7 First proofs: Elementary set theory®

As mathematicians and students of mathematics, it is our job to separate those mathematical
assertions that are true from those that are false. The method that mathematicians use to
verify that a mathematical assertion is true is called deductive proof. Roughly speaking, a
deductive proof is a step by step argument that starts from initial assumptions and applies
valid rules of deduction to build to a desired conclusion.

Theorems, propositions, corollaries, lemmas, conjectures, and axioms We have been
using the term principle to mean a mathematical assertion that has been proved to be true.
Mathematicians usually label a principle as a Theorem, Proposition, Lemma, Corollary or
Claim. These terms are not precisely defined but are used in the following way:

e A principle that is considered relatively important is called a theorem, otherwise it is
called a proposition.

e A corollary refers to a a principle that is deduced as an easy consequence of a previously
proved theorem.

e A lemma refers to a principle that may not be so interesting by itself, but is of interest
because it is a step in the proof of a theorem or a proposition. A relatively easy lemma
may be called a claim.

An assertion for which there is no proof may be informally called a speculative assertion. If
a mathematician believes that a speculative assertion is true based on some evidence (such as
many successful test cases, or a partially completed proof), he might propose the assertion as
a conjecture. There are a number of very interesting conjectures in mathematics that have not
been proved yet. Conjectures are sometimes named by the person who proposed them. For
example, one of the most famous conjectures in mathematics is Goldbach’s conjecture:

Every even number greater than 2 can be expressed as the sum of two primes.

It has been verified by computer that every even number between 4 and 4 x 10'® can be
expressed as the sum of two primes. However, no one knows whether this is true of all even
numbers.

The last word that refers to a universal principle is the word azxiom. An axiom is a universal
principle that we assume without proof. You need to have some universal principles to start with
in order to prove anything. The axioms provide a starting point for mathematical reasoning.

One confusing aspect when you start doing proofs is: which universal principles do we treat
as axioms (so we assume them without proof) and which ones require proof. This depends
upon context. In this chapter we will prove lots of very basic facts including ones that you
might think don’t need a proof.

When we start doing proofs with numbers, our axioms will include things like the familiar
commutative property of addition: For any two real numbers a,b, a + b = b+ a. We'll list our
axioms for workoing with numbers later.
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First proof: An existential assertion Most theorems that mathematicians prove are
universal principles, however sometimes they prove existential assertions. If a conjectured
universal principle turns out to be false, then the counterexample yields an existential assertion.
For example, suppose we had the following proposed universal principle:

Assertion 7.1. For any three sets A, Band C if ANB # (0, ANC # 0 and BN C # () then
ANBNC #0.

It’s not hard to see that this assertion is false. To prove it false you need to give a coun-
terexample. A counterexample provides a proof of the negation of the above assertion, which
is an existential assertion.

Proposition 7.1. There exist sets A, B and C such that ANB # 0, ANC # () and BNC # ()
and ANBNC =10.

Proof. Let A = {1,2}, B = {1,3} and C = {2,3}. Then AN B = {1}, ANC = {2} and
BNC ={3}, while ANBNC = 0. O

An existential assertion specifies a particular scenario, and to prove it we just need to show
that there’s at least one solution. Usually, this is done as above: we simply describe an example,
and demonstrate that the example fits the scenario. However, this is not always easy, for two
reasons:

e [t may be very hard to come up with an example, or

e even if we have a proposed example, it may be difficult to demonstrate that it satisfies
the required properties.

Proving universal assertions: setting up the scenario Most of our efforts will be spent
on proving universal principles. Such a principle has the form: “For all z of type T, if A(x) then
C(z)”. As we've discussed, universal principles seem much more challenging to prove because
the principle summarizes many assertions, one for every x of type T that satisfies A(z). It
is not enough to simply check a few examples of x’s that satisfy A(z). We need a way to
simultaneously argue about all possible z’s.

The proof of a universal principle will always start something like:

Suppose z is an arbitrary object of type 7. Assume A(x). We must show C(z).

The first two sentences set up the hypothetical scenario for the universal principle. Having
set up the hypothesis our goal is to show that the objects in the scenario satisfy the conclusion.
This scenario and goal comprise the initial proof task to be accomplished.

The main part of the proof requires us to argue convincingly that C'(z) holds. Our argument
may use the information about x given by the scenario (that x of type T" and satisfies A(x))
but makes no other assumptions about x.
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The scenario given by the object x satisfying A(z) is the starting scenario of the proof and
C'(x) is the starting goal, and together these comprise the starting proof task to be accomplished.

One of the most important features of a proof is that as the proof proceeds, both the scenario
and the goal of the proof task may change. New objects may be added and later disappear,
new assumptions are made, and later dropped, and the goal can change as well. We'll refer
to these changes as the evolution of the proof task. As the proof task changes, it is absolutely
crucial to be aware of the current task:

e What are the active objects for the current scenario?
e What are the active assumptions?

e What is the current goal?

The idea of the evolution of the proof task may seem confusing, but becomes much less
confusing once you understand that the evolution proceeds according to strict rules, which you
will learn. You will need to master these rules, and also need to practice keeping track of the
current proof task. As you develop mastery you’ll find that both the rules, and the evolving
proof task become natural and you will have the built a foundation that will enable you to
study and write proofs in any area of mathematics.

7.1 Proving universal principles in elementary set theory

Proofs of universal principles all have the same basic structure regardless of the area of mathe-
matics. To get started with these proofs we’ll work in elementary set theory. We pick this area
because:

e There are many examples of universal principles that are relatively easy to prove,
e The proofs illustrate many of the basic techniques of proof.

e The theorems, while easy, are useful in many areas of mathematics.

Before we actually start doing proofs, we need a starting point of mathematical knowledge.
This starting point consists of the basic definitions and facts about set theory. We introduced
these in Section 2.1. We now carefully review and expand on these definitions in a more careful
way.

In most settings, we are considering sets whoses members come from a particular universe.
We denote the universe set by U. In what follows, S and T are arbitrary subsets of U and
(A; - j € J) is an indexed collection of sets of subsets from U with index set J.

Set membership For every set S and every object z, either x is a member of S, denoted
x € S or x is not a member of S, denoted x & S.

