\documentclass[11pt]{article} \usepackage{amsfonts} %\pagestyle{empty} %This determines whether the page number appears. \topmargin -1.00in \textheight 9in \oddsidemargin 14pt \evensidemargin 14pt \textwidth 440pt \addtolength{\parskip}{0.5\parskip} \newcommand{\binom}[2]{$\left( \begin{array}{c} #1 \\ #2 \end{array} \right)$} \newcommand{\nopar}{\hspace{-\parindent}} \newcommand{\fsp}{\hspace{5em}} \newcommand{\tsp}{\hspace{3em}} \newcommand{\osp}{\hspace{1em}} \newcommand{\Rl}{\bf R} \newcommand{\remove}[1]{} \begin{document} \begin{flushleft} {\large MATH 642:582--Fall, 2008} \\ {\bf Assignment 1--Due September 25 (Version: September 22)} \\ \end{flushleft} \parskip=10pt \begin{itemize} \item Please read the guidelines for homework available on the course web page: \begin{center} http://www.math.rutgers.edu/~saks/582F08/ \end{center} \item Please be on the look out for errors. If something seems not to make sense, check with me before investing a lot of time on the problem. \item Stanley, Enumerative Combinatorics, Chapter 1, is a good reference. \end{itemize} \begin{enumerate} \item Define a total ordering on $2^{[n]}$ by $S < T$ if $|S|<|T|$ or if $|S|=|T|$ and the largest element in $S \oplus T$ (the symmetric difference $(S-T) \cup (T-S)$) belongs to $T$. (Not to be handed in: show that this relation is indeed a total order on ${\cal P}([n])$). Let $A=\{a_1,a_2, \ldots, a_k\}$ be a $k$-subset of $[n]$ with $a_1