
5 Tools from logic 6

Our goal is to be able to tell which mathematical assertions are true and which are false. The
field of mathematical logic is concerned with developing a general methodology for studying
mathematical assertions that works for all mathematical assertions. This turns out to be a
very difficult subject, with many subtle and complicated issues.

Fortunately, the majority of problems that mathematicians study do not require deep un-
derstanding of these logical issues, and mathematicians can function quite effectively with only
a very basic knowledge of mathematical logic. Section 3 covered some of this basic knowledge:
definite and indefinite assertions, and universal and existential quantification. In this section
we cover some additional background in mathematical logic.

• Construction of more complex assertions by combining or modifying simpler assertions

• Ways to compare two assertions: Basic logic allows us to say that one assertion is a
logical consequence of another, so that if we know the second assertion is true then we
can conclude that the first is true. Also, two assertions are logically equivalent if each is
a logical consequence of the other.

However, while

5.1 Building new assertions from old

There are various ways to modify and combine assertions to create new assertions. In the
previous section we introduced quantification, which converts an assertion with a free variable
into an existential or universal assertion. In this section we’ll introduce some other important
ways to change an assertion: negation, and logical combination.

The negation of an assertion Any assertion makes a specific claim that is either true or
false (which for indefinite assertions may depend on the values of some variables.) Given an
assertion A, the assertion “It is not the case that A” is called the negation of the assertion A,
and is abbreviated ¬A.

For example:

4. The negation of the definite assertion “59× 48 ≥ 522” is the sentence “It is not the case
that 59× 48 ≥ 522” or “59× 48 ≥ 522 is false”’

5. The negation of the definition assertion “Every even integer bigger than 2 can be expressed
as the sum of two primes.” is the sentence “It is not the case that every even integer
bigger than 2 can be expressed as the sum of two primes”

6. The negation of the indefinite assertion “x3 +x ≥ 5x2” is “It is not the case that x3 +x ≥
5x2”.

6Version 2-8-2015. c©2015 by Michael E. Saks.

37

The phrases “It is not the case that” and “is false” are negating phrases that convert a
sentence to its negative. It is often useful to be able to reformulate the negated sentence
without negating phrases. For example, Assertion 4 means the same as “59× 48 < 522”. For
Assertion 5 we can rewrite the negated sentence as “There is an even integer bigger than 2 that
can’t be expressed as the sum of two primes.”

For an assertion A, ¬A is true exactly when A is true and ¬A is false when A is true.

Combining two assertions Suppose that A and B are assertions. There are four basic ways
to combine A and B into a new assertion:

and (∧) The assertion “A and B” is true provided that both A and B are true. The symbolic
abbreviation is A ∧B.

or (∨) The assertion “A or B” is true provided that at least one of A and B is true. The
symbolic abbrevation is A ∨B.

implies, if-then (=⇒) The assertion “A implies B”, also written “if A then B” means that
“if it is the case that A is true then B must also be true”. This sentence is considered
false if A is true and B is false, and is considered true otherwise. In particular, if A is
false then A =⇒ B is true, whether or not B is false. The symbolic abbreviation of “A
implies B” is A =⇒ B.

if and only if (⇐⇒) The assertion “A if and only if B”, is true provided A and B are both
true or A and B are both false. The symbolic abbreviation is A ⇐⇒ B.

When we combine two assertions using one of these connectives, the truth value of the
resulting assertion depends only on the connective used, and the truth value of the assertions
being combined. The following table summarizes this:

TV (A) TV (B) ∧ ∨ =⇒ ⇐⇒
T T T ∧ T = T T ∨ T = T T =⇒ T = T T ⇐⇒ T = T
T F T ∧ F = F T ∨ F = T T =⇒ F = F T ⇐⇒ F = F
F T F ∧ T = F F ∨ T = T F =⇒ T = T F ⇐⇒ T = F
T T F ∧ F = F F ∨ F = F F =⇒ F = T F ⇐⇒ F = T

You can combine any two assertions by any of these methods. For example, from the two
assertions: “7 is prime” and “13 is divisble by 4” we can build the following assertions:

7. 7 is prime and 13 is divisible by 4.