Subset and superset For two sets S and T we say that S is a subset of T', denoted S C T,
or T is a superset of S, denoted T' O S provided that for every x € S, we have z € T'.
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Union The union of S and T', denoted S U T is the set whose members are those x such that
x € SorxzeT. The union of an indexed collection (A; : j € J), denoted .. ; 4;, is the
set consisting of those x such that there exists a j € J with z € A;.

jeJ

Intersection The intersection of S and 7', denoted S N T is the set whose members are those
x such that both x € S and x € T. The intersection of indexed collection (4; : j € J),
denoted ﬂjeJ A;, is the set consisting of those x such that for all j € J, z € A;.

Set difference The difference between S and T, denoted S\T or S — T is the set of those x
that belong to S but not to 7.

Complement The complement of A is the set U\ A. (Notice that the definition of complement
assumes that there is a fixed universe U. If we change the universe then the notion of
complement may change. For example if A is the set of even integers and the universe is
the set of integers then A€ is the set of odd integers, but if the universe is the set of real
numbers then A° is the union of the set of odd integers and the set of real numbers that
are not integers.)

Symmetric Difference The symmetric difference of two sets A and B, denoted AAB is the
set A\BU B\A.

Equality of Sets We define what it means for two sets to be equal in two ways. These
definitions mean the same thing.

Biconditional version Two sets S and T are equal provided that for every object x,
rxe Sifand onlyif z € T.

Containment version Two sets S and T are equal provided that S CT and T C S.

Disjointness of sets Two sets A and B are disjoint provided that AN B = (). The collection
(A; : j € J) is pairwise disjoint if for any 4,j € J with ¢ # j we have A; and A; are
disjoint.

Here we are very careful to express these definitions precisely using the logical constructions
(and, or, if-then, if and only if, there exists and for all) described in the earlier sections. For
example, the condition that S is a subset of T is equivalent to the universal assertion that
“for all z € S we have € T”. (Note this is an indefinite assertion that depends on the free
variables S and T, and that z is a dummy variable). Using this precise language sometimes
makes the definitions seem more complicated, but is very useful as we start to prove things.

We will now state and prove some very simple universal principles. These principles are so
simple as to be almost obvious, and they are easy to prove. This has the advantage that we
can focus on the task at hand, learning what is required of an acceptable proof in mathematics.

Proposition 7.2. For any indexed collection of sets (A; : j € J) and any k € J we have ,
Ar CUjes Aj-
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In words this proposition says: if you take the union of a collection of sets, then each set in
the collection is a subset of that union, which certainly seems quite obvious. Let’s see what a
careful proof of it looks like.

In some of our examples of proofs, particularly early on, we present proofs in two columns.
The proof is contained in the left column. The right hand column contains commentary on
the proof that explains how the proof is put together, and is intended to help beginner’s learn
how to write proofs. The commentary is not part of the proof, and when you write your own
proofs you should not include a commentary section, unless specifically asked to do so. Also,
the large spaces between lines in the proof column are there only to allow the lines of the proof

to match up with the corresponding comment

Proof

Suppose (A; : j € J) is an arbitrary in-
dexed collection of sets and suppose k is
an arbitrary member of J. We must show

Ap C UjeJ A;.

By definition of C, we must show that for
every x € Ay, we have x € (J,c; A;.

So suppose x is an arbitrary member of Ay.
We must show that x € (J,c; A;-

By the definition of |J, x € [J;c; A; means
that there is an index 7 such that x € A;.
So we must show that there is an ¢ € J such
that x € A;.

This is true since, by assumption, we have
ke Jand x € A

We therefore have x € (J,.; A; and since z

was an arbitrary member of A, we have A, C
U e Ay O

Commentary

Since we are proving a universal assertion, we
begin by setting up the scenario, and stating
the goal. The scenario consists of the index
set J, the indexed family (A, : j € J) and
the index k € J. The goal is to show A, C
UjeJ Aj :

We change the goal by applying the defini-
tion of C. Notice that the high-level struc-
ture of this new goal is a universal assertion.
This is a key point in the proof. Since the
goal has been restated as another universal
assertion, we introduce a new object into the
scenario corresponding to the object in the V
quantifier. This leads to a new formulation
of the goal.

Here we use the definition of | ] to restate the
goal once more.

Using the two assumptions k € J and = € Ay,
from the scenario, we have met the final goal.
We now work backwards through the previ-
ously stated goals to get back to our original
goal, completing the proof. The [J symbol is
used to indicate the end of a proof.

Remark 7.1. 1. This universal principle and many of the others in this section are easily
visualized using the Venn Diagram picture. The picture is certainly helpful, but is unsat-
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isfactory as a proof. We are learning the skill of writing proofs that will work in all areas
of mathematics, and in most areas of mathematics you can’t prove things by picture.
Also, pictures are often misleading, and can lead you to think that something is true that
isn’t.

2. During the course of the proof, the proof task (scenario and goal) are modified several
times. Each modification is driven by the current goal. This is what is meant by the
evolution of the proof task.

3. The proof starts by focusing on the task of simplifying the goal. As we simplify the goal,
the scenario changes and the goal change. We continued until the goal was so simple that
there was no useful way to transform it further. At that point, we start trying to prove
the goal. For this particular proof, achieving this final goal was simple. This will be the
case in most of the early proofs we do, because we are focusing on mastering the process
of modifying the scenario and goal. As we consider more interesting universal principles,
we aren’t so lucky; after modifying the scenario and the goal there will still be a lot of
work to do.

Here’s a related statement concerning the intersection of sets in an indexed family.

Proposition 7.3. For all indezed collections of sets (A; : j € J) and for all k € J, Nje;A; C
Ap.

Exercise 7.1. Prove Proposition 7.3
Corollary 7.4. For any two sets A and B, AC AUB and AN B C A.
This is called a corollary because it follows easily by applying previously proved assertions.

Proof. Suppose that A and B are arbitrary sets. For the first conclusion, we want to apply
Proposition 7.2. To do this we view (A, B) as an ordered pair of sets, so that it is an indexed
collection. Then Proposition 7.2 implies A C AU B. Similarly Proposition 7.3 implies AN B C
A. m

The next principle is called transitivity of containment.

Proposition 7.5. For any three sets S, T, and U, if S CT and T C U then S CU.

