A few preliminary remarks.

1. Follow the general instructions for homework given in:

http://www.math.rutgers.edu/ saks/homework.html

- 2. Please be on the look out for errors. If something seems not to make sense, check with me before investing a lot of time on the problem.
- 3. "A Course in Combinatorics" Chapters 5 and 6 by van Lint and Wilson provides a general reference for the König-Hall theorem and Dilworth's theorem
- 4. This homework uses the following definitions:
 - If V is a set, a hypergraph \mathcal{H} on V is a set of nonempty subsets of V. The members of \mathcal{H} are called *edges* and V is called the *vertex set*.
 - If \mathcal{H} is a hypergraph on V, then \mathcal{H}^{\downarrow} is the hypergraph $\{W \subseteq V : \exists E \in \mathcal{H}, W \subseteq E\}$ and \mathcal{H}^{\uparrow} is the hypergraph $\{W \subseteq V : \exists E \in \mathcal{H}, E \subseteq W\}$
 - A matching of \mathcal{H} is a subset of edges that are pairwise disjoint. The matching number $\nu(\mathcal{H})$ is the size of the largest matching of \mathcal{H} .
 - A fractional matching is a nonnegative real-valued function w with domain \mathcal{H} satisfying that for every vertex v, $\sum_{E:v\in E} w(E) \leq 1$. The fractional matching number $\nu^*(\mathcal{H})$ is the maximum of $\sum_{E\in\mathcal{H}} w(E)$ over all fractional matchings of \mathcal{H} .
 - A vertex cover (or blocking set of \mathcal{H} is a subset C of vertices such that $C \cap E \neq \emptyset$ for all $E \in \mathcal{H}$. $\tau(\mathcal{H})$ is the minimum size of a vertex cover.
 - A fractional vertex cover of \mathcal{H} is a nonnegative real valued function κ defined on V with the property that for every edge E, $\sum_{v \in E} w(v) \ge 1$. The fractional cover number $\tau^*(\mathcal{H})$ is the minimum of $\sum_v w(v)$ over all fractional vertex covers.
 - The incidence matrix $M = M(\mathcal{H})$ of \mathcal{H} is the matrix with rows indexed by edges and columns indexed by vertices, where $M_{E,v} = 1$ if $v \in E$ and is 0 otherwise.
 - A hypergraph is intersecting if $E \cap F \neq \emptyset$ for all $E, F \in \mathcal{H}$ and is k-wise intersecting if $E_1 \cap \cdots \cap E_k \neq \emptyset$ for all $E_1, \ldots, E_k \in \mathcal{H}$.
 - For a graph G = (V, E), a *clique* is a subset of vertices that are pairwise adjacent, and an *independent set* is a subset of vertices that are pairwise non-adjacent.
- 1. (a) For a hypergraph \mathcal{H} be a hypergraph on V, let \mathcal{H}^C denote the hypergraph consisting of all vertex covers of \mathcal{H} . Prove that $(\mathcal{H}^C)^C = \mathcal{H}^{\uparrow}$.
 - (b) For a hypergraph \mathcal{H} , let $\mathcal{H}^A = \{W \subseteq V : \forall S \in \mathcal{H}, |W \cap S| \leq 1\}$. Let $G(\mathcal{H})$ be the graph on V whose edge set is the set $\{uv : \exists S \in \mathcal{H}, \{u, v\} \subseteq S\}$. Prove that \mathcal{H}^A is equal to the hypergraph consisting of all independent sets of $G(\mathcal{H})$ and $(\mathcal{H}^A)^A$ is equal to the hypergraph of all cliques of $G(\mathcal{H})$.

- 2. A hypergraph \mathcal{H} is τ -critical if for any edge E of \mathcal{H} , $\tau(\mathcal{H} \{E\}) < \tau(\mathcal{H})$. Let \mathcal{H} be a τ -critical hypergraph. Prove that either the edges of \mathcal{H} are pairwise disjoint or $\tau^*(\mathcal{H}) < \tau(\mathcal{H})$.
- 3. Let \mathcal{H} be a hypergraph on V and $M = M(\mathcal{H})$ be its incidence matrix (defined above).
 - (a) Prove that if every square submatrix of M has determinant in $\{0, 1, -1\}$ then $\nu(\mathcal{H}) = \tau(\mathcal{H}).$
 - (b) Prove that if \mathcal{H} is a bipartite graph (so V can be partitioned into two sets V_1, V_2 and every edge contains one vertex from V_1 and one from V_2) then every square submatrix of M has determinant in $\{0, 1, -1\}$.
- 4. Dilworth's theorem says: for any partially ordered set P, the width of P (maximum size of an antichain) is equal to the minimum size of a cover of P by chains.

For a finite set Γ , let $A[\Gamma] = \{A_{\alpha} : \alpha \in \Gamma\}$ an indexed collection of sets. For $J \subseteq \Gamma$ we write A[J] for the subcollection $\{A_{\alpha} : \alpha \in J\}$. The defect of A[J] is defined to be $\max\{0, |J| - | \cup_{\alpha \in J} A_{\alpha}|\}$. A selection function for \mathcal{A} is a map f defined on Γ such that $f(\alpha) \in A_{\alpha}$. The *defect* of a selection function f is equal to $|\Gamma| - |Range(f)|$.

