
MATH 642:582–Fall, 2003
Assignment 1–Due September 19 (Version: September 16)

1. Define a total ordering on 2[n] by S < T if |S| < |T | or if |S| = |T | and the largest
element in S ⊕ T belongs to T . (Not for handing in: check that this relation is indeed
a total order on P([n])). Let A = {a1, a2, . . . , ak} be a k-subset of [n] with a1 < a2 <

. . . < ak. Express (with explanation) the number of sets B ∈
([n]
k

)
with B < A, as a

sum of binomial coefficients.

2. Consider the following process: start with the trivial partition of [n] into one part. Then
apply the following step: take a part of the partition that has more than one element
and break it into two parts. Repeat this step until the resulting partition consists of n
singleton blocks. In how many ways can this be process be carried out?

3. Recall that Bn is the number of partitions of a set of size n. Let Cn be the number
of partitions of a set of size n such that any two consecutive integers are in different
blocks. Prove that Cn = Bn−1, for all n ≥ 1.

4. Let Q be the set of all univariate polynomials p(x), that map integers to integers. Show
that a degree n polynomial p belongs to Q if and only if it can be written in the form∑n

i=0 ai
(
x
i

)
, where the ai are integers. (In other words the polynomials

(
x
i

)
form a basis

for the Z-module Q.)

5. Let m be a positive integer. If λ is a partition of the integer n, define um(λ) to be the
number of integers that occur at least m times in λ. Let vm(λ) be the number of parts
that are equal to m. Show that, for fixed m, the sum of um(λ) is equal to the sum
of vm(λ), where both sums range over all partitions of some fixed integer n. (Note: a
partition of an integer n is defined to be a nonincreasing sequence λ = (λ1, . . . , λk) of
integers that sum to n. The numbers λ1, . . . , λk are the parts of λ.)

6. Determine (with explanation) the connection coefficients for expressing the rising fac-
torials in terms of falling factorials. In other words, for each n ≥ 0, find coefficients
(an,k : 0 ≤ k ≤ n) so that xn =

∑n
k=0 an,kx

k. (Connection coefficients will be discussed
in class.)

7. (a) Show that S(n, k) ∼ kn/k!, provided that k < n
lnn . (Here we assume that k is a

function of n, which may be the constant function).

(b) For fixed k, determine the asymptotic behavior of s(n, n− k) as n −→∞.

(c) (Bonus) The asymptotic behavior found in the previous part can be valid even if
k is allowed to grow with n, as long as it does not grow too fast. Determine how
fast k can grow without invalidating the formula.

More on back . . .
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8. Let k be a positive integer and let c1, . . . , ck be complex numbers. The linear constant
coefficient recurrence relation defined by c1, . . . , ck in variables z = (zn : n ∈ N) is the
system consisting of the equations

zn =
k∑
i=1

cizn−i,

for all n ≥ k.

Prove the following:

Theorem. Let c1, . . . , ck be complex numbers with ck 6= 0, and let a = (an : n ∈ N)
be a sequence of complex numbers. Let p(x) be the polynomial defined by: p(x) =
1 −

∑k
i=1 x

ici. Let
∏j
i=1(1 − λix)mi be the factorization of p into linear factors (with

λ1, . . . , λj distinct). Then the following are equivalent:

(a) a is a solution to the recurrence relation defined by c1, . . . , ck.

(b) The ordinary generating function of a,
∑

n≥0 anx
n is equal to q(x)/p(x) where

q(x) has degree at most k − 1.

(c) There are polynomials w1, w2, . . . , wj where for 1 ≤ i ≤ j, wi has degree at
most mi − 1 such that for all n ∈ N, an =

∑j
i=1wi(n)λni . (You may use, without

proof, the following standard result from algebra: if r1(x), . . . , rh(x) are univariate
polynomials that have no common root then there are polynomials s1(x), . . . , sh(x)
such that

∑h
i=1 s1(x)r1(x) = 1.)
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