Proof Commentary

Suppose that S, T' and U are arbitrary sets. | Setting up the initial proof task.
Assume S C T and T C U. We must show
SCU.

By definition of C, we must show that for all | Restating the goal using the definition of C.
x €S, we have x € U.
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Suppose that z is an arbitary member of S.
We must show x € U.

Sincexz € S and S C T we have x € T'. Since
xe€T and T C U we have x € U.

Since x was an arbitrary member of S we
conclude S C U, as required to prove the
proposition. [

Since the new goal is a universal assertion,
we introduce a new object into the scenario,
and modify the goal accordingly.

Here we apply the definition of subset twice.

The next principle shows that union and intersection satisfy a “distributive law”. The proof
will introduce an important proof teachnique called proof by cases.

Proposition 7.6. For any indezed collection (A; : j € J) of sets and any set B we have:

1. (ﬂjeJ Aj) UB = ﬂjeJ(Aj U B)
2. (Ujes 4j) N B =U;e,(4; N B)

The conclusion has two parts. We will only prove the first conclusion, and leave the second

conclusion as an exercise.

Proof

Suppose that (A; : j € J) is an indexed col-
lection of sets and suppose that B is a set.
We must show:

(()A4)UB=()(4,UB).

jedJ jed

Using the definition of set equality (contain-
ment version), it suffices to show: (1) The
first set is a subset of the second, and (2)
The second set is a subset of the first.

To prove (1), by the definition of C we must
show that for all z € ((;c; A;) U B we have
z € (\;e;(A;UB). Suppose z is an arbitrary
member of (();c; A;) U B. We must show
T < njeJ(Aj U B)
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Commentary
Setting up the proof task.

Here we have replaced our original goal by
a combination of two goals. We will achieve
each goal separately.

Introduce z into the scenario and reformulate
the goal.



By definition of () this means we must show
that for every j € J, x € A; U B. Suppose k
is an arbitrary member of J; we must show
x € A, U B, and by the definition of U this
means we must show x € A, or x € B.

Since by hypothesis x € ([, A;)U B, using
the definition of U, we have = € ([0, 4;) or
xr € B.

We now divide the proof into cases depending

on whether z € ;. ; A; or z € B.

Case 1. Assume z € (;.; 4;. Then by def-
inition of (), for all j € J we have x € A;.
In particular, since k € J, x € Ay, and Thus
r e A, UB.

Case 2. Assume z € B. Then z € A, U B,
by the definition of U.

In both cases we concluded x € A, U B, and
since k € J was arbitrary we conclude that
z € (;e;(Ax U B). Since x was an arbitrary
member of ((;c; Ar) U B, we conclude that
(Njes Aj) U B C N;c;(A4; U B). This com-
pletes the proof of (1).

Next we show (2) that (,c;(A; U B) C
(MjesA4j) U B. For this we must show that
for all z € (V;c;(A; U B) we have z €
(ﬂjej A;) U B. Suppose z is an arbitrary
member of [);.;(A; U B). We must show
z € ((jes4j) U B, so we must show that
z € (e Ajorx€B.

69

Applying the definition of (] changes the goal
once again to the form of a universal princi-
ple. So we introduce an arbitrary k£ € J into
the scenario and reformulate the goal. Ap-
plying the definition of U changes the goal
again.

Now that the goal is simplied, we focus on
the assumptions we know about x to work
towards the goal. The hypothesis on x tells
us that x satisfies one of two conditions.
This is our first example of proof by cases.
We have identified two possibilities. Our as-
sumptions tell us that at least one of them
is true, but we don’t know which. The argu-
ment that we’ll use to reach our goal depends
on which of these possibilities is true. So we
split the proof into two cases, in which we
consider each possibility separately.

In the first case, we add the first possibility
“x € ﬂje ;A;7 to the active assumptions of
the scenario. This is called the case assump-
tion. We then show the desired conclusion.

We now do the second case. Since the first

: 3 [44 7
case is over, the assumption “ x € ﬂjGJ A;
is remowved from the scenario. We then add
the new case assumption “x € B” to the sce-
nario.

As we did in part (1), we start by modifying
the goal. Because of the “for all” goal, we
introduce x into the scenario, and modify the
goal further.



We will divide into cases depending on
whether x € B or x ¢ B.

Case 1. Assume z € B. Then z €
(Mjes Aj) U B by the definition of U.

Case 2. Assume z ¢ B. In this case, we
will show that = € (,c; A;. To achieve this
goal we must show that for all j € J we have
r € A;. So suppose that k is an arbitrary
member of J. We must show z € Aj.

By our assumption on A, z € (,c,;(A; U B)
so by the definition of [, since k € J, we
have z € A, UB, so x € A, or ¢ € B. Since
xr ¢ B, we must have v € A;. Since k was an
arbitrary member of J we have x € [, ; 4;.

In both cases we showed z € ([;c;4;) U
B, and since x was an arbitrary member of
;e(A4; U B) we conclude (;.;(4; U B) C
(Mjes Aj) U B, as required to complete part
(2). O

Again we use proof by cases. Here we know
that x € B and x ¢ B cover all possibilities,
since one is the negation of the other.

This is a very easy case.

Our goal is to prove x € (;.; 4; or x € B.
In this case z ¢ B, so we'll show x € (), ; A;.

Summing up Case 2.

Remark 7.2. 1. In both parts of the proof we split into cases. For a proof by cases to be
valid, it is important that the different cases cover all of the possibilities. In the proof
of the second part, this is obvious since x is either in B or not in B. In the proof of
the first part, the two cases x € [ e Aj and x € B cover all possibilities because within
our scenario have deduced that x € (;c; A; or x € B. If the different cases cover all
possibilities for the active scenario we say that the set of cases is exhaustive

. In the proof of the second part, the two cases are mutually exclusive, which means that
they can’t both be true at the same time. However, in the proof of the second part, the
two cases are not mutually exclusive. This is perfectly okay for a proof by cases. We
require the cases to be exhaustive, but we don’t require them to be mutually exclusive.

Exercise 7.2. When we reformulated our original goal in this proof, we used the containment

version of the set equality definition.

Provide an alternative proof using the biconditional

version of set equality to write the initial goal.

