
MATH 642:582–Fall, 2008
Assignment 4–Due Monday December 1(Version: November 26)

A few preliminary remarks.

1. Follow the general instructions for homework given in:

http://www.math.rutgers.edu/ saks/homework.html

2. Please be on the look out for errors. If something seems not to make sense, check with
me before investing a lot of time on the problem.

Problems to be handed in.

1. A combinatorial box is the Cartesian product of finite nonempty sets B = B1×· · ·×Bn.
For sets C1, . . . , Cn with Ci ⊆ Bi we say that C = C1×· · ·×Cn is a subbox of B; C is a
proper subbox of B if Ci 6= Bi for all i. A subbox partition of B is a partition of B into
subboxes; the partition is proper if each subbox in the partition is proper. The main
purpose of this problem is prove the following Theorem: If B1, . . . , Bn all have size at
least 2, then any proper subbox partition of B = B1 × · · · ×Bn uses at leasts 2n sets.

Warm up problems (not to be handed in) (i) Prove that B has a proper subbox partition
into 2n boxes. (ii) Prove the theorem in the case that all Bi have size exactly 2.

(a) Let S be a finite set and let T be a proper nonempty subset of S. Suppose R is
selected uniformly at random from among all subsets of S of odd size. Find, with
proof, the probability that |T ∩R| is odd?

(b) Let B = B1 × · · · × Bn be a box with all |Bi| ≥ 2 and let C = C1 × · · · × Cn
be a proper subbox. Suppose R1, . . . , Rn are selected independently where Ri is
selected uniformly at random from among all odd sized subsets of Bi. Find, with
proof, the probability that |(R1 × · · · ×Rn) ∩ C| is odd.

(c) Prove the theorem.

(d) Now we consider a generalization of the theorem: For a box B and subbox C (not
necessarily proper), define s(C,B) to be the number of i such that Ci 6= Bi. Prove
that for any subbox partition C of B,

∑
C∈C 2−s(C,B) ≥ 1.

(e) Now show that the result of the previous part is best possible: Let s1, . . . , st be
any sequence of positive integers satisfying

∑
2−si = 1. Prove that there are sets

B1, . . . , Bn and a subbox decomposition C1, . . . , Ct of B1×· · ·×Bn such that that
s(Ci, B) = si for i ∈ [t]. (Hint provided on last page.)

2. (20 points) If w is a weight function on X (mapping X to the nonnegative reals),
we extend w to subsets of X by defining w(Y ) =

∑
y∈Y w(y). Let H be a hypergraph

on X. let wmin(H) be the minimum weight of any edge of H. (This is defined to be
infinite for the hypergraph having no edges). We say that w is uniquely minimized over
H if there is exactly one edge of weight wmin(H). Here is a very nice (and somewhat
surprising) fact.
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Theorem Let H be a hypergraph on X with |X| = n. Let Ω be the set of all weight
functions from X to [2n]. If w is chosen uniformly at random from Ω, then with
probability at least 1/2, w is uniquely minimized over H.

The first two parts of this problem are devoted to the proof of this theorem. The
remaining three parts (which can be done independently of the first two parts) apply
it to develop a neat randomized algorithm for testing whether a bipartite graph has a
perfect matching.

(a) For a vertex x of H the star H over x,H[x] is the partial hypergraph with edges
set {E ∈ H : x ∈ E}. The link of H over x, H〈x〉, is the hypergraph on X − x
with edge set {E − x : E ∈ H[x]}, and HX−x is the hypergraph on X − x whose
edge set is {E ∈ H : x 6∈ E}.
Prove that for a hypergraph H and a vertex weighting w the following are equiv-
alent:

i. w is uniquely minimized over H.
ii. For every vertex x,

wmin(HX−x)− wmin(H〈x〉) 6= w(x).

(b) Prove the theorem.

(c) Let G = {X,Y ;E} be a bipartite graph with |X| = |Y | = k. Let M(G) be the
set of all real valued matrices M indexed by X × Y that satisfy M(x, y) = 0 if
(x, y) 6∈ E. Prove that G has a perfect matching if and only if there is a matrix
M ∈M such that det(M) 6= 0.

(d) Let G be as in the previous part. Construct a matrix M ∈ M(G) randomly as
follows: for each (x, y) ∈ E, select j(x, y) ∈ [2k2] at random and set M(x, y) =
2j(x,y). Prove that if G has a perfect matching then the probability that det(M) =
0 is less than 1/2.

(e) Use the results of the previous problems to design a probabilistic test for whether
a bipartite graph has a matching. Such a test should have the following property:
given a bipartite graph G and a number ε > 0 answers “Yes” or “No” such that:
(1) if G has a perfect matching then the test yields “Yes” with probability at least
1− ε and (2) if G has no perfect matching then the test always says “No”.

