A few preliminary remarks.

1. Follow the general instructions for homework given in:

http://www.math.rutgers.edu/ saks/homework.html

- 2. Please be on the look out for errors. If something seems not to make sense, check with me before investing a lot of time on the problem.
- 3. This homework uses the following definitions. Let P be a partially ordered set.
 - The comparability graph of P is the undirected graph with vertex set P and xy an edge if and only if x < y or y < x. We say that P is connected if and only if its comparability graph is connected.
 - For $x, y \in P$, the *interval* [x, y] is the set of elements $\{z \in P : x \le z \le y\}$. In particular [x, y] is empty if x is not less than or equal to y. We say that y covers x if $[x, y] = \{x, y\}$.
 - The cover digraph of P (also called the Hasse diagram) is the directed graph with arc set $\{(y, x) : y \text{ covers } x\}$.
 - A rank function for P is a function r from P to Z with the property that whenever y covers x, r(y) = r(x) + 1. We call the pair (P,r) a ranked poset or graded poset. If P has a rank function we often say P is a ranked poset, leaving the rank function implicit.
 - If r is a rank function of P, and $j \in \mathbb{Z}$ the *j*th level of P with respect to r is $r^{-1}(i)$.
 - If (P,r) is a finite ranked poset then the sequence $(w_i : i \in \mathbb{Z})$ where $w_i = w_i(P,r) = |r^{-1}(i)|$ is called the rank sequence of (P,r) (or sometimes the Whitney numbers of the second kind.)
 - If we say P is a ranked poset with level sequence $P_s, P_{s+1}, \ldots, P_t$ we mean that the rank function associated to P is the function sending P_i to i.
 - A ranked poset (P, r) is said to be rank unimodal if its rank sequence $(w_i :\in \mathbb{Z})$ is unimodal, that is for some s we have $w_{i-1} \leq w_i$ for $i \leq s$ and $w_{i-1} \geq w_i$ for i > s. (P, r) is rank symmetric if for some k we have $w_i = w_{k-i}$ for all i.
 - P satisfies the Jordan-Dedekind chain condition (JDC) if for any pair of elements $x \leq y$, every maximal chain from x to y has the same size.
 - If P is a ranked poset with level sets P_0, \ldots, P_k a chain C of P is a rank symmetric chain if for some $i \leq k/2$, P contains one element from each of the levels $P_i, P_{i+1}, \ldots, P_{k-(i+1)}, P_{k-i}$. A symmetric chain decomposition of P is a partition of P into symmetric chains. P is a symmetric chain order if it has a symmetric chain decomposition.
 - For a poset P, a Sperner k-family is a subset of elements that contains no chain of size k + 1; equivalently it is a subset that can be covered by k antichains. $a_k(P)$ denotes the size of the largest Sperner k-family.

- For a ranked poset P with level sequence P_0, \ldots, P_s , we say that P has the Sperner property if $a_1(P) = \max_i |P_i|$, and has the k-Sperner property if $a_k(P)$ is equal to the maximum of $|P_{i_1}| + \cdots + |P_{i_k}|$ over all sequences $0 \le i_1 < i_2 < \cdots < i_k \le s$. P has the Strong Sperner property if it is k-Sperner for all k.
- The product of posets $P, Q, P \times Q$ is the poset with elements (x, y) with $x \in P$ and $y \in Q$ and order $(x, y) \leq (x', y')$ if $x \leq x'$ and $y \leq y'$.

Some warm-up exercises NOT TO BE HANDED IN. You may refer to these results in solving later problems)

- 1. If P is finite, prove that x < y if and only if there is a directed path from x to y in the cover graph.
- 2. Show that the previous result need not hold if P is infinite.
- 3. Prove that if P is a finite ranked connected poset then for each integer a, there is a unique rank function satisfying $a = \min_{x \in P} r(x)$. (Also show that this is not true if P is disconnected.)
- 4. Prove that if P is finite and has the property that every maximal chain has the same size, then P satisfies the JDC condition.
- 5. Prove that if P is finite and satisfies the Jordan Dedekind chain condition then P is ranked.
- 6. If (P, r) and (Q, s) are ranked posets then the function t on $P \times Q$ given by t(x, y) = r(x) + s(y) is a rank function on $P \times Q$.

Problems to be handed in.

- 1. In the following, P denotes a ranked poset with rank function r and nonempty level sets P_0, \ldots, P_k .
 - A bipartite graph G = (V, W; E) is said to have the normalized matching property if for all $X \subseteq V$, $|N(X)|/|W| \ge |X|/|V|$. P is said to have the normalized matching property if the bipartite graph G_i between each pair of successive levels P_i and P_{i+1} has the normalized matching property, for each i.
 - A family of chains C (repeated chains allowed) is said to be a *uniform chain cover* of P if (i) each chain of C contains one element from each level and (ii) for each $p, q \in P$ such that r(p) = r(q), p and q belong to the same number of chains of C.
 - P has the LYM property if for any antichain A, $\sum_{x \in A} \frac{1}{|P_{r(x)}|} \leq 1$.

