Intro to Mathematical Reasoning (Math 300) – Homework 9¹

- 1. For each of the following functions, determine if the function is one-to-one, onto (the given target set), or both. Prove your answers.
 - (a) Let $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ be given by the rule f(n) = n + 12 for all $n \in \mathbb{Z}$.
 - (b) Let $g: \mathbb{N} \longrightarrow \mathbb{N}$ be given by the rule f(n) = n + 12 for all $n \in \mathbb{N}$.
 - (c) Let $h: \mathbb{Z} \longrightarrow \mathbb{Z}$ be given by the rule h(x) = x/2 for x even and h(x) = (x-1)/2 for x odd.
- 2. Let $r: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ be given by the rule $r(a,b) = 2^{a-1}(2b-1)$. Prove that r is one-to-one and onto. (Hint: To prove that r is one-to-one let (a_1,b_1) and (a_2,b_2) be elements of $\mathbb{N} \times \mathbb{N}$ and assume $f(a_1,b_1) = f(a_2,b_2)$. Use the fact that a number can't be both odd and even to prove that $a_1 = a_2$ and then prove that $b_1 = b_2$. To prove that r is onto, use complete induction to prove that for all natural numbers n, there are natural numbers a and b such that $n = 2^{a-1}(2b-1)$. The basis case for the induction should be the case that n is odd.)
- 3. End of chapter 5, problem 5 (a) and (b).
- 4. End of chapter 5, problem 9.
- 5. End of chapter 5, problem 24.
- 6. Prove Theorem 8.2.4.
- 7. Problem 8.3.8.

¹Version 3/29/04