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ABSTRACT
We consider a multicast game played by a set of selfish noncoop-
erative players (i.e., nodes) on a rooted undirected graph. Players
arrive one by one and each connects to the root by greedily choos-
ing a path minimizing its cost; the cost of using an edge is split
equally among all users using the edge. How large can the sum of
the players’ costs be, compared to the cost of a “socially optimal”
solution, defined to be a minimum Steiner tree connecting the play-
ers to the root? We show that the ratio isO(log2 n) andΩ(log n),
when there aren players. One can view this multicast game as
a variant ofONLINE STEINER TREE with a different cost sharing
mechanism.

Furthermore, we consider what happens if the players, in a sec-
ond phase, are allowed to change their paths in order to decrease
their costs. Thus, in the second phase players play best response
dynamics until eventually a Nash equilibrium is reached. We show
that the price of anarchy isO(log3 n) andΩ(log n).

We also make progress towards understanding the challenging
case where arrivals and path changes by existing terminals are inter-
leaved. In particular, we analyze the interesting special case where
the terminals fire in random order and prove that the cost of the
solution produced (with arbitrary interleaving of actions) is at most
O(polylog(n)

√
n) times the optimum.
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1. INTRODUCTION
Given an undirected connected rooted graphG = (V, E) with

nonnegative edge costsc(e) for e ∈ E, consider a sequenceX =
t1, . . . , tn of players, or terminalvertices, who arrive in an online
fashion; each new terminal greedily chooses a path connecting it to
the rootr so as to minimize its payment, as determined by theegali-
tarian (or Shapley) model: the cost of an edge is split evenly among
the players currently using it in their paths to the root. Thus, ifk
players use edgee, then each player paysc(e)/k for usinge. Such
egalitarian cost-sharing was recently introduced in an algorithmic
game-theoretic context by Anshelevich et al. [2] and further stud-
ied by [3, 4, 5]. (It is also the outcome of the Shapley value; see
[14] for details.)

The offline structure minimizing the total cost to all the players
(the so-called “social optimum”) is the minimum Steiner tree on
X ∪ {r}. How much larger is the cost of the structure resulting
from a sequence of selfish choices of cost-minimizing paths? The
answer turns out to be polylogarithmic: here, we prove that its cost
is larger by a factor which is no larger thanO(log2 n) (Theorem 1),
and that there are instances for which it is larger by a factor of
Ω(log n). This dramatically improves upon the previously known
upper and lower bounds ofO(

√
n log n) andΩ(log n/ log log n)

[3].
Our upper bound is proven by a gap-revealing linear program,

an argument which we find appealingly simple. Our lower bound
is proven by relating the problem to theONLINE STEINER TREE

problem, whose competitive ratio [7] is known to beΘ(log n). (Re-
call that thecompetitive ratioof an online algorithmA is the worst
case, over all input sequencesX, of the value ofA for input X,
divided by the value of the optimal offline solution forX.)

Naturally, later arriving terminals may render certain paths more
attractive and produce some regret for terminals who have previ-
ously chosen paths which are no longer cheapest for them. In order



to deal with such regret, Chekuri et al. [3], following a first phase
in which the players arrive one by one, proposed adding a second
phase during which any existing player may change its path to a dif-
ferent, currently cheapest path (i.e., usebest response dynamics):
that is, once all players have arrived, players are allowed to “refire”
or “replay” an arbitrary number of times and in arbitrary order, un-
til a Nash equilibrium is reached, in the sense that no player has
any incentive to deviate unilaterally from its currently-chosen path.
This defines a two-phase multicast game. The inefficiency result-
ing from such a non-cooperative game is quantified by theprice
of anarchy[8], the worst-case ratio between the cost of a Nash
equilibrium and the cost of the optimum Steiner tree. Here, as a
corollary of Theorem 1, we prove that the ratio isO(log3 n) when
all initial firings precede the first refiring; and our lower bound ex-
tends to prove that the worst-case ratio is alsoΩ(log n). Again, this
dramatically improves upon the previous bounds ofO(

√
n log2 n)

andΩ(log n/ log log n) [3], also proven in the case in which all
initial firings precede the first refiring.

We emphasize that in our game all players must arrive before any
player refires. Thus, we do not talk about a Nash equilibrium until
all nodes have arrived, each firing once. Only then does the second
phase, of refirings, begin, and then we discuss a Nash equilibrium.
In the last section, we pose as an open problem the case in which
arbitrary intermingling of initial firings and refirings is allowed.

