
MATH 642:582–Fall, 2008
Assignment 3–Due November 7 (Version: November 3)

A few preliminary remarks.

1. Follow the general instructions for homework given in:

http://www.math.rutgers.edu/ saks/homework.html

2. Please be on the look out for errors. If something seems not to make sense, check with
me before investing a lot of time on the problem.

3. This homework uses the following definitions. Let P be a partially ordered set.

• The comparability graph of P is the undirected graph with vertex set P and xy
an edge if and only if x < y or y < x. We say that P is connected if and only if
its comparability graph is connected.

• For x, y ∈ P , the interval [x, y] is the set of elements {z ∈ P : x ≤ z ≤ y}. In
particular [x, y] is empty if x is not less than or equal to y. We say that y covers
x if [x, y] = {x, y}.
• The cover digraph of P (also called the Hasse diagram) is the directed graph with

arc set {(y, x) : y covers x}.
• A rank function for P is a function r from P to Z with the property that whenever
y covers x, r(y) = r(x) + 1. We call the pair (P, r) a ranked poset or graded poset.
If P has a rank function we often say P is a ranked poset, leaving the rank function
implicit.

• If r is a rank function of P , and j ∈ Z the jth level of P with respect to r is r−1(i).

• If (P, r) is a finite ranked poset then the sequence (wi : i ∈ Z) where wi =
wi(P, r) = |r−1(i)| is called the rank sequence of (P, r) (or sometimes the Whitney
numbers of the second kind.)

• If we say P is a ranked poset with level sequence Ps, Ps+1, . . . , Pt we mean that
the rank function associated to P is the function sending Pi to i.

• A ranked poset (P, r) is said to be rank unimodal if its rank sequence (wi :∈ Z) is
unimodal, that is for some s we have wi−1 ≤ wi for i ≤ s and wi−1 ≥ wi for i > s.
(P, r) is rank symmetric if for some k we have wi = wk−i for all i.

• P satisfies the Jordan-Dedekind chain condition (JDC) if for any pair of elements
x ≤ y, every maximal chain from x to y has the same size.

• If P is a ranked poset with level sets P0, . . . , Pk a chain C of P is a rank sym-
metric chain if for some i ≤ k/2, P contains one element from each of the levels
Pi, Pi+1, . . . , Pk−(i+1), Pk−i. A symmetric chain decomposition of P is a partition
of P into symmetric chains. P is a symmetric chain order if it has a symmetric
chain decomposition.

• For a poset P , a Sperner k-family is a subset of elements that contains no chain
of size k+1; equivalently it is a subset that can be covered by k antichains. ak(P )
denotes the size of the largest Sperner k-family.
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• For a ranked poset P with level sequence P0, . . . , Ps, we say that P has the Sperner
property if a1(P ) = maxi |Pi|, and has the k-Sperner property if ak(P ) is equal to
the maximum of |Pi1 | + · · · + |Pik | over all sequences 0 ≤ i1 < i2 < · · · < ik ≤ s.
P has the Strong Sperner property if it is k-Sperner for all k.

• The product of posets P,Q, P × Q is the poset with elements (x, y) with x ∈ P
and y ∈ Q and order (x, y) ≤ (x′, y′) if x ≤ x′ and y ≤ y′.

Some warm-up exercises NOT TO BE HANDED IN. You may refer to these results in
solving later problems)

1. If P is finite, prove that x < y if and only if there is a directed path from x to y in the
cover graph.

2. Show that the previous result need not hold if P is infinite.

3. Prove that if P is a finite ranked connected poset then for each integer a, there is a
unique rank function satisfying a = minx∈P r(x). (Also show that this is not true if P
is disconnected.)

4. Prove that if P is finite and has the property that every maximal chain has the same
size, then P satisfies the JDC condition.

5. Prove that if P is finite and satisfies the Jordan Dedekind chain condition then P is
ranked.

6. If (P, r) and (Q, s) are ranked posets then the function t on P ×Q given by t(x, y) =
r(x) + s(y) is a rank function on P ×Q.

Problems to be handed in.

1. In the following, P denotes a ranked poset with rank function r and nonempty level
sets P0, . . . , Pk.

• A bipartite graph G = (V,W ;E) is said to have the normalized matching property
if for allX ⊆ V , |N(X)|/|W | ≥ |X|/|V |. P is said to have the normalized matching
property if the bipartite graph Gi between each pair of successive levels Pi and
Pi+1 has the normalized matching property, for each i.