Exercise 7.3. Prove the second part of Proposition 7.6.
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Properties of Set complement Recall that in any given situation we assume that all the
sets we're dealing with belong to some universe set U and the complement A€ of a set A is
defined to be the set of objects x € U such that = ¢ A.

Here we review and prove a few elementary properties of set complement.

Proposition 7.7. For any universe U and subsets A and B of U we have:
1. (A=A
2. (B\A)*=B°UA

Proof Commentary
For the first part, we must prove two things
(la) (A°)° C A and A C (A°)“.

For (1a), suppose z is an arbitrary member
of (A°)¢. We must show z € A.

Assume for contradiction that x € A. We | This introduces a new proof technique called
will derive a contradiction. “Proof by contradiction”. Assume that what
you are trying to prove is false; so you add its
negation to the active assumptions. If this
leads to an impossible conclusion, then the
assumption you added must be impossible,
and so what you're trying to show must be
true.

Since z ¢ A, then by definition of A, x € A°. | We arrive at a contradiction and conclude
Since x € A°, x & (A°)°. But this contradicts | that the assumption we added must be false,
that x € (A°)° So the assumption x ¢ A | so its negation is true.

must be incorrect and so x € A.

Since z was an arbitrary member of (A%)¢ we
conclude (A€)¢ C A, as required, completing
(1a).

The proofs of (1b) and of (2) are left as ex-
ercises.

Exercise 7.4. Complete the proof of the first part of Proposition 7.7 by showing (1b) that for
any set A, A C (A°)°.

Exercise 7.5. Prove the 2nd part of Proposition 7.7.

Proposition 7.8. For any universe set U and any indexed family (A; : j € J) of subsets of U
we have:
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1. (UjEJAj)C
2. (mjeJAj)C

= njeJ A?‘
= Ujes 45

Proof

Suppose that U is an arbitrary set and (A; :
j € J) is an arbitrary indexed family of sub-
sets of U. We must show that (1) and (2) are
true.

We start with (1). For this we will show (la)
(Ujes A7) € Njes AS and (1b) M, A5 C
UjeJ Aj)c

For (1a), suppose x is an arbitrary member
of (Ujes4;)°. We must show z € (1, AS.
This means that we must show that for all
jeJ, x & A

Suppose k is an arbtrary member of J. We
must show = & Ay.

Assume, for contradiction, that x € A;,. We
will show that this leads to a contradiction
of one of our assumptions.

Sincex € Ay and k € J wehavex € (J;; 4;
But we already have that « ¢ UJGJ Aj, so we
have arrived at a contradiction. Therefore
Since k was arbitrary member of J, we have
r € (\jesAj and since x was an arbi-
trary member of (Ujes Aj)¢ we conclude that
Njes 45 € (Ujes45)° This completes the
proof of (1a)

The proof of (1b) is left as an exercise.
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Commentary
Splitting the set equality goal into two goals.

As usual for a set containment proof, we in-
troduce an arbitrary member of the set that
we want to be contained in the other. We re-
formulate the goal further based on the defi-
nition of ).

Here we use proof by contradiction again.

Arriving at a contradiction we conclude that
the assumption we added must be false.



For the proof of (2), we apply the result of
(1). We need to show ((;c; A;)° = U, e A5
For each j € J, define B; to be Aj. Now
apply (1) to the indexed family (B, : j € J).
This gives

This proof is different from previous ones.
Rather than prove the claim by simplifying
the goal, we prove it directly by showing that
we can apply two previously proved universal
assertions. When we apply a universal asser-

tion we can replace the universally quantified
objects in the assertion by any objects that
meet the hypotheses of the assertion.

(UjeJBj)c = ﬂjeJBJC" Since B; = A;
for each 7 € J we can rewrite this as
(Ujes A5)° = N, (A9), By Proposition 7.7
we have that for all j € J, (A5)® = Aj;, and
50 (Ujes A5)¢ = MNjes Aj» Taking the com-
plement of both sides gives: (U;c; A5)°)¢ =
(NjesA4;)¢  Using Proposition 7.7 again
on the lefthand side gives: (U;c; A5) =
(Mjes4;)°, which is what we needed to
prove.

Permissible versus Useful We used proof by contradiction again in the first part previous
proof. The reader wonder “When is it right to use proof by contradiction?” More generally, as
you do more complex proofs, you will find yourself faced with many choices of how to proceed.
How do you decide what choice to make?

First off, the choice you make must follow the rules of proof. As long as you make choices
in your proofs that follow these rules, your argument is valid. This means that you’ll never
come to an incorrect conclusion. That’s crucial; under no circumstances should you ever give
an argument that is invalid.

Usually, as you try to construct your proof, there can be many valid choices. In that case,
you want to make the choice that helps you reach your goal. The problem is, you won’t always
know in advance what choices are most useful in reaching your goal. This is where skill and
experience comes into doing proofs. The art of doing proofs involves figuring out what choices
will lead to the goal. If you apply a valid argument that fails to reach the proof goal, it’s not
wrong, it is correct but unsuccessful. If you make a correct, but unsuccessful proof attempt,
you should try modifying your proof by making different valid choice in your proof.

For example, one place where you have a choice is whether to do a direct proof, where you
work directly to conclude your goal, or proof by contradiction. Both are valid choices. If you
can’t get a successful direct proof, you can try proof by contradiction.

Properties of disjointness Two sets are said to be disjoint if they have no elements in
common. Many proofs in mathematics boil down to proving that two (possibly very complex)
sets are disjoint. Here we present some basic properties of disjointness.

We can restate the property of being disjoint as follows: Sets A and B are disjoint provided
that for all x € A we have x ¢ B. This definition is symmetric: we can switch the roles of A
and B if we want: for all x € B we have © ¢ A. This formulation is usually the most convenient
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for formulating the goal in a proof that two sets are disjoint.

Proposition 7.9. For all sets A,B,C" and D, If A is disjioint from B and C is disjoint from
D then AN B is disjoint from C'U D.

Exercise 7.6. Prove Proposition 7.9.

Properties of set difference
Proposition 7.10. For any four sets A,B, C', D we have:
1. A\B is disjoint from B.
. A\BC A.
. A\B=AnNB°.

2

3

4. (A\B)\C C A\(BUC).