For the two-phase multicast game with egalitarian cost sharing,
we have thus proven that the Nash equilibria that arereachableby
our best response dynamics (all initial firings before any refirings)
have cost no more than a polylogarithmic factor times the optimum.
In contrast, for this game there do exist Nash equilibria of the tradi-
tional kind, without any issue of reachability, with cost larger than
the optimum by a factor ofn: consider an instance [2] with two
nodes,s andr, and two parallel edges betweens andr, one of cost
n, one of cost1 + ε. Now suppose thatn players use the heavy
edge, each shouldering onenth of the burden. This configuration
has costn, whereas the optimal cost is1 + ε. Yet, no player will
move to the light edge, and so this is a Nash equilibrium; hence
the price of anarchy is (at least)n. In a dynamic environment as
modeled by our game,this equilibrium simply cannot be reached,
since we start from an initial empty configuration.

The latter example motivated Anshelevich et al. to introduce the
notion of price of stability: the ratio of the cost of thecheapest
Nash equilibrium to the cost of the optimal solution. They showed
that this ratio isO(log n) for the multicast game on undirected
graphs, a bound slightly improved by Agarwal and Charikar [1]
to O(log n/ log log n), and by Fiat et al. [5] toO(log log n) in the
special case in which every node in the graph is a terminal. How-
ever, the proof of the logarithmic upper bound on the price of sta-
bility of [2] heavily relies on the assumption that the starting point
is an optimal (or near optimal) Steiner tree on the terminals.

In light of this prior work, one can view our result either as a
result aboutONLINE STEINER TREE with egalitarian cost sharing
(Phase 1 alone), or as a result about the modest price of anarchy
in a multicast game in which price of anarchy is defined only over
configurations which are reachable from the initial empty configu-
ration, albeit in a specific way (all initial firings preceding all refir-
ings).

Extending our analysis to the more general case in which termi-
nals may refire before all terminals have arrived, seems to be sur-
prisingly challenging. In this case, the online sequence is an arbi-
trary sequence of ”firings” of the terminals, with repetitions, where
the first firing corresponds to the arrival of the terminal. We make
some progress towards understanding this case by studying the ver-
sion where the firing sequence is random. For this version we prove

that the cost of the solution produced (with arbitrary interleaving of
actions) is at mostO(polylog(n)

√
n) times the optimum.

2. ONLINE MULTICAST WITH EGALITAR-
IAN COST SHARING: UPPER BOUND

Theorem 1 The greedy algorithm for online multicast with egali-
tarian cost sharing has competitive ratioO(log2 n).

Let H(n) = 1 + 1/2 + 1/3 + · · · + 1/n, be thenth harmonic
number. Assume the terminals are labeled so that their arrival order
is < t1, t2, ..., tn >. Denote byd(·, ·) the distance function on the
graphG as defined by the edge costc(·).

Lemma 1 The total cost of all edges used by the terminals’ paths is
bounded above by the optimal value of the following “gap-revealing”
linear program with variabless(1), ..., s(n), b(1), ..., b(n):

max

n∑
i=1

b(i) s.t.

s(j)− s(i) + b(i)/2 ≤ d(i, j) ∀ 1 ≤ i < j ≤ n∑
i

s(i)−
∑

i

b(i)H(n) ≤ 0

s(0) = b(0) = 0 (for the root)

s(i), b(i) ≥ 0 ∀ 1 ≤ i ≤ n

PROOF. It suffices to construct a feasible solution to the above
LP whose objective function value equals the total cost of the edges
used by the terminals. For1 ≤ i ≤ n, let Pi denote the path
selected by terminalti. Lets(i) be the cost share ofPi upon arrival
of ti, specifically,

s(i) =
∑
e∈Pi

c(e)/|{j : (e ∈ Pj) ∧ (1 ≤ j ≤ i)}|

and letb(i) to be the sum ofc(e) over thosee that were used for
the first time byPi.

We claim that this choice ofs(i), b(i) is feasible for the LP. The
first set of constraints is equivalent to an observation of Chekuri et
al. [3]: For any two terminalsi andj, 1 ≤ i < j ≤ n,

s(j) ≤ d(i, j) + s(i)− b(i)/2.

To see this, note that when terminalj selects his path, one option
is to select the shortest path toi (costingd(i, j)), and then follow
the same path selected byi, which costs at mosts(i)−b(i)/2 since
the cost share toj of using edges that were first used byi is at most
b(i)/2.