• A family of chains C (repeated chains allowed) is said to be a uniform chain cover
of P if (i) each chain of C contains one element from each level and (ii) for each
p, q ∈ P such that r(p) = r(q), p and q belong to the same number of chains of C.
• P has the LYM property if for any antichain A,

∑
x∈A

1
|Pr(x)|

≤ 1.

(NOT TO HAND IN: Prove that if P is a finite connected ranked poset satisfying the
LYM property then P has the Strong Sperner property.)

Prove that the following three conditions on a ranked poset P are equivalent:

(a) P has the normalized matching property
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(b) P has a uniform chain cover

(c) P has the LYM property.

(Hint on last page.)

2. Consider the unit hypercube Cn in n dimensions which is the convex hull of the set of
points {0, 1}n, which are the vertices of Cn. Two vertices x, y are adjacent in Cn if they
differ in exactly one coordinate. An edge of Cn is a line segment joining two adjacent
points; for adjacent x, y the edge joining x and y is denoted e(x, y). If a ∈ Rn and
b ∈ R, the hyperplane Ha,b is the set of points x ∈ Rn satisfying a · x = b. Ha,b is said
to slice the edge e(x, y) if x and y are on opposite sides of the hyperplane, i.e., a · x− b
and a · y − b are nonzero and have opposite sign.

(a) Determine the maximum number of edges that can be sliced by a single hyperplane.
(Hint on last page.)

(b) Let f(n) be the minimum number of hyperplanes needed to slice every edge. Prove
that f(n) ≤ n and that f(n) = Ω(

√
n). (Note: The lower bound on f(n) = Ω(

√
n)

is the best currently known. The upper bound has been improved slightly to
f(n) ≤ d5n/6e. It is a very nice open problem to improve either of these bounds.)

3. Let n, k be positive integers with n ≥ 2k. Suppose A is an antichain of 2[n] of size at
least

(
n
k

)
. Prove that the average size of a member of A is at least k. (Hint on last

page.)

4. (a) Prove that if P is a ranked poset with level sets P0, . . . , Pk and P has a symmetric
chain decomposition then P is rank unimodal, rank symmetric, and has the Strong
Sperner property.

(b) Prove that the product of two symmetric chain orders is a symmetric chain order.

(c) Prove that the poset Divn of divisors of n, ordered by divisibility, is a symmetric
chain order.

5. Given a subset S of Rd, a linear dichotomy is a partition (S1, S2) of S with the property
that there is a pair (a, b) with a ∈ Rd and b ∈ R such that {x ∈ S : a · x ≤ b} = S1.
Prove: For S ⊆ Rd of size n, the number of linear dichotomies is at most

∑d+1
j=0

(
n
j

)
.

(Hint on last page.)

6. For a hypergraph H on V , and S ⊆ V , the neighborhood of S in H, denoted (H : S) is
the hypergraph on V −S with E ∈ (H : S) if and only if E∪S ∈ H. (In particular, the
neighborhood of ∅ in H is just H itself.) Suppose that H is an r-uniform hypergraph,
and that for every S ⊆ V , τ(H : S) ≤ w. Prove H has at most wr edges.

7. (a) Recall that a sequence of disjoint set pairs (SDSP) is a sequence (A1, B1), . . . , (At, Bt)
such that Ai ∩ Bi = ∅. An SDSP is weakly crossing if for each i 6= j Ai ∩ Bj 6= ∅
or Aj ∩Bi 6= ∅.

(b) Prove that for a weakly crossing SDSP,
∑t

i=1 2−|Ai|+|Bi| ≤ 1.

(c) Some preliminaries:

• A set of points in Rd is in convex position if no one of the points is in the
convex hull of the others.
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• A j-simplex is the convex hull of j + 1 distinct points in convex position.
• Warmup problem (not to be handed in): A d-simplex in Rd is closed and

compact. The boundary of a d-simplex is the union of d+ 1 (d− 1)-simplices
(called the facets of the simplex) having disjoint interiors. Each facet of the
simplex lies in a unique d−1-dimensional hyperplane, which is called a bound-
ing hyperplane of the simplex.
• Two d-simplexes are said to be adjacent if there is a unique d− 1 dimensional

hyperplane containing their intersection. (Another warm-up: this hyperplane
must be a bounding hyperplane of both simplexes.)