5. (A\B)NC = (ANC\B = (ANC)\(BNC).
6. (A\B)UC = (AUC)\(BUC)

7. If AC C then D C B then A\B C C\D.

Exercise 7.7. Prove Proposition 7.10

Exercise 7.8. Here are some universal assertions that are similar to those in Proposition 7.10,
but are actually false. Find counterexamples to theml.

e (AA\B)UC = (AUC)\B.
o [f AC B and C C D then A\C C B\D.

Properties of symmetric difference The symmetric difference AAB of sets A and B is
defined to be the set A

BeupB

A. In words, this is the set of objects that belong to exactly one of the sets A and B. Here we
do some basic proofs involving symmetric difference.

Proposition 7.11. For any two sets A and B, we have:
1. AA\B C AAB and B\A C AAB.
2. (AU B)¢ and AN B are both disjoint from AAB.
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Remark 7.3. The second conclusion of the Proposition is an example where the formulation in
English does not conform to the strict mathematical rules. In mathematics, the word “and”
is used to combine two assertions. Here the word and is between two sets. The sentence is
reinterpreted mathematically as “(A U B)¢ is disjoint from AAB and AN B is disjoint from
AAB.”

Proof. Suppose that A and B are arbitrary sets.

For the first part, we must show A\B C AAB and B\A C AAB. Since AAB is the union
of the two sets A\B and B\A, corollary 7.4 tells us that AAB is a superset of both of these
sets.

For the second part we must show two things (1) (A U B)° is disjoint from AAB and (2)
AN B is disjoint from AAB.

Proof of (1). We need to show that for all z € (AU B)¢ we have = /[ AAB. Suppose x
is an arbitrary member of (AU B)°. Then z ¢ AU B which means ¢ A and = ¢ B. Since
x ¢ A, we have © ¢ A\B and since © ¢ B we have x ¢ B\A. So = ¢ (A\B) U (B\A) which
means z ¢ AAB.

Proof of (2). We need to show that for all x € AAB we have x ¢ AN B. Suppose x is
an arbitrary member of AAB. We must show x ¢ AN B. By definition of AAB, we have
x € A\B or x € B\ A. We split into cases depending on whether z € A or x ¢ A.

Case 1. Assume z € A. Then x & B\A, so x € A\B. But then 2 ¢ Bsoxz ¢ AN B.

Case 2. Assume x ¢ A. Then x ¢ AN B.

In either case, we have © ¢ AN B. Since x was an arbitrary member of AAB, we conclude
that AAB and AN B are disjoint. m

Proposition 7.12. For any two sets A and B, and any object x, we have:
1. If x belongs to exactly one of the sets A and B then x € AAB
2. If x belongs to neither of A and B, or to both of A and B, then v ¢ AAB.

Proof. Suppose A and B are arbitrary sets, and x an arbitrary object.

For the first part, assume that x belongs to exactly one of the sets A and B. We must show
x € AAB. We split into two cases depending on whether x € A or x € B.

Case 1. Assume = € A. Then z ¢ B (since = belongs to exactly one of the two sets). By
definition of A\B, x € A\B. By definition of AAB, AAB = A\BU B\ A, and so by Corollary
7.4 A\B C AAB. Since x € A\B we then have z € AAB.

Case 2. Assume x € B. Then z ¢ A (since x belongs to exactly one of the two sets). By
definition of B\ A, z € B\ A. By definition of AAB, AAB = A\BU B\ A, and so by Corollary
7.4 B\A C AAB. Since x € B\ A we then have x € AAB.

Since in either case, v € AAB, we conclude that z € AAB.

The proof of the second part is left as an exercise. O

Exercise 7.9. Prove the second part of Proposition 7.12.
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Remark 7.4. In the proof of Part 1 of Proposition 7.12 we split into two cases depending on
whether © € A or x € B. The proofs of these cases are nearly identical; you can get the proof
of case 2 by switching the roles of A and B in case 1. When this happens, we can use the
following shortcut: Instead of writing out case 2 we can simply say: “The proof of case 2 is
obtained by switching the roles of A and B in case 1.”

Proposition 7.13. For any sets A, B and C, we have:
1. AN) = A.
2. (AAB)AC = AA(BAC).
3. AN(BAC)=(ANB)A(ANC).

Proof. We'll only prove the third part; the other two are left as exercises.

Suppose A, B and C are sets. We must show that AN (BAC) = (ANB)A(ANC), so we'll
show (1) AN(BAC) C (ANB)A(ANC) and (2) (ANB)A(ANC) C AN (BAC).

Proof of (1). Assume x € AN (BAC). We must show z € (AN B)A(ANC). Then x € A and
x € BAC. Since x € BAC, we have € B\C or x € C'\ B. We split into two cases depending
on which of these is true.

Case 1. Suppose z € B\C. Then z € B and = ¢ C. Since x € A we have z € AN B, and
since z ¢ C' we have x ¢ ANC. Therefore z € (AN B)\(B N C), as required.

Case 2. Suppose z € C'\ B. This case is identical to the previous with B and C' interchanged.

This completes the proof of (1).

Proof of (2) Assume z € (AN B)A(ANC). We must show 2 € AN (BAC). By definition
of A we have x € (AN B)\(ANC)orxe (ANC)\(AN B). We split into two cases based on
these conditions.

Case 2a. Assume z € (ANB)\(ANC). Thenz e ANBand x ¢ ANC. Since x € ANB
we have x € B and x € A, and therefore since x ¢ AN C, we must have x ¢ C. Then
x € B\C C BAC,sox € AN (BAC), as required.

Case 2b. Here we assume = € (AN C)\(AN B). The proof is identical to Case 2a with B
and C' interchanged.

O

Exercise 7.10. 1. Prove Part 1 of Proposition 7.13.
2. Prove part 2 of Proposition 7.13.

3. Show that if we replace both occurrence of N by U in part 2 of Proposition 7.13, the
resulting assertion is false.

Properties of the power set Recall that for a set A, P(A) is the set of all subsets of A.

Proposition 7.14. For any two sets A and B, if A C B then P(A) C P(B).
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Proof. Suppose A and B are sets. Assume A C B. We must show P(A) C P(B), which is
equivalent to showing that for all X € P(A) we must have X € P(B). Suppose X € P(A). We
must show X € P(B). Since X € P(A), by definition of the power set, X C A. Since X C A
and A C B, then by transitivity of containment X C B, and so by the definition of P(B) we
have X € P(B). Since X was an arbitrary member of PA we conclude P(A) C P(B). O

Remark 7.5. In this proof we used X instead of x as an arbitrary member of P(A). This
is because members of P(A) are subsets of A, and it is conventional to represent subsets by
capital letters.

