 7 setz; = § + (¢ — 1)y.
Observe that for every, z; € [a/2, a].

For any choice ofi andr, the second set of dual constraints is
satisfied. To see this, note that if the leveljab not a multiple of
7 thenj has one child, sg + z; — Zjec(i) z; = 0. If jis at level
a multiple ofr thenz; = a andj has two children each having
valuea/2,s0y + zj — 3 ico(jy % =Y = 0.

For the first set of constraints, itis enough that(n) < a/4—1
and this is true if we take = [4H (n)] + 1 anda = 8.

By the third property of Lemma 2, the value of the solution is

Z d(p(5): )z < Z d(p(j),j)a

16[logn]([4H(n)] + 1) - OPT,

IN

completing the proof of Theorem 1.

3. TWO-PHASE MULTICAST GAME: PRICE
OF ANARCHY

Recall that we consider ao-phase gaméor connecting the

and the treedh, 1.

By construction,T” satisfies the first three properties. Further-
more, a simple induction on shows that the number of levels of
T’ is at mostr[logn].

For the final property claimed in the lemma we want to prove
an upper bound ob_ ;- d(j, p(j)). For each termingj # m(n)
let f(j) be the terminal that immediately follows it in order and

terminals to the root. In Phase 1 the players play in the order
t1,...,tn, and each selects a greedy (best response) path relative
to the selection of paths by the previous players. In Phase 2, the fol-
lowing step is repeated: take an arbitrary player amang. . , ¢,
whose current path is not a greedy path relative to the other paths,
and replace its current path by a greedy path. When each player’s
path is the greedy path relative to the other paths, we have reached



a Nash equilibrium and the game ends. Our goal is to analyze theTheorem 6 The competitive ratio of the greedy algorithm for on-
cost of the resulting solution. (As the game proceeds, the union of line multicast with cost sharing and the price of anarchy of the two-
the paths chosen by the players need not be a tree, but it can bgphase multicast cost sharing game ofn + 1)-vertex graphs are

shown [3] that any Nash equilibrium induces a tree.)

The multicast game belongs to the class, first defined by Rosen-

thal [12] and widely investigated [6, 9, 11, 14, 15], efngestion
games Rosenthal [12] showed that a potential function can be de-

fined for each congestion game such that the potential decrease

if a player makes a move that improves its selfish cost. It follows

that every congestion game has a pure Nash equilibrium. More-
over, there is a one-to-one correspondence between Nash equilibri

and the solutions defining a local minimum of Rosenthal’s potential
function. For the multicast game, Rosenthal’s potential funciion
reduces to the following:

n(e)

@:Z c(e)-z% ,

ecE i=1

wheren(e), the usage ofe, denotes the number of players using
edgee at the specified time. If a player has previously fired and
changes its connection to the root from pdthto path@, then

both at least half of the competitive ratio of the greedy algorithm
for ONLINE STEINER TREEONn-vertex unweighted graphs.

PrRoOOFE Consider an instance f@NLINE STEINER TREEON a

%rath = (V, E) with n vertices. We define an instance of the

ulticast game as follows. Lé¥ = n + 1 ande = 1/n?. Replace
each vertew € V by a starS,, of N vertices by addingv — 1 new
verticesvs, va, ..., uny—1 €ach at distancefrom v. This defines a

thew graphH. Replace each request to a vertexc V(G) by a

“

v-batch,”i.e., arequest tay = v of H followed by a sequence of
requests to all the leaves, ..., vx—1 in V(H) in the starS,, of H.
This defines an instance of the multicast game.

An edge of lengtte will be called ashortedge; others (of length
1) will be calledlong edges. We will prove that during Phase 1
of the multicast cost sharing algorithm, the following invariant is
maintained:At any time, the union of the request paths forms a tree
T rooted atr. The invariant implies that at the beginning of every
batch of requests, for every long edgethe number of requests
which usee is an integer multiple ofV. It also implies that for

the potential function precisely captures the change in cost (to the every vertexv; € S,, if v is in T then the path fromy; to r is

player) fromP to Q. Since best response dynamics can only de-
crease Rosenthal’s potential function, it follows that this process
must terminate in a Nash equilibrium. From Theorem 1, it is easy

to deduce a bound on the price of anarchy of reachable Nash equi-

libria. (Chekuri et al. [3] used the same technique.)

Corollary 4 The Nash equilibrium reached by the two-phase Mul-

the concatenation of the short edge fronto v and thesamepath
from v to r. The invariant is valid initially. Assume that it is true
so far, and consider a request to some vertex S,,.

If this is the beginning of a new batch £ 0), the path serving
v traverses some numbér¢ > 1, of long edges to first reach a
vertex which is already iff. From that point onward, following
the edges ofl’, each of which is used at least times, costs at

ticast Cost Sharing game with best response dynamics has costMostn/N in total. Following unnecessarily even one long edge

O(log® n)OPT.