Prove that a collection of d-simplexes in Rd that are pairwise adjacent has size at
most 2d+1.

8. A closure space consists of a pair (X,λ) where X is a set and λ : 2X −→ 2X satisfies:

• A ⊆ λ(A), for all A ⊆ X.

• A ⊆ B implies λ(A) ⊆ λ(B), for all A,B ⊆ X.

• λ(λ(A)) = λ(A).

We say that λ is a closure on X. A set C ∈ image(λ) is called a λ-closed subset. Define
cl(λ) to be the set of λ-closed sets.

A hypergraph H on X is called an alignment on X if (i) X ∈ H and (ii) H is closed
under arbitrary intersections: for subset H′ ⊆ H,

⋂
A∈H′ A ∈ H.

Let X be a fixed (possibly infinite) set. Prove that the map that associates each closure
λ (on X) to cl(λ) is a bijection between the set of closures on X to the set of alignments
on X.

9. The König-Hall theorem says that ν(H = τ(H) if the hypergraph H is a bipartite
graph. In this problem and the next we consider the analogous problem for the class
of k-uniform k-partite hypergraphs.

A k-uniform k-partite hypergraph (k-UP hypergraph) H is a hypergraph whose vertex
set V is partitioned into sets V1, . . . , Vk such that every edge contains exactly one
element from each set.

It turns out that there are k-UP hypergraphs H such that ν(H) < τ(H). (Warm-up
problem, not to be handed in: Prove that τ(H)/ν(H) ≤ k for any k-UP hypergraph
H.) In this problem we will show that if q is a prime power then there is a (q + 1)-
UP hypergraphs with ν(H) = 1 and τ(H) = q. The example is based on an important
combinatorial/geometric/algebraic structure called a finite projective plane. Abstractly,
a finite projective plane is a hypergraph satisfying the following axioms: (1) any two
edges intersect in exactly on vertex, (2) for any two vertices there is a unique edge
containing them (3) for some r, every edge has size r + 1 and every vertex has degree
r + 1. This structure is called a finite projective plane of order r.

It is known that if q is a prime power then there is a finite projective plane of order q.
This construction will be reviewed below. Then we’ll construct the desired (q + 1)-UP
hypergraph. We use the fact that there is exists a finite field of order q, which we’ll
denote by F.
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(a) Consider the vector space F3, and let V be the set of one-dimensional subspaces,
and U be the set of two-dimensional subspaces. Prove that |V | = |U | = q2 + q+ 1.

(b) For each u ∈ U , let Eu be the set of one-dimensional subspaces contained in u.
Prove that {Eu : u ∈ U} is a projective plane of order q.

(c) Now suppose P is any finite projective plane of order q with vertex set W . Con-
struct a hypergraph H as follows: fix v ∈W and let V = W − {v}. Let H be the
set of edges of P that don’t contain v. Prove that H is (q+1)-partite hypergraph,
and that ν(H) = 1 and τ(H) = q.

Remark: H. Ryser conjectured in the 1960’s that for any k-UP hypergraph τ(H) ≤
(k − 1)ν(H). The case k = 2 follows from König’s theorem, and Aharoni proved it for
k = 3 in 1999. It remains open for all k ≥ 4.

Some hints

Problem 1 Prove (a) −→ (b) −→ (c) −→ (a). To prove (a) −→ (b), consider first the case
that all of the levels of P have the same size. Then generalize to the general case.

Problem 2 The first part can be reduced to proving that some poset has the Sperner prop-
erty. Further hint: First consider the case that the vector a defining the hyperplane
has all coordinates non-negative.

Problem 3 1. Argue that it is enough to consider the case |H| =
(
n
k

)
.

2. Show that the optimal solution of the following LP is a lower bound on the aver-
age size of a member of H: Variables x0, . . . , xn, min 1/

(
n
k

)∑
i ixi subject to the

constraints
∑

i xi =
(
n
k

)
,
∑

i xi/
(
n
i

)
≤ 1, and xi ≥ 0 for all i.

3. Consider the dual LP.

Problem 5 It will be helpful to prove the following: Any set of d + 2 points in Rd can be
partitioned into two sets whose convex hulls have nonempty intersection. Further hint:
Let x1, . . . , xd+2 be the set of points, define y1, . . . , yd+1 by yi = xi−xd+2 and note that
the yi are linearly dependent. Yet another hint: To apply the previous hint, consider
the theory of VC-dimension discussed in class.
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