For the second set of constraints, observe that the total of all cost
shares for the selected path by each terminali upon arrival is at
most:

Φ =
∑

i

(b(i) + s(i)) ≤
∑

e∈∪iPi

c(e)H(n) =
∑

i

b(i)H(n).

Finally, the total cost of the selected tree is given by
∑

i b(i),
which is the value of the objective function.

To get an upper bound on the optimal value of this LP, we con-
sider a relaxation of this LP, and construct a solution to the dual of
the relaxation.

In what follows, we view the rootr as a terminalt0 that ar-
rived before any other terminal and defineW = X ∪ {t0} =



{t0, . . . , tn}. Let T be a tree on vertex setW rooted att0 (not
necessarily a subgraph of the network) such that for eachj ∈ X,
its parentp(j) in T arrived beforej. For a nodej, let C(j) de-
note the set of children inT . Consider the relaxation of the LP in
Lemma 1, denotedLPT , where for the first set of constraints we
only keep those in whichi = p(j). The dual of this linear program,
DLPT , has dual variables{zj : j ∈ X} ∪ {y} and has the form:

min
∑
j∈X

d(p(j), j)zj s.t.

−H(n)y +
∑

j∈C(i)

zj/2 ≥ 1 ∀i ∈ W

y + zi −
∑

j∈C(i)

zj ≥ 0 ∀i ∈ W

zi ≥ 0 ∀i ∈ W

y ≥ 0

For any choice ofT and any feasible solution toDLPT we get
an upper bound on the optimal value of the LP in Lemma 1 and
therefore an upper bound on the cost of tree produced by the algo-
rithm.

The next lemma constructs a specific rooted treeT ′ with some
nice properties. We then show how to construct a low cost feasible
solution toDLPT ′ that yields the upper bound of Theorem 1.

When we writed(i, j), we mean the distance in the underlying
network (not in the treeT ′ being constructed). Thelevelof a node
is one more than its distance from the root in the treeT ′ (so the
root is at level 1). Forj ∈ X we writep(j) for the parent ofj in ′.

Lemma 2 Letτ be a positive integer. There exists a rooted treeT ′

(not necessarily a subgraph of the input graph) on the setW =
{t0, . . . , tn} with root t0 such that:

1. For every terminalt 6= t0, the parent oft arrived earlier
thant.

2. Every node has at most two children.

3. Every nodeu with two children is at level divisible byτ .

4.
∑

j∈X d(j, p(j)) ≤ 2(τ + 1)dlog ne ·OPT.

PROOF. Select a minimum Steiner treeR on the network. Let
π = (π(0), π(1), . . . , π(n)) be the ordering ofW that lists the
terminals in order of first appearance along an Eulerian tour ofR
that starts fromt0. We haveπ(0) = t0 and

∑
i d(π(i), π(i+1)) ≤

2 ·OPT.
The construction ofT ′ is recursive. LetS be the set ofτ ter-

minals,t0, . . . , tτ−1 with earliest arrival time (listed in increasing
order of arrival time). Letπ′ be the sequence obtained fromπ by
deletingS. Split π′ into two sequencesπ1, π2 of nearly equal size,
so that|π1| ≤ |π2| ≤ |π1|+1. Fori ∈ {1, 2}, letri be the terminal
in πi that arrived first. Recursively build treesT1 for π1 with root
r1 andT2 for π2 with root r2. The output treeT ′ consists of the
union of the patht0, . . . , tτ−1, the edges(tτ−1, r1) and(tτ−1, r2)
and the treesT1, T2.

By construction,T ′ satisfies the first three properties. Further-
more, a simple induction onn shows that the number of levels of
T ′ is at mostτdlog ne.

For the final property claimed in the lemma we want to prove
an upper bound on

∑
j∈X d(j, p(j)). For each terminalj 6= π(n)

let f(j) be the terminal that immediately follows it inπ order and

let D(j) be the set of terminals that appear betweenj andp(j) in
π order together with the member of{j, p(j)} that appears first in
π order. By repeated use of the triangle inequalityd(j, p(j)) ≤∑

i∈D(j) d(i, f(i)) and therefore
∑
j∈X

d(j, p(j)) ≤
∑
i∈X

d(i, f(i))|{j : i ∈ D(j)}|.

Claim 3 For any two terminalsj, j′, if D(j) ∩ D(j′) 6= ∅ then
p(j) is an ancestor ofp(j′) or p(j′) is an ancestor ofp(j).

To prove the claim, suppose, for contradiction that the least com-
mon ancestork of p(j) andp(j′) is distinct from both, and without
loss of generalityp(j) is in the left subtree ofk andp(j′) is in the
right subtree. Thenj andp(j) both precedej′ andp(j′) in π or-
der and soD(j) ∩D(j′) is empty, a contradiction that proves the
claim.