8. 7 is prime or 13 is divisible by 4.

9. if 7 is prime then 13 is divisible by 4.

10. if 13 is divisible by 4 then 7 is prime.

11. 7 is prime if and only if 13 is divisible by 4.

38

Since “7 is prime” is true and “13 is divisible by 4” is false, Assertion 7 is false, Assertion
8 is true, Assertion 9 is false and and Assertion 11 is false.

Remark 5.1. The mathematical use of “and”, “or”, “implies” and “if and only if” is similar to
their use in everyday language, but there are some differences.

1. When someone says “John and I are going to the movie” then “and” does not connect
two assertions, it connects two nouns “John” and “I”. This sentence is a shortened way to
write “John is going to the movie and I am going to the movie”, which is the combination
of two assertions with “and”. A mathematician might write “5 and 7 are prime” or “5 or
6 is even” but it is important to realize that logically the first is shortened way to write
“5 is prime and 7 is prime”, and the second is a shortened way to write “5 is even or 6 is
even”.

2. In mathematics, “A or B” means that at least one of A and B is true, and possibly both
are true. In everyday language, “A or B” might have a similar meaning, or it might mean
that exactly one of A and B is true, for example, “I will have pizza for dinner or I will
have sushi for dinner” usually means “I will have pizza for dinner or I will have sushi for
dinner, but not both”. When a mathematician who means “A or B but not both” must
clearly say this or something like it, such as “Exactly one of A and B is true”.

3. In a statement “if A then B”, the assertion A is called the assumption and B is called
the conclusion and the meaning is “if A is true then B is also true”. The only way
the sentence is considered false is if A is true and B is false. In everyday usage, when
we say “if A then B” or “A implies B” we normally use it in a situation where A can
be thought of as causing B. We might say, “if I miss the bus then I will be late for
my appointment” Here the first part is the assertion “I miss the bus” while the second
assertion is “I will be late for my appointment” and the first assertion is the cause of
the second. In mathematics,“A implies B” is usually used whtn A and B are related,
but the rules of logic don’t require this, and “A implies B” even when A and B have no
connection. Such a sentence is true unless A is true and B is false, in which case it is
false.

Remark 5.2. Combining indefinite assertions. Indefinite assertions can be combined in the
same way that definite assertions are. However, there are a few things to be aware of.

• Don’t use the same letter as both a dummy variable and a free variable in a single
sentence. Suppose we have the sentences “x ≤ 7” and “For all x, x2 + 1 ≥ x. In the first
sentence x is a free variable, while in the second it isi a dummy variable. If you combine
these sentences, using “and” for instance, you get “x ≥ 7 and for all x, x2 + 1 ≥ x. The
use of x as both a free variable and a dummy variable in the same sentence is potentially
confusing, and should not be done. Here’s how to avoid it. Recall that in an assertion
where x is a dummy variable we may replace all occurences of x by another letter. So
replace all x’s in the second sentence by a different letter, say z. The combined sentence
will then be “x ≥ 7” and for all z. z2 + 1 ≥ z.

39

• Consider the two sentences “If n is prime and n > 2 then n is odd.” and “For all n, if
n is prime and n > 2, then n is odd”. From a mathematical standpoint these sentences
are different. In the first sentence n is a a free variabe. The second assertion is a definite
assertion with dummary variable n. The second sentence is true. Since the first sentence
is an indefinite assertion it does not have a truth value, but if we substitute a specific
value for n it does have a truth value.

Even though the first sentence is different from the second, it is common, even among
mathematicians, to treat the first sentence as though it has “For all n” added to the
beginning so that it means the same as the second sentence. This is an example of
a violation of the “safety rules” of mathematical communication. It happens to be a
violation that is not that dangerous (it’s unlikley to cause confusion) but it is better
for students in this course not to violate the safety rule and to treat these sentences as
different.