(NOT TO HAND IN: Prove that if P is a finite connected ranked poset satisfying the LYM property then P has the Strong Sperner property.)

Prove that the following three conditions on a ranked poset P are equivalent:

(a) P has the normalized matching property

- (b) P has a uniform chain cover
- (c) P has the LYM property.

(Hint on last page.)

- 2. Consider the unit hypercube C_n in n dimensions which is the convex hull of the set of points $\{0,1\}^n$, which are the vertices of C_n . Two vertices x, y are adjacent in C_n if they differ in exactly one coordinate. An edge of C_n is a line segment joining two adjacent points; for adjacent x, y the edge joining x and y is denoted e(x, y). If $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$, the hyperplane $H_{a,b}$ is the set of points $x \in \mathbb{R}^n$ satisfying $a \cdot x = b$. $H_{a,b}$ is said to slice the edge e(x, y) if x and y are on opposite sides of the hyperplane, i.e., $a \cdot x b$ and $a \cdot y b$ are nonzero and have opposite sign.
 - (a) Determine the maximum number of edges that can be sliced by a single hyperplane. (Hint on last page.)
 - (b) Let f(n) be the minimum number of hyperplanes needed to slice every edge. Prove that $f(n) \leq n$ and that $f(n) = \Omega(\sqrt{n})$. (Note: The lower bound on $f(n) = \Omega(\sqrt{n})$ is the best currently known. The upper bound has been improved slightly to $f(n) \leq \lceil 5n/6 \rceil$. It is a very nice open problem to improve either of these bounds.)
- 3. Let n, k be positive integers with $n \ge 2k$. Suppose \mathcal{A} is an antichain of $2^{[n]}$ of size at least $\binom{n}{k}$. Prove that the average size of a member of \mathcal{A} is at least k. (Hint on last page.)
- 4. (a) Prove that if P is a ranked poset with level sets P_0, \ldots, P_k and P has a symmetric chain decomposition then P is rank unimodal, rank symmetric, and has the Strong Sperner property.
 - (b) Prove that the product of two symmetric chain orders is a symmetric chain order.
 - (c) Prove that the poset Div_n of divisors of n, ordered by divisibility, is a symmetric chain order.
- 5. Given a subset S of \mathbb{R}^d , a *linear dichotomy* is a partition (S_1, S_2) of S with the property that there is a pair (a, b) with $a \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $\{x \in S : a \cdot x \leq b\} = S_1$. Prove: For $S \subseteq \mathbb{R}^d$ of size n, the number of linear dichotomies is at most $\sum_{j=0}^{d+1} {n \choose j}$. (Hint on last page.)
- 6. For a hypergraph \mathcal{H} on V, and $S \subseteq V$, the *neighborhood of* S in \mathcal{H} , denoted $(\mathcal{H}: S)$ is the hypergraph on V - S with $E \in (\mathcal{H}: S)$ if and only if $E \cup S \in \mathcal{H}$. (In particular, the neighborhood of \emptyset in \mathcal{H} is just \mathcal{H} itself.) Suppose that \mathcal{H} is an *r*-uniform hypergraph, and that for every $S \subseteq V$, $\tau(\mathcal{H}: S) \leq w$. Prove \mathcal{H} has at most w^r edges.
- 7. (a) Recall that a sequence of disjoint set pairs (SDSP) is a sequence $(A_1, B_1), \ldots, (A_t, B_t)$ such that $A_i \cap B_i = \emptyset$. An SDSP is weakly crossing if for each $i \neq j$ $A_i \cap B_j \neq \emptyset$ or $A_j \cap B_i \neq \emptyset$.
 - (b) Prove that for a weakly crossing SDSP, $\sum_{i=1}^{t} 2^{-|A_i|+|B_i|} \leq 1$.
 - (c) Some preliminaries:
 - A set of points in \mathbb{R}^d is in *convex position* if no one of the points is in the convex hull of the others.

- A *j*-simplex is the convex hull of j + 1 distinct points in convex position.
- Warmup problem (not to be handed in): A *d*-simplex in \mathbb{R}^d is closed and compact. The boundary of a *d*-simplex is the union of d + 1 (d 1)-simplices (called the *facets* of the simplex) having disjoint interiors. Each facet of the simplex lies in a unique d-1-dimensional hyperplane, which is called a *bound-ing hyperplane* of the simplex.
- Two d-simplexes are said to be *adjacent* if there is a unique d-1 dimensional hyperplane containing their intersection. (Another warm-up: this hyperplane must be a bounding hyperplane of both simplexes.)

Prove that a collection of d-simplexes in \mathbb{R}^d that are pairwise adjacent has size at most 2^{d+1} .

