Construction of $(1 + \epsilon, \beta)$ -spanners in general graphs Michael Elkin, Weizmann Institute, Rehovot, Israel Tuesday, Sept. 13, 2001, 4:30 PM in CORE 430

Abstract:

An (α, β) -spanner of a graph G is a subgraph H such that $d_H(u, w) \leq$ $\alpha \cdot d_G(u, w) + \beta$ for every pair of vertices u, w, where $d_{G'}(u, w)$ denotes the distance between two vertices u and v in G'. It is known that every graph G has a polynomially constructible $(2\kappa - 1, 0)$ -spanner (a.k.a. multiplicative $(2\kappa - 1)$ -spanner) of size $O(n^{1+1/\kappa})$ for every integer $\kappa \ge 1$, and a polynomially constructible (1,2)-spanner (a.k.a. additive 2-spanner) of size $O(n^{3/2})$. This paper explores hybrid spanner constructions (involving both multiplicative and additive factors) for general graphs and shows that the multiplicative factor can be made *arbitrarily close to 1* while keeping the spanner size arbitrarily close to O(n), at the cost of allowing the additive term to be a sufficiently large constant. More formally, we show that for any constant $\epsilon, \delta > 0$ there exists a constant $\beta = \beta(\epsilon, \delta)$ such that for every *n*-vertex graph G there is an efficiently constructible $(1 + \epsilon, \beta)$ -spanner of size $O(n^{1+\delta})$. It follows that for any constant $\epsilon, \delta > 0$ there exists a constant $\beta(\epsilon, \delta)$ such that for any *n*-vertex graph G = (V, E) there exists an efficiently constructible subgraph (V, H) with $O(n^{1+\delta})$ edges such that $d_H(u, w) \leq (1+\epsilon)d_G(u, w)$ for every pair of vertices $u, w \in V$ such that $d_G(u, w) \geq \beta(\epsilon, \delta)$. The talk is based on a joint paper with David Peleg, that appeared at STOC 2001.