- 1. Textbook, problem 3.2.3.
- 2. Textbook, problem 3.2.6.
- 3. Prove: For all real numbers $x \ge -1$ and for all nonnegative integers n, $(1+x)^n \ge 1 + nx$.
- 4. Prove that for all nonnegative integers n, $\sum_{i=1}^{2^n} \frac{1}{i} \ge 1 + \frac{n}{2}$. (It is strongly recommended that you test this out for some small values of n before trying to prove it. Also, in your proof you may use the following lemma without proof: For all positive integers k, and all lists b_1, \ldots, b_k of real numbers satisfying $b_1 \ge b_2 \ge \cdots \ge b_{k-1} \ge b_k$, we have $\sum_{j=1}^k b_j \ge kb_k$.)
- 5. Let a, b be real numbers. Let c_1, c_2, c_3, \ldots be an infinite sequence of real numbers such that for each positive integer k, $c_k = ak b$. For each positive integer n, let $s_n = \sum_{k=1}^n c_k$. Prove that for each positive integer n, $s_n = \frac{a}{2}n^2 + (\frac{a}{2} b)n$.
- 6. Let a_0, a_1, a_2, \ldots be an infinite sequence of real numbers such that for $n \geq 3$, $a_n = a_{n-1} + 2a_{n-2}$. Prove that for each $n \geq 0$, if n is even then $a_n = \frac{1}{3}(2^n(a_0 + a_1) + 2a_0 a_1)$ and if n is odd then $a_n = \frac{1}{3}(2^n(a_0 + a_1) + a_1 2a_0)$.
- 7. Prove: For any integer n and for any list A_1, \ldots, A_n where each A_i is a set, if for all $i \in \{1, 2, \ldots, n\}$ and $j \in \{1, 2, \ldots, n\}$, we have $A_i \subseteq A_j$ or $A_j \subseteq A_i$ then then there is a set $k \in \{1, 2, \ldots, n\}$ such that $A_k \subseteq A_i$ for all $i \in \{1, 2, \ldots, n\}$.

¹Version 2/16/04