Exercise 7.11. For each of the following two assertions, determine whether it’s true. If it’s
true, prove it. If it’s false, prove that its false.

1. For any two sets A and B, P(ANB) =P(A)NP
2. For any two sets A and B, P(AUB) C P(A)UP
(A)uP

(

(
3. For any two sets A and B, P(AU B) D P(A)
4. For any two sets A and B, P(A)\P(B) C P(A\B).
(

(
5. For any two sets A and B, P(A)\P(B) 2 P(A\B

Properties of set products Recall that if A and B are sets then A x B denotes the set of
all ordered pairs with first entry in A and second entry in B.

Proposition 7.15. For all sets A,B,C and D we have:
1. Ax (BUC)=(Ax B)U(Ax Q).
2. Ax (BNC)=(Ax B)n(AxC).
3. Ax(=0.

4. (AxB)N(DxC)=(AND)x (BNC).

5. (AxBY)U(DxC)C(AUuD) x (BUC).

6. (Ax BYU(DxC)2(AUD)x (BNC).

Remark 7.6. When we prove things about product sets, we will sometimes choose an arbitrary
member of A x B. We could call this object x, but since its an ordered pair, it is usually more
convenient to call it (a,b). When we say “Suppose (a,b) is an arbitrary member of A x B” we

really mean “Suppose a is an arbitrary member of A and b is an arbitrary member of B such
that (a,b) € A x B.”
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Proof. Suppose that A, B, C' and D are arbitrary sets. There are several things to prove. We
wll only consider the first, and leave the others as exercises

For the proof of the first part, we must show (i) A x (BUC) C (A x B)U (A x C) and
also (i) (Ax B)U(Ax C) C A x (BUC). For part (i) we must show that every member of
A x (BUC) is a member of (A x B)U (A x C). Suppose that (a,b) is an arbitrary member of
A x (BUC). We must show (a,b) € (A x B)U (A x C). Since (a,b) € A x (BUC) we have
a€ Aand be BUC. So we have b € B or b € C. We consider these possibilities separately.
Case 1. Assume b € B. Then (a,b) € A x B and so (a,b) € (A x B) U (A x C), as required.
Case 2. Assume b € C. Then (a,b) € A x C' and so (a,b) € (A x B)U (A x C).

Since (a,b) was an arbitrary member of A x (B U C) we conclude that A x (BUC) C
(A x B)U (A x C) which concludes part (i). Part (ii) is left as an exercise. O

Exercise 7.12. 1. Complete the proof of the first part of Proposition 7.15.

2. Prove parts 2-6 of Proposition 7.15

7.2 Elementary principles for functions

Interesting mathematics starts with interesting questions. In many parts of these notes we’ll
study some aspect of the mathematical universe, and we’ll focus on some basic questions.

In this subsection, we’ll be looking at composition of functions. Recall that if f: B — C
and g : A — B then f o g is the function from A to C' given by the rule that for all a € A
fog(a) = f(g(a)). Throughout this subsection we’ll assume that when we form the composition
f o g that Dom( f) = Target(g), which in this case is the set B.

Here are the questions we want to consider?

e Recall that in arithmetic, the addition and multiplication operations are associative, that
is: for any three numbers a, b, c we have (a+b)+c = a+(b+c) and (axb)xc = ax (bxc).
Is the operation o for combining functions associative? The is, if e, f, g are functions with
g:A— B, f:B— Cande:C — D is it true that (eo f)og=-eo(fog)?

o When can a function be canceled from both sides of an equation? One of the basic prop-
erties of addition of numbers is the cancellation property: For any three numbers a, b
and ¢, if a+b=a+ cthen b=c.

Suppose three functions f : B — C, g : A — B and h : AlongrightarrowB satisfy
fog= foh. Can we always cancel the f’s and conclude g = h? If not, what properties
of f allow us to do such a cancellation? A function f is called left-cancellable if this
cancellation is always possible. We can ask a similar question for right cancellation: if
ro f = so f what must be true about f to conclude that r = s?

e Which functions have an inverse? Recall that the identify function on set A, id4 is the
function from A to A that maps each x € A to itself. A left inverse for f: B — C'is
a function p : C — B such that p o f is the identify function on Dom(f) = B. Which
functions f have a left inverse? Can f have more than one left inverse? If so, which
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functions have more than one left inverse and which functions have only one? Similarly, a
right inverse for f is a function ¢ : C' — B so that fogq is the identity on Target(f) = C.
When does f have a right inverse? When does f has more than one right inverse? If p is
a left inverse of f is it also a right inverse?

The answer to the first question is yes:

Proposition 7.16. For any sets A, B.C.D amd functions g : A — B, f : B — C and
e:C — D we have (eo f)og=eo(fog)?

Proof. Suppose A, B,C, D are arbitrary setsand g : A — B, f: B— Cande: C — D
are arbitrary functions. We must show (eo f) o g =eo (f og). For this we need to show that
they have the same domain and target. and that for every x in the domain the two functions
have the same value.

By definition of function composition, e o f has domain B and range D, and so (eo f)og
has domain A and target D. Similarly, f o g has domain A and target C' and so eo (f o g) has
domain A and target D.

Now suppose that x is an arbitrary member of A. Then (eo f)og(z) = eof(g(x) = e(f(g(x))
and eo (fog)(z) =e(fog(x)) =e(f(g(x))), and so the two functions are equal.

O

To investigate these and similar questions, we start with some definitions.