The (defect form of) the König-Hall Marriage theorem says: for any finite indexed collection of sets $A[\Gamma]$, the minimum defect of a selection function is equal to the maximum deficiency of a subcollection. (Not to hand in: Show the equivalence between this theorem and König's theorem that $\nu(G) = \tau(G)$ for any bipartite graph G.)

- (a) Deduce the König-Hall Theorem from Dilworth's theorem.
- (b) Deduce Dilworth's theorem from the König-Hall Theorem.
- 5. (a) Suppose that $r \leq n$ and M is an $r \times n$ matrix satisfying:
 - (i) all entries are in [n].
 - (ii) within any row or column the entries are distinct.

Prove that there is an $n \times n$ matrix M' satisfying (i) and (ii) such that M is a submatrix of M'.

- (b) More generally, for r, s ≤ n show that if M is an r×s matrix satisfying (i) and (ii) then there exists an n×n M' satisfying (i) and (ii) such that M is a submatrix of M' if and only if if each integer between 1 and n appears at least r + s − n times in M.
- 6. Let $A[\Gamma]$ be an finite indexed family of subsets of the set X. A $\Gamma \times X$ matrix M is *compatible* with $A[\Gamma]$ if for all $x \in X$ and $\alpha \in \Gamma$, if $x \notin A[\alpha]$ then $M[\alpha, x] = 0$.
 - (a) Prove that $A[\Gamma]$ has an injective selection function if and only if there is a nonnegative matrix compatible with $A[\Gamma]$ whose row sums are each at least 1, and whose column sums are each at most 1.
 - (b) Let $A[\Gamma]$ be an finite indexed family of subsets of X. For $x \in X$, let $deg(x) = |\{\alpha : x \in A_{\alpha}\}|$. Prove: if for every $\alpha \in \Gamma$ and $x \in A_{\alpha} |A_{\alpha}| \ge deg(x)$, then $A[\Gamma]$ has an injective selection function.
- 7. (a) Prove: if \mathcal{H} is an *r*-uniform r + 1-wise intersecting hypergraph, then $\tau(\mathcal{H}) = 1$.

- (b) More generally, prove: if \mathcal{H} is an *r*-uniform *k*-wise intersecting then $\tau(H) \leq \frac{r-1}{k-1} + 1$. (A hint appears at bottom of assignment.)
- (c) For each $r, k \in \mathbf{N}$ such that k 1 divides r 1, give an example of an *r*-uniform k-intersecting hypergraph $\mathcal{H}(k, r)$ such that $\tau(\mathcal{H}) = \frac{r-1}{k-1} + 1$.
- 8. Consider $2^{[n]}$ with the usual containment order. Let \mathcal{A} be a maximal antichain of $2^{[n]}$. Prove that \mathcal{A} can be partitioned into two sets \mathcal{X} and \mathcal{Y} such that $(\mathcal{X}^{\downarrow}, \mathcal{Y}^{\uparrow})$ is a partition of $2^{[n]}$. (A hint appears at bottom of assignment.)
- 9. The purpose of this problem is to prove a generalization of the Marriage theorem (which, in particular, gives a different proof of Hall's theorem). For an indexed family $A[\Gamma]$ of sets, the surplus is $| \cup_{\alpha \in \Gamma} A_{\alpha} | |\Gamma|$. The global surplus of $A[\Gamma]$ is defined to be the minimum surplus of any indexed subfamily $A[\Gamma']$ where $\Gamma' \subseteq \Gamma$.

If $A(\Gamma)$ and $B(\Gamma)$ are indexed families of sets (with the same index set Γ) we say that B is a *pruning* of A if $B_{\alpha} \subseteq A_{\alpha}$ for all $\alpha \in \Gamma$.

Theorem. Suppose $A[\Gamma]$ has global surplus $s \ge 0$. Then $A[\Gamma]$ has a pruning $B[\Gamma]$ with global surplus s and all of its sets of size exactly s + 1.

(Not to hand in: (i) Why is this a generalization of Hall's theorem? (ii) In the case that s = 1 the conclusion is equivalent to: $A[\Gamma]$ can be pruned to a graph (all edges of size 2) that has no cycles, i.e., is a forest.)

- (a) If $\Gamma' \subseteq \Gamma$ is nonempty and the surplus of $A[\Gamma']$ is equal to the global surplus of $A[\Gamma]$, we say that Γ' is surplus critical for $A[\Gamma]$. Prove that if Γ_1 and Γ_2 are surplus critical for $A[\Gamma]$ then $\Gamma_1 \cap \Gamma_2$ is either empty or is also surplus critical for $A[\Gamma]$.
- (b) $\alpha \in \Gamma$ is unshrinkable for $A[\Gamma]$ if replacing A_{α} by any a proper subset reduces the global surplus of \mathcal{H} . Prove that if α is unshrinkable for $A[\Gamma]$ then then there is a surplus critical set Γ' that contains α , such that $A_{\beta} \cap A_{\alpha} = \emptyset$ for all $\beta \in \Gamma'$ with $\beta \neq \alpha$.
- (c) Prove the theorem.

Hints:

Number 7 For problem 7, part b. Prove by induction on j the claim that for $j \le k$, there is a set of j edges whose intersection has size at most $r - (\tau(\mathcal{H}) - 1)(j - 1)$.

Number 8 Let \mathcal{X} be a minimal subset of \mathcal{A} satisfying $\mathcal{A}^{\downarrow} - \mathcal{A} \subseteq \mathcal{X}^{\downarrow}$.