Logical expressions. In elementary algebra, you dealt algebraic expressions such as

5× a× (b+ c× ((a− b)− 4) + 7× d.

These expressions are built by starting with variables, each representing a real number, and
combining them with each other, or with constants by using addition, multiplication and sub-
traction.

In logic, one deals with logical expressions. In such expressions. the variables, called propo-
sitional variables represent assertions, which are combined or modified using ¬, ∧, ∨, =⇒ and
⇐⇒ , ∀ and ∃.

Here’s an example of a logical expression:

∃x,A(x) ∧ ∀z, B(z) =⇒ C(z).

In the logical expression above, A, B and C represent assertions. We write A(x) instead
of A to eimphasize that x appears as a free variable in A, and similarly z appears as a free
variable in B and C

Modeling assertions by logical expressions Logical expressions allow us to study the
way assertions are put together from certain starting assertions, without worrying what the
starting assertions are. In the above example the expression is built from starting assertions
A, B and C.

Example 5.1. Suppose we are studying the assertion “For every integer n, if n is prime and
n− 1 is divisible by 4, then there are integers a and b such that n = a2 + b2. We can represent
this by logical expressions in various ways, depending on how we assign our variables:

• We could simply assign a single variable A to the entire assertion, and our logical repre-
sentation is simply A.

40

• We could use B(n) to represent the indefinite assertion “if n is prime and n−1 is divisible
by 4 then there are integers a and b such that n = a2 + b2” and then our entire sentence
is represented by “∀n,B(n)”.

• We could let C(n) be the indefinite assertion “n is prime”, let D(n) be the indefinite
assertion “n − 1 is divisible by 4”, and E(n) be the indefinite assertion (with dummy
variables a, b) “There are integers a and b such that n = a2 + b2”. In this case our
sentence will have the representation “∀n, (C(n) ∧D(n)) =⇒ E(n)”.

• We can let F (n, a, b) denote the indefinite assertion with free variables a, b, n given by
“n = a2+b2”. We can then rewrite our sentence as ∀n, (C(n)∧D(n)) =⇒ ∃a∃bF (n, a, b).

All of these logical expressions represent the original assertion; the later ones provide more
detail on the structure of the assertion by breaking it down further.

An assertion is called atomic if it does not use an existential quantifier “there exists x” or
a universal quantifier “for all x” or the connectives “and”, “or”, “implies (if-then)” or “if and
only if”. In the previous example all of the assertions C(n), D(n) and F (n, a, b) are atomic
expresions. Here are other examples of atomic assertions: “x2 6= 7” or “f(x) ≤ f(z), and
“S ⊆ T” Note that if A is atomic, then we also consider its negation ¬(A) to be atomic.

Remark 5.3. The assertion “A ⊆ B” is atomic, but if we use the definition of “⊆”, we can
rewrite the sentence as: “for all x ∈ B, we have x ∈ A”. This is not an atomic assertion since
it has a universal quantifier. Thus it’s possible that two sentences can have the same meaning
where one is atomic and the other iis not.

An assertion that is not atomic is called a compound assertion. Every compound assertion
is of one of the following forms:

decomposable An assertion of the form “A and B”, “A or B”, “A implies B” or “A if and
only if B”, where A and B are assertions, is said to be decomposable, because it can be
decomposed into two assertiions. Note that A and B might themselves be compound
assertions.

quantified An assertion of the form “for all x, A(x)” or “there exists x such that A(x)” is a
quantified assertion. Here A(x) might itself be a compound assertion.

negative compound assertion An assertion of the form “it is not true that A” where A is
a compound assertion. is a negative compound assertion.

Representation of compound assertions using a logical expression will be very useful to us
when we start doing proofs. The following three concepts will be especially important.

• The top-level structure of a compound assertion

• Logical equivalence of two compound assertions

• One compound assertion is a logical consequence of another.

41

Top-level structure of a compound assertion Every compound assertion can be written
in exactly one of the following 7 forms, by specifying the assertions A and/or B appropriately.
For a given compound assertion, the form that fits it is called the top-level structure of the
assertion.