PrRoOOF Consider Rosenthal’s potential functiddefined above.

Let ®; and®- be its values at the end of Phases 1 and 2, respec-

tively. Since® cannot increase in Phase®; < &;. Now the cost
at the end of Phase 1 is at maStlog® n) - OPT by Theorem 1.
Hence® is at mostH (n) times this value, i.e((log® n) - OPT.
But the cost of the graph at the end of Phase 2 is at st & .
|

4. LOWER BOUNDS

Using the lower bound for th©ONLINE STEINER TREE greedy
algorithm, we prove a lower bound 6¥(log ) for the greedy on-
line Steiner problem with egalitarian cost sharing (i.e., Phase 1

not in 7" would costl > n/N. It follows that the algorithm will
simply minimize the numbeft of non-I" edges it needs to first Hit
(just as the greed®NLINE STEINER TREE algorithm does); from
that point on, it will lazily followT" to r.

Now supposd < i < N — 1. Whenuv; is requested, it must
take the short edge to followed by some path from to . The
main observation is that whatever paththatv;_; chose to take
to go fromw to r is still the best path fov;. (CompareP to some
other pathP’. Edges in the intersectiohof P and P’ contribute
the same cost t& and P’. After v;_; has chosen patR, edges in
P\ P’ are cheaper than before, and edge®in, P are the same
price as before. SincE was of no greater cost thd? before path
P was added to the collection, it is certainly still of no greater cost
than P’ afterward.)

Thus the invariant is maintained. The structure at the end of

alone), and for the two-phase multicast cost sharing game, improv- phase 1 in the two-phase multicast cost sharing game is thus a tree

ing upon the previous lower bound proof@flog n/ log log n) by

[3]. We note that our proof is simpler compared to the proof of [3].
In the ONLINE STEINER TREE problem, given are a graphl =

(V, E) and aroot € V. The algorithm will maintain a connected

subgraphl’ of G; initially T = {r}. In each step, given a new

terminalt of V, the greedy algorithm selects a cheapest path from

t tor and adds it td". Its competitive ratids the worst-case ratio

corresponding to the tree produced by @reLINE STEINER TREE
algorithm onG. Moreover, this tree is a Nash equilibrium since no
vertex can wish for a different path (even using one long edge not
in T is a disaster), so Phase 2 is empty of events.

The output tree has total length exactly equahtdv — 1)e +
£(T), £(T) denoting the number of long edges’h The optimal
multicast structure o/ must be a tree, which has length N —

between the cost of the tree it constructs and that of the cheapestl)6 + ¢(T*), whereT™ is the corresponding tree i@ and¢(T™)

Steiner tree on the union §f-} and the set of the given terminals.

Theorem 5 [7] The competitive ratio of the greedy algorithm for
ONLINE STEINER TREEONn-vertex unweighted graphsi¥log n).

The proof of Theorem 5 given by Imase and Waxman useg-the
level diamond graphvith 4 edges. However, we will use the lower
bound as a black box.

is the number of its long edges (all of them). By optimality,
is the optimal Steiner tree ad. Thus the competitive ratio of the
optimal Steiner tree problem (on this instance}(i#)/¢(T*) and
the price of anarchy of the multicast game (on this instance) is

n(N —1)e+£(T) LT) oT)
n(N —1)e+£(T*) = n(N —1)e+ £(T*) =z (1/2) 0Ty’

sincel(T*) > 1 > n(N — 1)e by the definition ofe. Finally, the
competitive ratio of the optimal Steiner tree problem is simply the




worst-case value of(T") /¢(T*). W than its expectation (and (k) N S(v)| is not much bigger than

its expectation.) For fixed, R(k) N S(v) is a sum ofs indicator
random variables each corresponding to a vettex S(v) and
indicating whethew € R(k). If these were independent we could
use standard tail bounds for sums of independent random variables,
but they are not independent. The problem of deriving tail bounds

5. MULTICASTWITHRANDOMARRIVALS in similar cases has been considered extensively, but we don’t know

In this section, we consider the setting in which arrivals and re- g result that it is in a form that is convenient for our purposes, so
plays can be mixed in arbitrary order. The general setting seemswe prove it here.

quite challenging to analyze and giving a guarantee in this case is
an open problem. We make some progress towards understandiemma 8 Lete € (0,1/2). Letko = 481nn/e>. Letk € [ko,n—
ing this problem in the interesting special caseasfdom arrivals ko] ands = kon/ min(k,n — k). Define the evenk; (k):

Here, the order of arrivals is a random permutation of the termi-

Corollary 7 The price of anarchy of the two-phase Multicast Cost
Sharing game i§2(log ).