From the claim it follows that for any terminali, there is a single
root to leaf path that contains the parents of all terminalsj such
thati ∈ D(j). Such a path contains at mostτdlog ne terminals, of
which at mostdlog ne have two children, so|{j : i ∈ D(j)‖ ≤
(τ + 1)dlog ne. We conclude that

∑
j∈X

d(j, p(j)) ≤ (τ + 1)dlog ne
∑
i∈X

d(i, f(i))

≤ 2(τ + 1)dlog neOPT,

as required to complete the proof of the lemma.

Note that in the previous lemma,τ is a free parameter. We now
complete the proof of Theorem 1 by fixingτ and defining a specific
feasible solution toDLPT ′ , for the treeT ′ defined in Lemma 2.
The value of that solution will be the required upper bound.

For the moment we leaveτ unspecified and also introduce an-
other positive parametera that will be fixed shortly. Lety =

a
2(τ−1)

. For each integerq satisfying1 ≤ q ≤ τ , for every termi-
nal j whose level is congruent toq mod τ setzj = a

2
+ (q − 1)y.

Observe that for everyj, zj ∈ [a/2, a].
For any choice ofa andτ , the second set of dual constraints is

satisfied. To see this, note that if the level ofj is not a multiple of
τ thenj has one child, soy + zi −

∑
j∈C(i) zj = 0. If j is at level

a multiple ofτ thenzj = a andj has two children each havingz
valuea/2, soy + zj −

∑
i∈C(j) zi = y ≥ 0.

For the first set of constraints, it is enough thatyH(n) ≤ a/4−1
and this is true if we takeτ = d4H(n)e+ 1 anda = 8.

By the third property of Lemma 2, the value of the solution is
∑

j

d(p(j), j)zp(j),j ≤
∑

j

d(p(j), j)a

≤ 16dlog ne(d4H(n)e+ 1) ·OPT,

completing the proof of Theorem 1.

3. TWO-PHASE MULTICAST GAME: PRICE
OF ANARCHY

Recall that we consider atwo-phase gamefor connecting the
terminals to the root. In Phase 1 the players play in the order
t1, . . . , tn, and each selects a greedy (best response) path relative
to the selection of paths by the previous players. In Phase 2, the fol-
lowing step is repeated: take an arbitrary player amongt1, . . . , tn,
whose current path is not a greedy path relative to the other paths,
and replace its current path by a greedy path. When each player’s
path is the greedy path relative to the other paths, we have reached



a Nash equilibrium and the game ends. Our goal is to analyze the
cost of the resulting solution. (As the game proceeds, the union of
the paths chosen by the players need not be a tree, but it can be
shown [3] that any Nash equilibrium induces a tree.)

The multicast game belongs to the class, first defined by Rosen-
thal [12] and widely investigated [6, 9, 11, 14, 15], ofcongestion
games. Rosenthal [12] showed that a potential function can be de-
fined for each congestion game such that the potential decreases
if a player makes a move that improves its selfish cost. It follows
that every congestion game has a pure Nash equilibrium. More-
over, there is a one-to-one correspondence between Nash equilibria
and the solutions defining a local minimum of Rosenthal’s potential
function. For the multicast game, Rosenthal’s potential functionΦ
reduces to the following:

Φ =
∑
e∈E


c(e) ·

n(e)∑
i=1

1

i


 ,

wheren(e), the usage ofe, denotes the number of players using
edgee at the specified time. If a player has previously fired and
changes its connection to the root from pathP to pathQ, then
the potential function precisely captures the change in cost (to the
player) fromP to Q. Since best response dynamics can only de-
crease Rosenthal’s potential function, it follows that this process
must terminate in a Nash equilibrium. From Theorem 1, it is easy
to deduce a bound on the price of anarchy of reachable Nash equi-
libria. (Chekuri et al. [3] used the same technique.)

Corollary 4 The Nash equilibrium reached by the two-phase Mul-
ticast Cost Sharing game with best response dynamics has cost
O(log3 n)OPT.

PROOF. Consider Rosenthal’s potential functionΦ defined above.
Let Φ1 andΦ2 be its values at the end of Phases 1 and 2, respec-
tively. SinceΦ cannot increase in Phase 2,Φ2 ≤ Φ1. Now the cost
at the end of Phase 1 is at mostO(log2 n) · OPT by Theorem 1.
Hence,Φ1 is at mostH(n) times this value, i.e.,O(log3 n) ·OPT .
But the cost of the graph at the end of Phase 2 is at mostΦ2 ≤ Φ1.