3. Recall that for hypergraph H, κ(H) is the minimum size of a set of edges covering all
of the vertices, and κ∗(H) is the minimum weight of a fractional cover by edges (i.e. a
nonnegative function defined on edges such that for each vertex, the sum of the weights
of edges containing the vertex is at least 1). Prove that there is a constant c such that
for every hypergraph H, κ(H)/κ∗(H) ≤ c log |V (H)|
(Hint provided on last page.)

4. For p be a prime and let Zp denote the integers modulo p. An interval in Zp is a set of
the form {a+1, . . . , a+r} where a ∈ Zp, r ≤ p and addition is taken mod p. If X ⊆ Zp
and a, b ∈ Zp we write aX + b for the set {(ax + b) mod p : x ∈ X}. The purpose of
this problem is to prove the Theorem: For any subset X of Zp there is an a ∈ Zp such
that aX has nonempty intersection with every interval of size at least 2p/

√
|X|.
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(a) Let s, t be distinct elements of Zp. Suppose A,B are chosen independently and
uniformly from Zp. Show that As+B and At+B are independent and uniformly
distributed over Zp.

(b) Let S, T be arbitrary subsets of Zp, Suppose tha A,B are chosen uniformly at
random from Zp. Prove that Pr[(AS +B) ∩ T = ∅] ≤ p/|S||T |.

(c) Prove the theorem.

(Hints are provided on the last page.)

5. (20 points) An bipartite graph is said to have order (s, t) if one side has s vertices and
the other side has t vertices. Ks,t denotes the graph of order (s, t) such that every pair
of vertices in different parts are joined by an edge. Here we consider: given integers
n ≥ b ≥ 1, what is the maximum mb(n) number of edges that a bipartite graph of
order (n, n) can have and not contain Kb,b as a subgraph. (Note that m1(n) = 0, but
the value of m2(n) is far from clear.)

Assume b ≥ 2. In this problem you’ll prove a lower bound on mb(n) using the basic
probabilistic method, and then improve the bound using the ”alteration” method.

(a) Consider a random (n, n) bipartite graph where each edge is selected independently
with probability p. Determine the expected number of Kb,b subgraphs.

(b) Show that for p = n−2/b the probability that the graph contains a Kb,b subgraph
is less than 1/2.

(c) Prove that for each b, and for n sufficiently large, mb(n) ≥ n2−2/b/2.

(d) Show that adjusting the probability p in the above argument can not improve the
lower bound by more than a constant factor (depending on b but independent of
n).

(e) Now let us improve the lower bound by the ”alteration” method. Prove that for
p = n−2/(b+1) the probability that there are more than n2p/2 Kb,b-subgraphs is
less than 1/2.

(f) Prove that for some constant C > 0 (independent of n and b), that mb(n) ≥
Cn2−2/(b+1).

(g) Problem withdrawn

(h) For infinitely values of n, provide an explicit construction of an (n, n) bipartite
graph Fn with no K2,2 having Ω(n3/2) edges m2(n) = Ω(n3/2). (Hint: Make use
of the finite projective plane from Assignment 3, problem 9.)

6. Recall Ramsey’s theorem for graphs says that for every k there is an n such that every
graph on at least n vertices has a clique or independent set of size k. One of the way’s
this theorem is generalized is to consider s-uniform hypergraphs (for some s) instead
of graphs. For brevity these are sometimes called s-graphs. An independent set in an
s-graph H is a subset W of vertices that contains no edges and a clique is a subset of W
that contains all of

(
W
s

)
. The graph Ramsey theorem generalizes: For every s, k there

is an n such that every s-uniform hypergraph on n vertices contains an independent
set or clique of size k. Rs(k) is defined to be the smallest such n. The purpose of this
problem is to derive some lower bounds on Rs(s+ 1).
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(a) Suppose one uses the basic probabilistic method to obtain a lower bound on Rs(s+
1). Show that for large s one obtains from this a lower bound of the form: Rs(s+
1) ≥ c(s)s where 1 < c(s) < 2. (The bound

(
k
r

)
≤ (ek/r)r is not good enough

for this problem; it may be helpful to use the bound
(
k
r

)
≤ 2h(r/k)k where h(x) =

x log2(1/x) + (1− x) log2(1/(1− x)) is the binary entropy function.)

(b) Now try the alteration method. Compare the bound obtained to the previous
bound, as s gets large.

(c) Now try the Lovasz local lemma. Again compare the bound obtained to the
previous bounds.

Some hints

Problem 1 For the last part, proceed by induction on t. It will be helpful to prove that
given s1, . . . , st according to the hypothesis, with t ≥ 2, there is a partition of [t] into
sets I, J such that

∑
i∈I 2−si = 1/2 and

∑
i∈J 2−si = 1/2.

Problem 3 Given a fractional cover, design an appropriate random process that selects a
collection of edges of H and show that with positive probability it is a cover and has
size at most O(log |V |κ∗(H)).

Problem 4 For the second part, try using Chebysev’s inequality. For the third part, first
show that if Π is a fixed partition of Zp into intervals of size at most j and Y is a set
that has nonempty intersection with each part of Π, then Y meets every interval of size
at least 2j.
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