A ∧B

A ∨B

A =⇒ B

A ⇐⇒ B

¬A

∃x,A

∀x,A.

Example 5.2. The sentence “For all x, f(x) ≤ f(y) implies x ≤ y, and for all z, z ≤
f(z)”. This assertion has two free-variables f (standing for a function) and y standing for
a real number. The form of the sentence is (∀x, (C(x, y, f) ∧ D(x, y))) ∧ (∀z, E(z, f)) where
C(x, y, f) is the assertion “f(x) ≤ f(y)” and D(x, y) is the assertion “x ≤ y” and E(z, f) is the
assertion“z ≤ f(z)”. Notice that the way this assertion is put together: C(x, y, f) is combined
with D(x, y) using ∧ and then the combined assertion is given a universal quantifier in x, to
produce an assertion G(y, f). Separately, E(z, f) is given a universal quantifier in z to produce
an assertion H(f). The entire assertion is then constructed as G(y, f) ∧H(f), and this is the
top-level structure.

Remark 5.4. There is some possible ambiguity in the meaning of the original assertion because
we need to know how the parts of the sentence are grouped. A different interpretation would
be “For all x, (C(x, y, f)∧D(x, y)∧∀z, E(z, f)). In this interpretation, the top-level structure
is ∃x, J(x), where J(x) represents the inner assertion above. How do we know which is meant?
There are subtle reasons to prefer the first interpretation, but the possible ambiguity means
that the sentence as written is potentially dangerous! (Any sentence that does not have a
single clear interpretation is dangerous for mathematical communication.) The way we can get
around this is to use parentheses in complex English sentences as they are used in mathematical
sentences. So to be safe, we might write “(For all x, f(x) ≤ f(y) implies x ≤ y) and (for all z,
z ≤ f(z)).

Example 5.3. The assertion “x2 ≥ x implies that there is a number z such that z2 + 1 ≤ 2xz
and z ≥ 1” has top-level structure A(x) =⇒ B(x) where A(x) is the sentence “x2 ≥ x” and
B(x) is the sentence “ there is a number z such that z2 + 1 ≤ 2xz and z ≥ 1.”

Since B(x) is a compound assertion, we can take our analysis further to determine the
top-level structure of B(x). Here B(x) has top-level structure ∃zC(x, z) where C(x, z) is the
assertion “z2 + 1 ≤ 2xz” and z ≥ 1”. Also, C(x, z) has top-level structure D(x, z) ∨ E(z),
where D(x, z) is the assertion “z2 + 1 ≤ 2xz” and E(z) is the assertion “z ≥ 1”.

42

Example 5.4. Consider the assertion “It is not the case that both n is prime and n + 1 is
a square.” (Note: A number is said to be a square if it is the square of some integer.) The
top-level structure is ¬C where C = A(n)∧B(n)), and A(n) is “n is prime” and B(n) is “n+ 1
is a square”.

Logical equivalence of logical expressions and of assertions Let’s start with an ex-
ample. Consider the expressions “P = ¬(A ∧ B)” and Q = ¬A ∨ ¬B. As usual A and B
represent any assertions. These two expressions have the following remarkable property. If you
replace each of the assertions A and B in both expressions by any assertion you choose, the
resulting two assertions are both true or both false. Since for every choice of A and B the two
expressions have the same truth value, we say that P and Q are logically equivalent, written
P ≡ Q.

To see the equivalence, note that the first expression is true if A ∧ B is false, and for this
we need A to be false or B to be false which happens exactly when ¬A ∨ ¬B is true.

Two assertions V and W are logically equivalent if we can label the assertions appearing in
V and in W by propositional variables and represent V and W by logical expressions involving
those variables, in such a way that the resulting logical expressions are equivalent.