4. LOWER BOUNDS
Using the lower bound for theONLINE STEINER TREE greedy

algorithm, we prove a lower bound ofΩ(log n) for the greedy on-
line Steiner problem with egalitarian cost sharing (i.e., Phase 1
alone), and for the two-phase multicast cost sharing game, improv-
ing upon the previous lower bound proof ofΩ(log n/ log log n) by
[3]. We note that our proof is simpler compared to the proof of [3].

In theONLINE STEINER TREE problem, given are a graphG =
(V, E) and a rootr ∈ V . The algorithm will maintain a connected
subgraphT of G; initially T = {r}. In each step, given a new
terminalt of V , the greedy algorithm selects a cheapest path from
t to r and adds it toT . Its competitive ratiois the worst-case ratio
between the cost of the tree it constructs and that of the cheapest
Steiner tree on the union of{r} and the set of the given terminals.

Theorem 5 [7] The competitive ratio of the greedy algorithm for
ONLINE STEINER TREEonn-vertex unweighted graphs isΩ(log n).

The proof of Theorem 5 given by Imase and Waxman uses the`-
level diamond graphwith 4` edges. However, we will use the lower
bound as a black box.

Theorem 6 The competitive ratio of the greedy algorithm for on-
line multicast with cost sharing and the price of anarchy of the two-
phase multicast cost sharing game onn(n + 1)-vertex graphs are
both at least half of the competitive ratio of the greedy algorithm
for ONLINE STEINER TREE onn-vertex unweighted graphs.

PROOF. Consider an instance forONLINE STEINER TREE on a
graphG = (V, E) with n vertices. We define an instance of the
multicast game as follows. LetN = n + 1 andε = 1/n2. Replace
each vertexv ∈ V by a starSv of N vertices by addingN −1 new
verticesv1, v2, ..., vN−1 each at distanceε from v. This defines a
new graphH. Replace each request to a vertexv ∈ V (G) by a
“v-batch,” i.e., a request tov0 = v of H followed by a sequence of
requests to all the leavesv1, ..., vN−1 in V (H) in the starSv of H.
This defines an instance of the multicast game.

An edge of lengthε will be called ashortedge; others (of length
1) will be called long edges. We will prove that during Phase 1
of the multicast cost sharing algorithm, the following invariant is
maintained:At any time, the union of the request paths forms a tree
T rooted atr. The invariant implies that at the beginning of every
batch of requests, for every long edgee, the number of requests
which usee is an integer multiple ofN . It also implies that for
every vertexvi ∈ Sv, if v is in T then the path fromvi to r is
the concatenation of the short edge fromvi to v and thesamepath
from v to r. The invariant is valid initially. Assume that it is true
so far, and consider a request to some vertexvi ∈ Sv.

If this is the beginning of a new batch (i = 0), the path serving
v traverses some number`, ` ≥ 1, of long edges to first reach a
vertex which is already inT . From that point onward, following
the edges ofT , each of which is used at leastN times, costs at
mostn/N in total. Following unnecessarily even one long edge
not in T would cost1 > n/N . It follows that the algorithm will
simply minimize the number̀of non-T edges it needs to first hitT
(just as the greedyONLINE STEINER TREE algorithm does); from
that point on, it will lazily followT to r.

Now suppose1 ≤ i ≤ N − 1. Whenvi is requested, it must
take the short edge tov followed by some path fromv to r. The
main observation is that whatever pathP that vi−1 chose to take
to go fromv to r is still the best path forvi. (CompareP to some
other pathP ′. Edges in the intersectionI of P andP ′ contribute
the same cost toP andP ′. After vi−1 has chosen pathP , edges in
P \ P ′ are cheaper than before, and edges inP ′ \ P are the same
price as before. SinceP was of no greater cost thanP ′ before path
P was added to the collection, it is certainly still of no greater cost
thanP ′ afterward.)

Thus the invariant is maintained. The structure at the end of
Phase 1 in the two-phase multicast cost sharing game is thus a tree
corresponding to the tree produced by theONLINE STEINER TREE

algorithm onG. Moreover, this tree is a Nash equilibrium since no
vertex can wish for a different path (even using one long edge not
in T is a disaster), so Phase 2 is empty of events.