Definition 7.1. left cancellable A function f : B — C' is said to be left-cancellable pro-
vided that for every pair of functions g and A having the same domain, and having target
set B =Dom(f), if fog= foh then g =h.

right cancellable A function f : B — C' is said to be right-cancellable provided that for
every pair of functions g and h both having domain equal to Target(f) = C' and having
the same target set T', if go f = h o f then g = h.

left inverse, left invertible A left inverse for function f: B — C'is a functionp : C — B
such that po f =idpg. f is left invertible provided that it has at least one left inverse.

right inverse, right invertible A right inverse for function f : B — (' is a function ¢ :
C — B such that foq=1id¢. f is right invertible provided that it has at least one left
inverse.

one-to-one,injective,injection A function f is one-to-one (or injective) provided that for
any 1, e € Dom(f) if f(z1) = f(x2) then 7 = x9. In this case we also say that f is an
mjection.

onto,surjective A function f: B — C'is onto C (or surjective) provided that for all y € C'
there is an € Dom(f) such that f(z) = y. In this case we say that f is a surjection.

bijective, bijection A function f : B — C is bijective if it is both one-to-one and onto C.
In this case we say that f is a bijection.
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The following easy proposition says that if you compose a function with the appropriate
identify function, you get the function back.

Proposition 7.17. Suppose f: B — C. Thenidgo f = f and foidg = f.
Exercise 7.13. Prove Proposition 7.17

Consider the three definitions of left-cancellability, left invertibility and one-to-one. These
are all properties that a function might or might not have. The definitions seem very different.
The following remarkable theorem tells us that, even though the definitions of these properties
are quite different, they are equivalent! This means that if a function satisfies any one of them
then it satisfies all three of them. are equivalent

Theorem 7.18. For any function f : B — C (with B nonempty and C nonempty), the
following three properties of f are equivalent:

1. f is left-cancellable
2. f s left-invertible
3. f is one-to-one.

Remark 7.7. When we want to prove equivalence of two conditions 1 and 2, we need to show
that 1 implies 2, and also 2 implies 1. Here we need to show 6 things: 1 implies 2, 2 implies 1,
1 implies 3, 3 implies 1, 2 implies 3 and 3 implies 2. However, there is a short cut: if we order
the conditions (in any order we like such as 3,21 then it is enough to prove that 1 implies 2, 2
implies 3 and 3 implies 1.

The other three implications follow “for free”. For example once we know that 1 implies 2
and 2 implies 3, we can deduce that 1 implies 3.

Proof. Suppose f : B — C with B nonempty. We must show that the three conditions in the
conclusion are equivalent. We’ll separately show 3 implies 2, 2 implies 1 and 1 implies 3.

Proof that 3 implies 2. Assume f is one-to-one. We must show that f is left-invertible,
which means we need to construct a function ¢ : C' — B such that po f = idg. By the
definition of Range(f), for each » € Range(f) there is at least one member in Dom(f) that
is mapped by f to r. For each r € Range(f), let x, be a member of Dom(f) such that
f(z,) = r. Let z be a member of B, which must exist since B # (). Now define the function
p: B — A by the rule g(b) = x;, for b € Range(f) and ¢g(b) = z for b € B — Range(f). We
now show that g o f = idg which will show that ¢ is a left-inverse for f.

The function ¢ o f and idp have domain B and target B. We must now show that for all
be B, q(f(b)) =idg(b). Suppose b is an arbitrary member of B. Then idg(b) = b, so we must
show g(f(b)) = b. Let ¢ = f(b). By the definition of ¢, since ¢ € Range(f), ¢(c) is equal to z,
which is a member of Dom( f) that was chosen so that f(z.) = ¢. We need to show that z. = b.
We have f(b) = ¢ and also f(x.) = c¢. Since f is one-to-one we must have xz, = b. Therefore
g(f(b)) = b, as required. Since b is an arbitrary member of B we conclude that go f = idp
and so ¢ is a left inverse of f.
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Proof that 2 implies 1. Assume f has a left inverse. We must show that f is left-cancellable.
To show that f is left-cancellable, we must show that for any two functions g and h having
the same domain and having range equal to Dom(f) = B, if fog = f o h we have g = h.
Suppose A is an arbitrary set and g : A — B and h: A — B. Assume fog= foh. We
must show that ¢ = h. Since f is left-invertible, we can choose a function ¢ : C' — B such
that go f =idpg. Since fog = foh, we have go fog = qo foh. The first function is equal to
(qgo f)og =1idpog = g and the second function is equal to (go f)oh = idgoh = h. Therefore
g = h as required.

Proof that 1 implies 3. The assertion that 1 = 3 is logically equivalent to (-3) = (—1).
So we prove that if f is not one-to-one then f is not left-cancellable. Assume that f is not
one-to-one. We'll find two different functions g and h with range A such that fog = foh,
which will prove that f is not left cancellable. Since f is not one-to-one, there are two different
domain elements a and a’ such that f(a) = f(a’). Define g to be the function on domain {1}
such that ¢g(1) = a and h be the function on domain {1} such that h(1) = «’. Then f o g has
domain {1} and maps 1 to f(a) and f o h has domain {1} and maps 1 to f(a’) = f(a). So
fog=fohbut g#h as required. O

There is a similar theorem for right-cancellability and right-invertibility.

Theorem 7.19. For any function f : B — C (with B and C' nonempty), the following three
properties of f are equivalent:

1. f is right-cancellable
2. f is right-invertible
3. f maps onto B.
Exercise 7.14. Prove Theorem 7.19

Exercise 7.15. 1. Give an example of a function f : A — B that has a left-inverse but
no right-inverse. Show that your example has at least two different left-inverses.

2. Give an example of a function f : A — B that has a right-inverse but no left inverse.
Show that your example has at least two different right-inverses.

The previous exercise shows that a function can have a left-inverse without having a right-
inverse and that it can have more than one left-inverse and more than one right-inverse.

If the function happens to have both a left inverse and a right inverse, then the picture
simplifies. We need some definitions.

Definition 7.2. Invertible function A function that is both left-invertible and right-invertible
is said to be wnvertible

Proposition 7.20. Any invertible function f : A — B has a unique left-inverse and a
unique-right inverse, and they are equal to each other.
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Proof. Suppose f : B — C. Assume that f has at least one left-inverse and at least one
right-inverse. Let ¢ : C — B be an arbitrary left inverse and p : C' — B be an arbitrary
right inverse of f.

First we show that ¢ = p. Since q: C' — B and p : C' — B, we can form the composition
go(fop):C — Band (qo f)op: C — B, and these are equal by Proposition 7.16. Since
p is a right-inverse of f, and ¢ is a left-inverse we have the following chain of equalities:

(qo f)op=idgop=rp,
and
qo(fop):qoidB:q.