Example 5.5. Consider the two assertions in the free variable S which represents a set: “It’s
not true that both S is finite and S is nonempty” and “S is infinite or S is empty.” By letting
A be the assertion “S is infinite” and letting B be the assertion “S is empty”, we can represent
the first assertion by the logical expressions“¬(A ∧ B) and the second by “¬A ∨ ¬B”. As we
noted above, these logical expressions are equivalent, so the two assertions are equivalent.

Below we’ll discuss ways to convert an assertion into a logically equivalent assertion.

The “logical consequence” relationship for expressions and assertions Consider the
two logical expressions “P = A ⇐⇒ B” and “Q = A∧ 6 B”. These expressions are not
logically equivalent: If A is a true assertion and B is a false assertion than P is false, while
Q is true. Nevertheless there is a weaker relationship between the expressions: anytime that
P is true, Q is too. We say that Q is a logical consequence of P , denoted Q a P . To see this
relationship consider each of the possible pairs of truth values for A and B (both true, A true
and B false, A false and B true, both false) and check which of these make P true and which
make Q true. You’ll see that every choice that makes P true also makes Q true.

Now if V and W are assertions, we say that V is a logical consequence of W written V a W ,
provided that we can label the assertions that make up V and W by propositional variables
and represent V by a logical expression Q and W by a logical expression P , involving these
variables, so that Q a P .

Example 5.6. Suppose that V and W are the assertions V =“f(x) ≥ y or it is not the case
that g(y) ≤ x” and W =“f(x) ≥ y if and only if g(y) ≤ x”. (These have four free variables,
f and g representing functions and x and y representing real numbers.) Define the assertions
A =“f(x) ≥ y” and W is the assertion B =“g(y) ≤ x.” Then V is represented by the logical
expression A ∨ ¬B and W is represented by the logical expressions A ⇐⇒ B. Since the

43

first logical expression is a logical consequence of the second, we conclude that V is a logical
consequence of W .

Some basic logical equivalences and logical consequences To make use of logical equiv-
alence and logical consequence, we collecgt some basis examles of pairs of logical expressions
where one expression in the pair is a logical consequence or is logically equivalent to the other.

We’ll start with equivalence of expressions that don’t involve quantifiers. Here are some
simple and important equivalences.

A ∨B ≡ ¬A =⇒ B

A =⇒ B ≡ ¬B =⇒ ¬A
A ⇐⇒ B ≡ (A =⇒ B) ∧ (B =⇒ A)

(A ∨B) ∧ C ≡ (A ∧ C) ∨ (B ∧ C)

(A ∧B) ∨ C ≡ (A ∨ C) ∧ (B ∨ C)

A =⇒ (B =⇒ C) ≡ (A ∧B) =⇒ C

¬(A ∧B) ≡ ¬A ∨ ¬B
¬(A ∨B) ≡ ¬A ∧ ¬B

¬(A =⇒ B) ≡ A ∧ ¬B
¬(¬A) ≡ A.

You can check that these equivalences are correct by replacing each variable by T or F in
all possible ways and checking that in every case, the truth value of the expression on the left
matches the truth value of the expression on the right.

A typical application of an equivalence is: Suppose we are trying to prove an assertion of
the form A ⇐⇒ B. Since this is equivalent to (A =⇒ B) ∧ (B =⇒ A), this tells us that in
order prove A ⇐⇒ B, we can separately prove A =⇒ B and B =⇒ A.

Next let’s consider logical consequences. Every logical equivalence gives us two consequences
since P ≡ Q tells us that P is a logical consequence of Q and Q is a logical consequence of P .
Here are a few logical consequences that are not logical equivalences.

A ∨B a A

A a A ∧B
A a B ∧ (B =⇒ A)

A =⇒ C a (B =⇒ C) ∧ (A =⇒ B)

To see why the first logical consequence is correct, notice that when A is true it is certainly
the case that at least one of A and B is true. For the second logical consequence, when both A
and B are true, then certainly A is true. For the third, if we know that B is true and B =⇒ A
then it follows that A is true.

Next we’ll consider logical equivalence and consequence for expressions involving quantifiers.