The output tree has total length exactly equal ton(N − 1)ε +
`(T ), `(T ) denoting the number of long edges inT . The optimal
multicast structure onH must be a tree, which has lengthn(N −
1)ε + `(T ∗), whereT ∗ is the corresponding tree inG and`(T ∗)
is the number of its long edges (all of them). By optimality,T ∗

is the optimal Steiner tree onG. Thus the competitive ratio of the
optimal Steiner tree problem (on this instance) is`(T )/`(T ∗) and
the price of anarchy of the multicast game (on this instance) is

n(N − 1)ε + `(T )

n(N − 1)ε + `(T ∗)
≥ `(T )

n(N − 1)ε + `(T ∗)
≥ (1/2)

`(T )

`(T ∗)
,

since`(T ∗) ≥ 1 ≥ n(N − 1)ε by the definition ofε. Finally, the
competitive ratio of the optimal Steiner tree problem is simply the



worst-case value of̀(T )/`(T ∗).

Corollary 7 The price of anarchy of the two-phase Multicast Cost
Sharing game isΩ(log n).

5. MULTICAST WITH RANDOM ARRIVALS
In this section, we consider the setting in which arrivals and re-

plays can be mixed in arbitrary order. The general setting seems
quite challenging to analyze and giving a guarantee in this case is
an open problem. We make some progress towards understand-
ing this problem in the interesting special case ofrandom arrivals.
Here, the order of arrivals is a random permutation of the termi-
nals, refirings are (adversarially) intermingled with arrivals. In this
case, we show that the expected cost of the solution produced is
O(polylog(n)

√
n)· OPT.

More precisely, the model we consider can be described as a
semi-random adversary model as follows. At each time step, an
adversary decides either to refire a specific terminal that has previ-
ously joined, or decides that a new terminal should arrive. In the
latter case, the new terminal is selected uniformly at random from
among the terminals that have not yet arrived.

To analyze the cost of the solution produced, we analyze the evo-
lution of the potential function.

5.1 Bounding the potential change
Let Ψ(k) denote the value of the potential function immediately

prior to thekth arrival and letΦ(k) denote the value of the potential
function immediately following thekth arrival. Upon arrival of the
(k+1)th new terminalv, the potential change isΦ(k+1)−Ψ(k+
1), which is at most

min{d(v, u) +
∑

e∈P (u)

c(e)/(n(e) + 1) : u arrived beforev },

wheren(e) is the number of paths using edgee immediately prior
to the arrival ofv andP (u) is the path currently used by vertexu
whenv arrives.

We can bound this minimum from above by considering an av-
erage overu selected according to some distribution. We now de-
scribe the distribution we will use. As in the previous section, let
π be the permutation of the terminals giving their order of first ap-
pearance along an Eulerian tour of the minimum Steiner tree on
X ∪ {r}. Here we viewπ as a cyclic permutation. Below we will
fix a positive integers. Let S(v) (resp. S−(v)) denote the firsts
vertices following (resp. preceding)v alongπ. Let R(k) denote
the firstk terminals ofX that arrived (in time) andB(k) denote
the remaining terminals. We picku uniformly at random among
S(v) ∩R(k).

Let Av(k + 1) be the indicator of the event thatv arrives at
timek + 1. Since replays can only decrease the potential function,
Ψ(k+1) ≤ Φ(k), and soΦ(k+1)−Φ(k) ≤ Φ(k+1)−Ψ(k+1);
then

Φ(k + 1)− Φ(k) ≤
∑

v

Av(k + 1)
[

max
u∈S(v)

d(v, u)

+
∑

u∈R(k)∩S(v)

1(v picksu)
∑

e∈P (u)

c(e)

n(e) + 1

]
. (1)

5.2 Chernoff Bound
Each fixed vertex belongs toR(k) with probability k/n so the

expected size ofR(k)∩S(v) is sk/n and the expected size ofB(k)
is s(n − k)/n. For the analysis we will need to show that with
probability close to 1, for allv |R(k) ∩ S(v)| is not much smaller

than its expectation (and|B(k) ∩ S(v)| is not much bigger than
its expectation.) For fixedv, R(k) ∩ S(v) is a sum ofs indicator
random variables each corresponding to a vertexw ∈ S(v) and
indicating whetherw ∈ R(k). If these were independent we could
use standard tail bounds for sums of independent random variables,
but they are not independent. The problem of deriving tail bounds
in similar cases has been considered extensively, but we don’t know
a result that it is in a form that is convenient for our purposes, so
we prove it here.