Since (qo f)op=gqo(fop) we have p=gq.

Now we show that if there is a right inverse there can be at most one left inverse. Suppose p
is a right inverse and ¢y, ¢» are left inverses. We claim ¢; = ¢». From the previous part applied
to ¢; and p, we have ¢; = p and from the previous part applied to ¢ and p we have ¢, = p so

42 = q1-

By a similar argument we also have that if there is a left inverse there can be at most one
right inverse.

We conclude that if f has both a left-inverse and a right-inverse then it has a unique
left-inverse and a unique-right inverse and they must be equal. O]

Definition 7.3. inverse function An inverse of a function f is a function that is both a
left-inverse and a right-inverse of f. By Proposition 7.20, the inverse of an invertible
function f is unique. We denote the unique inverse of an invertible function f by f~!.

Theorem 7.21. Let f: A — B. The following conditions are equivalent:
1. f is invertible.
2. f is biyjective
3. f has a unique left-inverse
4. f has a unique right-inverse
5. f is left-cancellable and right-cancellable
Exercise 7.16. Prove Theorem 7.21

Theorem 7.22. For any functions g : A — B and f : B — C, we have that fog: A — C
1s well-defined and

1. If go is a left-inverse of g and fq is a left-inverse of f then ggo fo is a well-defined function
from C to A, and is a left-inverse of fog. Thus if g and f are left-invertible so is f o g.

2. If go is a right-inverse of g and fy is a right-inverse of f, then foo g is a well-defined
function from C' to A, and is a right-inverse of fog. Thus if g and f are right-invertible
sois fog.
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3. If g is invertible and f is invertible then so is fo g, and (f o g)™' is equal to g=* o f1.

Proof. Suppose that g : A — B and f : B — (' are functions with target. Then fogis a
well-defined function from A to C since for any a € A f(a) is defined and belongs to B and so
g(f(a)) € C.

For the first numbered part, suppose that g is a left-inverse of g and that f; is a left-inverse
of f. Then g : B — A and fy : C — B. Since B = Dom/(gy) is equal to the target of fo,
and Dom(fy) = C and the function gy o fy is a well-defined function from C' to A. We claim
that it is a left-inverse of f o g. Using the fact that composition of functions is associative, we
have:

(goo fo)o(feg)=goo((foof)og)=goo(idaog)=goog=ida,
as required.

The second part is similar to the first part and is left as an exercise.

For the third part, assume that ¢ is invertible and f is invertible. Then by definition of
invertible, g~! and f~! are left-inverses of g and f, respectively, and so g~ 1o f~1 is a left-inverse
of fog. Also, by definition of invertible, g~! and f~! are right-inverses of g and f, respectively,
and so g to f~!is a right-inverse of fog. Since g~'o f~!is both a left-inverse and a right-inverse
of fog,itis an inverse of f o g and so f o g is invertible and (f o g)™' =g~ 1o f7L. O

Remark 7.8. It is important to notice that when we take the inverse of f o g, the inverses of f
and g are composed in the opposite order g~ o f~!. Composing them in the order f=!o ¢!
will not work. In fact f~! o g=! is not well-defined in general since since the target A of ¢!
doesn’t agree with the domain C of f~!.

Theorem 7.22 can be used to obtain the following:
Corollary 7.23. For any functions g: A — B and f : B — C,
1. If g is one-to-one and f is one-to-one then so is f o g.
2. If g 1s onto and f is onto then so is f og.
3. If g is a bijection and f is a bijection then so is f o g.

Proof. Suppose g: A— Band f: B — C.

For the first part, assume that g is one-to-one and f is one-to-one. By Theorem 7.18 g and
f are both left-invertible, and so by the first part of Theorem 7.22 f o g is left-invertible and
so by Theorem 7.18, f o g is one-to-one.

The second and third parts are similar, and are left as exercises. O

Exercise 7.17. Prove the second and third parts of Corollary 7.23

Corollary 7.23 can be proved without using Theorems 7.22, 7.18, and 7.19. Instead you
can directly apply the definition of one-to-one and onto. We’ll show how to do this for part 2.
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Proof. (Alternative proof of Corollary 7.23, part 2.) Suppose that g: A — Band f: B — C
are arbitrary functions. Assume that ¢ is onto and that f is onto. We must show that fog
is onto, which means that we must show that for every ¢ € C there is an a € A such that
fog(a) = ¢. Suppose that ¢ is an arbitrary member of C'. We must show that there is an
a € A such that fog(a) = c. To do this, we need to describe a way to obtain such an a. Since
f is onto, there is a b € B such that f(b) = c¢. Let b be such a member of B. Since g is onto
there is an a € A such that g(a) = b. Let a be such a member of A.

We claim that f o g(a) = ¢. We have f o g(a) = f(g(a)) which equals f(b) by the choice of
a, and f(b) = ¢ by the choice of ¢. Thus f o g(a) = ¢, as required.

Since ¢ € C' was arbitrary, and we found a € A so that fog(a) =c¢ O

Remark 7.9. This is our first example of an extremely important type of proof. When we try
to prove that f o g (or any function) is onto, we need to show that “For any ¢ € C, there is an
a € A such that fog(a) =c. ” This is an example of a V3 type of assertion.

After we introduced ¢ our goal was to show that there is an a € A such that f o g(a) = c.
The choice of a depends on various things in the scenario: ¢, f and ¢. In order to prove this,
we have to do two things: provide specific instructions for finding such an a, and then verify
that the a we found has the required properties.

Notice that the introduction of a to the scenario is very different from the way ¢ was
introduced. We introduced ¢ because we had a goal which was a universal assertion. So we
introduced c to stand for an arbitrary member of C.

When we introduced a our goal was an existential assertion, and we need a to satisfy some
specific properties. So we don’t want a to be an arbitrary member of A, but rather a member
of a carefully chosen to satisfy the properties we needed. Once we gave instructions for a we
introduced it to the scenario with the sentence “Let a be such a member of a”.

Assertions with V3 structure are extremely important in mathematics, and the proofs typ-
ically follow the above pattern. We’ll see this type of proof many times throughout these
notes.

Exercise 7.18. Give a different proof of Corollary 7.23, part 1 that does not use Theorems 7.22,
7.18, and 7.19 but instead apply the definition of one-to-one.
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