nals, refirings are (adversarially) intermingled with arrivals. In this for everyo,
case, we show that the expected cost of the solution produced is |S(v) N R(k)| > @(1 —¢)
O(polylog(n)+/n)- OPT. - n

More precisely, the model we consider can be described as a and

semi-random adversary model as follows. At each time step, an
adversary decides either to refire a specific terminal that has previ-
ously joined, or decides that a new terminal should arrive. In the
latter case, the new terminal is selected uniformly at random from

among the terminals that have not yet arrived. First observe that the definition & ensures that < n. We
To analyze the cost of the solution produced, we analyze the evo- |l hound the two cardinalities separately and use the union bound
lution of the potential function. for 1 — Pr{E:(k)}. By symmetry,|S(v) N B(k)| has the same

5.1 Bounding the potential change distribution ag.S(v) N R(n — k)|, so we will just analyz¢S(v) N

) o ) R(k)| and bound its tail distribution on both sides of the mean.
Let ¥ (k) denote the value of the potential function immediately g prove the lemma, fi%, fix v, and letZ = |S(v) N R(k)|.
prior to thekth arrival and letb (k) denote the value of the potential  Ag noted abovez has expectatiofk /n)s. Using a standard tech-
function immediately following théth arrival. Upon arrival of the

- : nigue, we will obtain an upper bound on the probability thak
(k+1)th new terminab, the potential change B(k+1) — W (k+ (1—¢)E[Z], by approximatingZ by a sum of independent random
1), which is at most

variables. LetR' = X; + ...+ X, andZ’ = X; + --- + X,
min{d(v, u) + Z c(e)/(n(e) + 1) : where theX;’s are i.i.d. indicator random variables each having
e€P(u)

(n—k)s

1S(v) N B(k)| > (1+e).

Then, evenf’; (k) has probability at least — O(1/en?).

u arrived before, }, the same (as yet unspecified) expectation. Observe that when

is conditioned on the everit’ = k, has the same as the distribu-
tion of Z, and whenZ’ is conditioned on the eve®’ < k, itis
stochastically dominated hy. Thus:

wheren(e) is the number of paths using edgémmediately prior
to the arrival ofv and P(u) is the path currently used by vertex
whenv arrives.

We can bound this minimum from above by considering an av-

- o Pr{Z < (1—-¢)(k
erage ovemw selected according to some distribution. We now de- H{Z=<( €)(k/n)s}

IN

Pr{Z' < (1 —¢€)(k/n)s|R <k}

scribe the distribution we will use. As in the previous section, let
7 be the permutation of the terminals giving their order of first ap-
pearance along an Eulerian tour of the minimum Steiner tree on

Pr{Z' < (1 —¢€)(k/n)s}
Pr{R' <k} '
Fixing the common expectations of thg to be(k/n)/(1+¢/2)

IA

X U {r}. Here we viewr as a cyclic permutation. Below we will
fix a positive integes. Let S(v) (resp. .S~ (v)) denote the firsk
vertices following (resp. preceding)along~. Let R(k) denote
the firstk terminals of X that arrived (in time) and3(k) denote
the remaining terminals. We pick uniformly at random among
S(v) N R(k).

Let A,(k + 1) be the indicator of the event thatarrives at
time k + 1. Since replays can only decrease the potential function,

we haveE[R'] = k/(1 + ¢/2), and by Markov's inequality, we
obtain the (crude but adequate) bound:

Pr{R <k} =1-Pr{R >k} >1—-1/(1+¢/2) > ¢/3.
Therefore we have:
Pr {Z<(1-¢€)(k/n)s}

U(k+1) < ®(k), and sob(k+1)— ®(k) < d(k-+1)— W(k+1); 3o
th((an ) (k), and sob( ) (k) ( ) ( ) < ;Pr{Z < (1-e(k/n)s}
Dk+1)—0(k) < 3 Aulk+ l)Lrenéx()i) d(v,u) < gPr{Z’ < (-1 + 5EZ}
’ c(e) < BemCl/ms/a2014e/2) @

—+ R S A—

>

u€R(k)NS(v)

5.2 Chernoff Bound
Each fixed vertex belongs t8(k) with probability k£ /n so the

1(v picksu) Y

e€P(u)

. (2) €
] where the last inequality is obtained by a standard Chernoff-type
bound.

Similarly, sinceZ is stochastically dominated b¥’ if R’ > k,

n(e) +1

>
expected size ak(k)NS(v) is sk/n and the expected size 8f(k) P {2 —/(1 +)(k/n)s} ,
is s(n — k)/n. For the analysis we will need to show that with < P{Z' > (1+¢€)(k/n)s|R" > k}
probability close to 1, for alb |R(k) N S(v)]| is not much smaller < Pr{Z' > (1+¢€)(k/n)s}/Pr{R > k}.