Lemma 8 Letε ∈ (0, 1/2). Letk0 = 48 ln n/ε2. Letk ∈ [k0, n−
k0] ands = k0n/ min(k, n− k). Define the eventE1(k):

for everyv,

|S(v) ∩R(k)| ≥ ks

n
(1− ε)

and

|S(v) ∩B(k)| ≥ (n− k)s

n
(1 + ε).

Then, eventE1(k) has probability at least1−O(1/εn2).

First observe that the definition ofk0 ensures thats < n. We
will bound the two cardinalities separately and use the union bound
for 1 − Pr{E1(k)}. By symmetry,|S(v) ∩ B(k)| has the same
distribution as|S(v) ∩R(n− k)|, so we will just analyze|S(v) ∩
R(k)| and bound its tail distribution on both sides of the mean.

To prove the lemma, fixk, fix v, and letZ = |S(v) ∩ R(k)|.
As noted above,Z has expectation(k/n)s. Using a standard tech-
nique, we will obtain an upper bound on the probability thatZ <
(1−ε)E[Z], by approximatingZ by a sum of independent random
variables. LetR′ = X1 + . . . + Xn andZ′ = X1 + · · · + Xs,
where theXi’s are i.i.d. indicator random variables each having
the same (as yet unspecified) expectation. Observe that whenZ′

is conditioned on the eventR′ = k, has the same as the distribu-
tion of Z, and whenZ′ is conditioned on the eventR′ < k, it is
stochastically dominated byZ. Thus:

Pr{Z ≤ (1− ε)(k/n)s} ≤ Pr{Z′ ≤ (1− ε)(k/n)s|R′ ≤ k}

≤ Pr{Z′ ≤ (1− ε)(k/n)s}
Pr{R′ ≤ k} .

Fixing the common expectations of theXi to be(k/n)/(1+ε/2)
we haveE[R′] = k/(1 + ε/2), and by Markov’s inequality, we
obtain the (crude but adequate) bound:

Pr{R′ ≤ k} = 1− Pr{R′ > k} > 1− 1/(1 + ε/2) > ε/3.

Therefore we have:

Pr {Z ≤ (1− ε)(k/n)s}
≤ 3

ε
Pr{Z′ ≤ (1− ε)(k/n)s}

≤ 3

ε
Pr{Z′ ≤ (1− ε)(1 +

ε

2
)E[Z′]}

≤ 3

ε
e−ε2(k/n)s/(12(1+ε/2)), (2)

where the last inequality is obtained by a standard Chernoff-type
bound.

Similarly, sinceZ is stochastically dominated byZ′ if R′ ≥ k,

Pr {Z ≥ (1 + ε)(k/n)s}
≤ Pr{Z′ ≥ (1 + ε)(k/n)s|R′ ≥ k}
≤ Pr{Z′ ≥ (1 + ε)(k/n)s}/ Pr{R′ ≥ k}.



Assume now thatXi satisfies1 E[Xi] = (k/n)/(1−ε/2). Then
E[R′] = k/(1−ε/2), and (given that the maximum possible value
is n), by Markov’s inequality, the probability thatR′ is less thank
is at most1− εk/(2(n− k)).

Therefore we have:

Pr {Z ≥ (1 + ε)(k/n)s}
≤ 2(n− k)

εk
Pr{Z′ ≥ (1 + ε)(k/n)s}

≤ 2(n− k)

εk
Pr{Z′ ≥ (1 + ε)(1− ε/2)E[Z′]}

≤ 2(n− k)

εk
e−ε2(k/n)s/(12(1−ε/2)), (3)

where the last inequality is obtained by standard Chernoff bounds.
Summing the bounds in (2) and (3) and plugging in the value of
s = 4 ln n · 12n/(min(k, n− k)ε2) proves the lemma.

5.3 Concluding the Analysis
We start from Equation (1). Writingσ = rv1v2 . . . vn, the first

part averages to

E[D1] =
∑

i

Pr{vi arrives atk + 1}
∑

i≤j<i+s

d(vj , vj+1)

≤ (1/n)s 2OPT. (4)

Rewrite the second part as

D2 =
∑

u∈R(k)

∑

e∈P (u)

c(e)

n(e) + 1

∑

v∈S−(u)∩B(k)

Av(k+1)1(v picksu).