44

• ¬∀x,B(x) ≡ ∃x,¬B(x).

• ¬∃xB(x) ≡ ∀x,¬B(x).

• ∀x∀y, A(x, y) ≡ ∀y∀x,A(x, y). (We can interchange two universal quantifiers.)

• ∃x∃y, A(x, y) ≡ ∃y∃x,A(x, y). (We can interchange two existential quantifiers.)

• Suppose that C(x) involves the free variable x and D does not involve x. Then ∀x(C(x)∨
D) ≡ (∀xC(x)) ∨ D. More generally, The same equivalence holds if we repace “∨” in
both formulas by any of the connectors ∧, =⇒ or ⇐⇒ or if we replace the quantifier
∀ in both places by ∃.

• ∀x∃y, A(x, y) a ∃y,∀x,A(x, y).

The first two equivalences, which involve negations of universal and existential assertions
are the most important: when we negate a universal assertion we get an existential statement,
and vice versa. To understand why this is true, note that when we say “It is not the case that
for all x A(x) holds” we mean “There is at least one x such that A(x) does not hold” and
similarly when we say “It is not the case that there is an x such that A(x) holds” we’re saying
that “For every x, A(x) doesn’t hold.”

For the final logical consequence, it is important to understand that these expressions are
not logically equivalent. The first says that given any x, it is possible to choose y (possibly
depending on x) so that A(x, y) is true. The second says that it is possible to choose a single
y (independent of x) so that A(x, y) is true for every x. These are not equivalent, but if the
second is true then the first must be true also.

Reformulations of a universal assertion The same assertion can be reformulated in many
different ways. Sometimes the reformulation is based on modifying words using the fact that in
English there are different ways to say the same thing. Other times, the reformulation makes
use of logical equivalences. Here we’ll see how this works in a simple example.

• For every positive integer n if n is prime and n > 2 then n is odd.

This hypothesis of the universal assertion is the scenario:
Input. A positive integer n Assumption: n is prime and n > 2

and the conclusion is n is odd.
Here are different ways to express this universal assertion:

1. Every prime number greater than 2 is odd.

2. Each prime number greater than 2 is odd.

3. For all prime integers n that are greater than 2, n is odd.

4. For all prime integers n satisfying n > 2, n is odd.

45

5. For all integers n such that n is prime and n > 2, n is odd.

6. For all prime integers n, if n > 2 then n is odd.

7. For all integers n, if n is prime and n > 2 then n is odd.

8. There are no even primes larger than 2. For all integers n, if n is even and n > 2 then n
is not prime.

Look at each one of these carefully. All of them express the same universal proposition
in different language. The words “every” and “for all” clue you in that this is a universal
proposition. The words “satisfying” and “such that” after the “For all n” are clues that what
follows is part of the assumption.

Assertion 8 does not start with “Every” or “For all”, the statement starts “There are
no . . . ”. This is expressing the negation of the existential assertion “There is an even prime
number larger than 2”. We saw already that every universal assertion is the negation of an
existential assertion.

Assertion 8 has the form of a universal assertion, but it seems to scramble the assumption
and the conclusion. We can show that it means the same as the original assertion by using the
logical equivalence rules presented earlier in this section.

The assertion we’re considering is built from 3 atomic assertions: A =“n is prime”, B =”n >
2” and C =”n is odd”. The symbolic representation of Assertion 1 is “∀n, (A∧B) =⇒ C”, and
the symbolic representation of Assertion 8 is “∀n, (¬C ∧B) =⇒ ¬A”. The fact that these two
mean the same thing follows by showing that the two propositional expressions (A∧B) =⇒ C
and (¬C∧B) =⇒ ¬A are logically equivalent. For this we use the equivalence rules of Section
5.1.

(A ∧B) =⇒ C ≡ A =⇒ (B =⇒ C)

≡ ¬(B =⇒ C) =⇒ ¬A
≡ ¬(C ∨ ¬B) =⇒ ¬A
≡ (¬C ∧B) =⇒ ¬A.

46