- 8. A closure space consists of a pair (X, λ) where X is a set and $\lambda : 2^X \longrightarrow 2^X$ satisfies:
 - $A \subseteq \lambda(A)$, for all $A \subseteq X$.
 - $A \subseteq B$ implies $\lambda(A) \subseteq \lambda(B)$, for all $A, B \subseteq X$.
 - $\lambda(\lambda(A)) = \lambda(A).$

We say that λ is a *closure on* X. A set $C \in image(\lambda)$ is called a λ -closed subset. Define $cl(\lambda)$ to be the set of λ -closed sets.

A hypergraph \mathcal{H} on X is called an *alignment on* X if (i) $X \in \mathcal{H}$ and (ii) \mathcal{H} is closed under arbitrary intersections: for subset $\mathcal{H}' \subseteq \mathcal{H}$, $\bigcap_{A \in \mathcal{H}'} A \in \mathcal{H}$.

Let X be a fixed (possibly infinite) set. Prove that the map that associates each closure λ (on X) to $cl(\lambda)$ is a bijection between the set of closures on X to the set of alignments on X.

9. The König-Hall theorem says that $\nu(\mathcal{H} = \tau(\mathcal{H})$ if the hypergraph \mathcal{H} is a bipartite graph. In this problem and the next we consider the analogous problem for the class of k-uniform k-partite hypergraphs.

A k-uniform k-partite hypergraph (k-UP hypergraph) \mathcal{H} is a hypergraph whose vertex set V is partitioned into sets V_1, \ldots, V_k such that every edge contains exactly one element from each set.

It turns out that there are k-UP hypergraphs \mathcal{H} such that $\nu(\mathcal{H}) < \tau(\mathcal{H})$. (Warm-up problem, not to be handed in: Prove that $\tau(\mathcal{H})/\nu(\mathcal{H}) \leq k$ for any k-UP hypergraph \mathcal{H} .) In this problem we will show that if q is a prime power then there is a (q + 1)-UP hypergraphs with $\nu(\mathcal{H}) = 1$ and $\tau(\mathcal{H}) = q$. The example is based on an important combinatorial/geometric/algebraic structure called a *finite projective plane*. Abstractly, a finite projective plane is a hypergraph satisfying the following axioms: (1) any two edges intersect in exactly on vertex, (2) for any two vertices there is a unique edge containing them (3) for some r, every edge has size r + 1 and every vertex has degree r + 1. This structure is called a finite projective plane of order r.

It is known that if q is a prime power then there is a finite projective plane of order q. This construction will be reviewed below. Then we'll construct the desired (q + 1)-UP hypergraph. We use the fact that there is exists a finite field of order q, which we'll denote by \mathbb{F} .

- (a) Consider the vector space \mathbb{F}^3 , and let V be the set of one-dimensional subspaces, and U be the set of two-dimensional subspaces. Prove that $|V| = |U| = q^2 + q + 1$.
- (b) For each $u \in U$, let E_u be the set of one-dimensional subspaces contained in u. Prove that $\{E_u : u \in U\}$ is a projective plane of order q.
- (c) Now suppose \mathcal{P} is any finite projective plane of order q with vertex set W. Construct a hypergraph \mathcal{H} as follows: fix $v \in W$ and let $V = W \{v\}$. Let \mathcal{H} be the set of edges of \mathcal{P} that don't contain v. Prove that \mathcal{H} is (q+1)-partite hypergraph, and that $\nu(\mathcal{H}) = 1$ and $\tau(\mathcal{H}) = q$.

Remark: H. Ryser conjectured in the 1960's that for any k-UP hypergraph $\tau(\mathcal{H}) \leq (k-1)\nu(\mathcal{H})$. The case k = 2 follows from König's theorem, and Aharoni proved it for k = 3 in 1999. It remains open for all $k \geq 4$.

Some hints

- **Problem 1** Prove $(a) \longrightarrow (b) \longrightarrow (c) \longrightarrow (a)$. To prove $(a) \longrightarrow (b)$, consider first the case that all of the levels of P have the same size. Then generalize to the general case.
- **Problem 2** The first part can be reduced to proving that some poset has the Sperner property. Further hint: First consider the case that the vector a defining the hyperplane has all coordinates non-negative.
- **Problem 3** 1. Argue that it is enough to consider the case $|\mathcal{H}| = \binom{n}{k}$.
 - 2. Show that the optimal solution of the following LP is a lower bound on the average size of a member of \mathcal{H} : Variables x_0, \ldots, x_n , $\min 1/\binom{n}{k} \sum_i ix_i$ subject to the constraints $\sum_i x_i = \binom{n}{k}, \sum_i x_i/\binom{n}{i} \leq 1$, and $x_i \geq 0$ for all i.
 - 3. Consider the dual LP.
- **Problem 5** It will be helpful to prove the following: Any set of d + 2 points in \mathbb{R}^d can be partitioned into two sets whose convex hulls have nonempty intersection. Further hint: Let x_1, \ldots, x_{d+2} be the set of points, define y_1, \ldots, y_{d+1} by $y_i = x_i x_{d+2}$ and note that the y_i are linearly dependent. Yet another hint: To apply the previous hint, consider the theory of VC-dimension discussed in class.