To bound the expectation ofD2, we condition on the eventE1(k)
from Lemma 8 withε = 1/(c ln(n)). We have:

E[D2] ≤ E[D2|E1(k)] + (1− Pr{E1(k)}) ·OPT

≤ E[D2|E1(k)] +
O(ln n)

n2
·OPT. (5)

So now we need to boundE[D2|E1(k)]. The eventE1(k) de-
pends only on the history up to timek. Fix a history up to time
k, such thatE1(k) holds, and take expectations overv, being care-
ful to do things in the correct order: the probability thatv picksu
is 1/|S(v) ∩R(k)|, which can be bounded by the definition of the
eventE1(k). E[Av|history] equalsE[Av|v ∈ B(k)] = 1/(n−k).
The number of non-zero terms is|S−(u) ∩ B(k)| and can also be
bounded by the definition of eventE1(k). Thus:

E [D2|history]

≤
∑

u∈R(k),e∈P (u)

c(e)

n(e) + 1

∑

v∈S−(u)∩B(k)

1

n− k

n

(1− ε)ks

≤
∑

u∈R(k),e∈P (u)

c(e)

n(e) + 1

(1 + ε)s(n− k)

n

1

n− k

n

(1− ε)ks

=
1 + ε

(1− ε)k

∑
e

c(e)
n(e)

n(e) + 1
.

Now, note that for anyi ≥ 1, we have

i/(i + 1) ≤ (1/2)(1 + 1/2 + 1/3 + · · ·+ 1/i),

and so ∑
e

c(e)n(e)/(n(e) + 1) ≤ (1/2)Ψ(k + 1).

1If this quantity is greater thann then the probability thatZ ex-
ceeds it is0.

Thus, we can substitute and average over histories such thatE1(k)
holds:

E[D2|E1(k)] ≤
(

1 + 3ε

2k

)
· E[Ψ(k + 1)|E1(k)]

≤
(

1 + 3ε

2k

)
· E[Φ(k)|E1(k)],

sinceΨ(k + 1) ≤ Φ(k) as replays can only decrease the potential
function. Continuing we have:

E[D2|E1(k)] ≤
(

1 + 3ε

2k

)
· E[Φ(k)]

Pr{E1(k)}

≤
(

1 + O(1/ ln n)

2k

)
· E[Φ(k)], (6)

where the last inequality uses the chosen value ofε and Lemma 8.
Therefore, combining (4), (5) and (6) we get:

E[Φ(k + 1)− Φ(k)] = E[D1 + D2]

≤ (
s

n
+

O(ln n)

n2
)OPT

+

(
1 + O(1/ ln n)

2k

)
· E[Φ(k)].

Rewriting this, we get that fork ∈ [k0, n− k0]:

E[Φ(k + 1)] ≤ O(1) ln3(n)

min(k, n− k)
·OPT

+

(
1 +

1 + O(1)/ ln(n))

2k

)
· E[Φ(k)].

Moreover, the initial value of the recurrence is

Φ(k0) ≤ k0OPT.

Replacingk0 by its value, and doing repeated back substition from
n− k0 down tok0 and using a coarse upper bound, yields

E[Φ(n−k0)] ≤ O(ln4(n))·OPT·
n−k0∏

k0

(
1 +

1 + O(1)/ ln(n))

2k

)
.

E[Φ(n− k0)] ≤ O(ln4(n)) ·OPT· e(1+O(1)/ ln(n)) ln(n)/2.

E[Φ(n− k0)] ≤ OPT· O(ln4(n))
√

n.

Finally, Φ(n) − Φ(n − k0) ≤ k0OPT. Recall that the value of
the potential function is an upper bound on the cost of the solution.
This gives the claimed bound ofO(polylog(n)

√
n ·OPT).

6. DISCUSSION
The main problem that remains open is analyzing the model

where we are allowed to mix arrivals and replays. We made some
progress towards understanding this model in the special case of
random arrivals. We conjecture that the upper bound remains poly-
logarithmic even in the adversarial model, but leave it as a tantaliz-
ing (and difficult) open problem.

Another interesting direction is the multi-source case where each
request (player) is a pair of terminals that need to be connected. We
assume egalitarian cost sharing between the players. Unfortunately,
the following is an easy example that shows that in this case the
greedy algorithm (for phase 1) has competitive ratioΩ(n). Take the
complete graph in which all edgese have distinct costsce which are



approximately 1. The terminals pairs consist of all possible pairs
of vertices, and the requests{i, j} appear in order of decreasing
cost ofc{i,j}. Then, upon arrival of request{i, j}, even if all other
more expensive edges already have a user, buying edge{i, j} to
serve the request is cheaper than using a path{i, k}, {k, j}. Thus,
every request will be served by a new edge and the total cost of the
solution is approximatelyn(n−1)/2, whereas the optimal solution
has cost aboutn− 1, giving a competitive ratio of at leastn/2.
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