Assume now thak; satisfie$ E[X;] = (k/n)/(1—¢/2). Then
E[R'] = k/(1—¢/2), and (given that the maximum possible value
is n), by Markov’s inequality, the probability that’ is less thark
isatmostl — ek/(2(n — k)).

Therefore we have:

Pr {Z> (1+¢€)(k/n)s}
< Mm{z’ > (1+ €)(k/n)s}
< 2B pz s (14001 -2)EZ])

€
2(n = k) —e(k/m)s/(1201-/2))

7 ©)

where the last inequality is obtained by standard Chernoff bounds.

Summing the bounds in (2) and (3) and plugging in the value of
s =4Inn - 12n/(min(k,n — k)c?) proves the lemma.
5.3 Concluding the Analysis

We start from Equation (1). Writing = rvyivs . .
part averages to

E[D:] Z Pr{v; arrives atk + 1} > d(v;,v;11)

1<j<i+s

. Un, the first

< (1/n)s 20PT.

Rewrite the second part as

=2 X,

u€R(k) eEP(u)

4

>

veS™ (u)NB(k)

) + Ay (k+1)1(v picksu).

To bound the expectation @f, we condition on the everdt; (k)
from Lemma 8 withe = 1/(cIn(n)). We have:

E[Ds] .OPT

IN

E[D:|Ei (k)] + (1 = Pr{Ei(k)})

E[Ds|E1 (k)] + @ OPT.

IN

(®)

So now we need to bounB[D-|FE1 (k)]. The eventF, (k) de-
pends only on the history up to tinfe Fix a history up to time
k, such thatF; (k) holds, and take expectations ovetbeing care-
ful to do things in the correct order: the probability thepicksu
is 1/]S(v) N R(k)|, which can be bounded by the definition of the
eventE (k). E[A,|history] equalsE[A,|v € B(k)] = 1/(n—k).
The number of non-zero terms|iS™ (u) N B(k)| and can also be
bounded by the definition of eveith (k). Thus:

E  [Da]history]
( ) 1 n
< > ) D —_—
u€R(k),e€P(u) n(e) +1 ves—(mnBE © kE (1—e)ks
cle) (1+es(n—k) 1 n
<
uERUc)ZeeP(u) n(e) +1 n —k(1—e)ks
_ 1+e
(1-ek
Now, note that for any > 1, we have
if(i4+1) < (1/2)(1+1/241/3 4 +1/i),
and so
3" cle)n(e)/(nle) +1) < (1/2)W(k + 1).

e

LIf this quantity is greater than then the probability thaZ ex-
ceeds it i9.

Thus, we can substitute and average over histories suclif&)

holds:
(1 +36) CE[W(k + 1)| B (k)]

2k
< (135) pewin !

1+ 3¢
2k

since¥ (k 4+ 1) < ®(k) as replays can only decrease the potential

function. Continuing we have:

E[D;|E1 (k)]

IN

1+ 3e E[®(k)]
E[D:|Ei (k)] < ( 2%k ) Pr{E1(k)}
< (W).E[Q(k)], ()

where the last inequality uses the chosen valuearfd Lemma 8.
Therefore, combining (4), (5) and (6) we get:

E[®(k+1)—®(k)] = E[D:1+ D-]
< (% + 70(:1") JOPT
+ (RGN - Ere e
Rewriting this, we get that fok € [ko, n — kol:
0(1) In®*(n)
E@k+1)] < (b k) OPT

Moreover, the initial value of the recurrence is
D(ko) < koOPT.

Replacingko by its value, and doing repeated back substition from
n — ko down toko and using a coarse upper bound, yields

OPT”ﬁO ( L 1+0(1)/In(n)

E[®(n—ko)] < O(In*( 2k

E[®(n — ko)] < O(In*(n)) - OPT. (1 +OM/In(m)In(n)/2,

E[®(n — ko)] < OPT- O(In*(n))v/n.

Finally, ®(n) — ®(n — ko) < koOPT. Recall that the value of
the potential function is an upper bound on the cost of the solution.
This gives the claimed bound 6f(polylog(n)+/n - OPT).

6. DISCUSSION

The main problem that remains open is analyzing the model
where we are allowed to mix arrivals and replays. We made some
progress towards understanding this model in the special case of
random arrivals. We conjecture that the upper bound remains poly-
logarithmic even in the adversarial model, but leave it as a tantaliz-
ing (and difficult) open problem.

Another interesting direction is the multi-source case where each
request (player) is a pair of terminals that need to be connected. We
assume egalitarian cost sharing between the players. Unfortunately,
the following is an easy example that shows that in this case the
greedy algorithm (for phase 1) has competitive rét{@). Take the
complete graph in which all edge$ave distinct costs. which are
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