
MATH 642:582–Fall, 2008
Assignment 5–Due Wednesday December 17 noon (Version: December 15)

A few preliminary remarks.

1. Follow the general instructions for homework given in:

http://www.math.rutgers.edu/ saks/homework.html

2. Please be on the look out for errors. If something seems not to make sense, check with
me before investing a lot of time on the problem.

Problems to be handed in.

1. Fix a positive integer p. Find an exact expression for the number of permutations of
[n] that have no cycle of length exactly p. (Your expression will be a sum, but it should
be as simple as possible). Determine the asymptotics of your expression as n tends to
∞.

2. Let A1, . . . , An be events in a probability space and for J ⊆ [n], let AJ = ∩j∈JAj . Let
pJ = Prob[AJ ].

(a) Determine (with proof) a function c(n, t, j) (in as simple form as possible) so that
the probability that exactly t events occur is equal to

∑
J⊆[n] c(n, t, |J |)pJ .

(b) Let T denote the random variable which is the number of Aj that occur. Prove
that for any real number α, E[αT ] =

∑
J⊆[n] pJ(α− 1)|J |.

(c) Give a formula for the number of permutations of [n] with exactly t fixed points,
and determine the asymptotics (for fixed t) as n tends to ∞. (This uses part (a)
but not (b)).

3. In class it was shown that the edge-reconstruction conjecture for graphs is true for all
graphs G with |E(G)| > 1

2

(|V (G)|
2

)
. In this problem, this result will be extended to

graphs for which |E(G)| > 1 + log2(|V (G)|!).
More precisely, let n,m be fixed and consider graphs on vertex set V = [n] having m
edges. Let G1, G2 be two graphs having m edges and let E(G1) = {e1, . . . , em} and
E(G2) = {f1, . . . , fm}. For i ∈ {1, 2} and j ∈ [m], let Gji = Gi − {ej}. Assume that
for all j ∈ [m], Gj1 is isomorphic to Gj2. The goal is to prove: if 2m−1 > n! then G1 is
isomorpnic to G2.

Suppose σ is chosen uniformly at random from the permutations of [n]. Let Ai (resp.
Bi) be the event that σ maps the endpoints of edge ei (resp. fi) to vertices that are
not adjacent in G1. (Note: the lack of symmetry in these definitions with respect to
G1 and G2 is intentional.)

For J ⊆ [m], let AJ = ∩i∈JAi and BJ = ∩i∈JBi. For 0 ≤ j ≤ m, let aj =∑
|J |=j Prob[AJ ] and let bj =

∑
|J |=j Prob[BJ ]

Let Y denote the random variable that counts the number of i ∈ [m] such that Ai
occurs and Z denote the number of i ∈ [m] such that Bi occurs.
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(a) Show that if aj = bj for all j ∈ {0, 1, . . . ,m} then G1 is isomorphic to G2.

(b) Prove that if Gk1 is isomorphic to Gk2 for all k ∈ [m] then for all j ≤ m−1, aj = bj .

(c) Prove that (bm − am) = (−1/2)mE[(−1)Y − (−1)Z ].

(d) Prove that if 2m−1 ≥ n! then bm = am.

(e) Put the parts together to prove the theorem.

Hints are given below.

4. (a) Consider a probability space Ω, and subsets (events) A1, A2, . . . , An. As usual,
for I ⊆ [n], define AI = ∩i∈IAi and let pI = Prob[AI ]. Let qI = Prob[AI −⋃
i∈[n]−[I]Ai]. For each I, express qI in terms of {pJ : J ⊆ [n]}.

(b) Consider a finite probability space Ω, and subsets (events) A1, A2, . . . , An. As
usual, for I ⊆ [n], define AI = ∩i∈IAi and let pI = Prob[AI ]. Let B1, B2, . . . , Bn
be another set of events and define qI = Prob[BI ]. Suppose that pI = qI for all
I 6= [n] but p[n] 6= q[n]. Prove that Ω must have at least 2n−1 elements. (Hint:
Part (a) may be helpful.)

(c) Give an example to show that the bound in the first part is best possible.

5. A Hamiltonian path in a graph G = (V,E) is a permutation of the vertices v1, . . . , vn
such that each pair vi, vi+1 is adjacent in G for 1 ≤ i < n. A naive algorithm for
testing whether a graph has a Hamiltonian path requires checking all possible permu-
tations of the vertex set, and thus requires n!poly(n) number of steps, where poly(n)
denotes an unspecified polynomial function of n. The purpose of this problem is to
derive an algorithm that runs in 2npoly(n) steps (and also requires memory size only
poly(n)). (Without being too precise here about what a “computation step” is, we as-
sume that adding, subtracting or multiplying two k bit numbers can be done in poly(k)
computation steps.)

(a) A walk in a graph is a sequence v1, . . . , vk of vertices, possibly with repetition such
that each pair vi, vi+1 is adjacent in the graph. For vertices x, y and integer k let
WG(x, y, k) denote the number of k step walks from x to y. Give a method for
computing WG(x, y, k) that uses at most poly(n, k) steps.

(b) Let HG(x, y) denote the number of Hamiltonian paths in G. Use the answer to
the previous problem and inclusion-exclusion to derive a formula for computing
HG(x, y) that uses at most 2npoly(n) computation steps.

6. In this problem, we’ll show that the chromatic number of an n-vertex graph can be
computed in time 2npoly(n).

Let G be a given graph on vertex set V , with |V | = n.

(a) Let f : 2V −→ {0, 1} be the function with f(W ) = 1 if and only if W is indepen-
dent. Describe how to construct a function table for f in time poly(n)2n.

(b) For 0 ≤ i ≤ n, define functions fi : 2V −→ N by: f0 = f and for 1 ≤ i ≤ n, and
for W ⊆ V , fi(W ) = fi−1(W ) if i 6∈ W and fi(W ) = fi−1(W ) + fi−1(W − {i})
if i ∈ W . Let g = fn. Prove that g(W ) is equal to the number of subsets of W
that are independent sets of G. Also, show that a table for g can be constructed
in time poly(n)2n.

2



(c) Let ck(G) denote the number of sequences I1, . . . , Ik of k independent sets whose
union is V . Express ck(G) in terms of the function values of the function g defined
in the previous part.

(d) Explain how to compute the chromatic number of G using at most poly(n)2n

arithmetic operations.

Some hints

Problem 3 For part (a): Use inclusion exclusion to express the probability that σ is an
isomorphism from G1 to itself, and to express the probability that σ is an isomorphism
from G1 to G2.

For part (c): use the second part of problem 2.

Problem 6 For part (c), for each vertex v, let Av be the k-tuples I1, . . . , Ik for which v
belongs to none of the sets Ij and use inclusion-exclusion.
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