2 What do mathematicians study? *

The short answer is: mathematicians study mathematical objects that inhabit the mathematical
universe, with the goal of discovering and confirming the universal principles of this universe:
the patterns, symmetry and laws that individual objects obey. In this section we’ll take our
first look at this abstract universe, and at the universal principles it obeys.

2.1 Introducing the mathematical universe

The mathematical universe is populated by countless mathematical objects, which are classified
according to object types. Here are some examples of object types:

e Natural numbers

e Real numbers

e Finite Sets whose members are natural numbers

e Lists of length 5 whose entries are real numbers

e Functions mapping each list of real numbers of length 5 to a single real number

e Matrices whose entries are polynomials in the variable x having real numbercoefficients,
o Groups,

e Rings,

e Topological Spaces.

In mathematics, simple words such as groups and rings, represent types of objects with very
precise and intricate structure.

Objects belonging to a given object type can be manipulated and transformed in ways that
are particular to that type. Natural numbers can be added together and multiplied together,
and we can compare two natural numbers to decide whether they are same or different, and if
they are different we can determine which is greater than the other. We can add two matrices of
the same shape, but we can’t add two matrices of different shapes. We can take the derivative
of a (differentiable) function, but we can’t take the derivative of a matrix of real numbers. We
can compute the determinant of a square matrix, but not of a non-square matrix. We can take
the union of two sets, but we can’t take the union of two real numbers.

In the mathematical universe, complicated types of objects are built up from simple types
of objects. In fact, mathematicians have shown that starting only from the concept of a set,
one can build up all other types of objects (including, numbers, functions, and all of the other
objects listed above). Capturing all of mathematics within the theory of sets is a fascinating

3Version 10/1/2016. (©2015,2016 Michael E. Saks

achievement of mathematical logic, but is not so important for what we do here. Our goal is
to learn how to think like a professional mathematician, and a mathematician does not think
of numbers as built up from sets. He thinks of numbers as ...well ...numbers. So we start
with a larger (but still fairly small) list of basic object types that serve as out building blocks
for the mathematical universe.

The following object types will be the central focus of this course:

Numbers : Integers and Real Numbers
Collections : Sets and Lists and Indexed Families

Correspondences between sets : Functions

Most readers have a great deal of famiiarity with numbers, and some famiiarity with sets,
lists and functions. In this section, we’ll carefully introduce some basics about these types. For
many readers, these basics will mostly be review. However, the general framework we present
concerning how to think about mathematical objects, will be new to most readers.

A conceptual framework for all types of mathematical objects. Different types of
mathematical objects can be very different, but there is a common framework that applies to
every object type. We'll state this framework as a series of four questions that every mathe-
matician thinks about (consciously or unconsciously) when meeting a new type T of object.

e Specification. How do we refer to a particular object of type 7. We need notation for
naming, or specifying individual objects of type T

e Fquality. What does it mean that two objects of type T are equal?
o Comparison. What are the natural ways for comparing two objects of type T

e Operations. An operation on objects of type T is a rule that takes as input one or more
objects of that type, and produces as output an object of the same type. If the operation
takes as input exactly one object it is called a unary operation or an operator. If it takes as
input two objects of the type it is a binary operation. What are the important operations
for type 17

We’ll now use this framework to introduce each of the basic types mentioned above. De-
pending on the type we are considering, we may consider these questions in a different order.

Numbers: Real numbers, integers, and rational numbers

The integers consist of the number 0, the positive integers 1,2,3,...and the negative integers
-1,-2,-3,.... Let’s consider the above questions for the integers. The rational numbers include
the integers, as well as ratios of integers, i.e., numbers written as fractions. The real numbers

include the rational numbers, and also other numbers. We have the useful mental picture that
the real numbers are in correspondence with the points on an infinite horizontal line.

Ancient mathematicians originally thought that the rational numbers were the only real
numbers, but the Greeks realized that there are numbers, such as v/2 that are not rational,
and later it was realized that the numbers m (the ratio of the circumference of a circle to its
diameter) and e (the base of the natural logarithm) are also irrational. In fact, in the 19th
century, the mathematician Georg Cantor established that (in a precise sense) the vast majority
of numbers are irrational. (We’ll come back to this in a later chapter.)

Teaser 2.1. What is the justification for saying that v/2 and 7 are irrational? How can we be
sure that neither of these numbers can be expressed as a ratio of integers?

(Note: Here and throughout these notes, “Teasers” are questions for you to think about,
but that you are not necessarily ready to answer. In most cases, we will return to the question
later in the notes, and provide an answer, which will require a mathematical proof.)

We consider integers, rational numbers and reals, to be three distinct object types. When
we say that these types are distinct that doesn’t mean that they involve different objects. In
fact every integer is a rational number, and every rational number is a real. So the number
7 is of type integer, and also of type rational, and also of type real number. Many systems
for classifying individuals share this feature, for example, in zoology, where the terms primate,
mammal and vertebrate represent types of animals, and every primate is a mammal, and every
mammal is a vertebrate.

Operations on Numbers. There are several familiar binary operations for real numbers:
addition (4), subtraction (—), multiplication (x), and division (=); as usual we often write
a/b instead of a + b. Notice that there are restrictions on the use of +; a + b is not defined
if b = 0. If the operation is only defined under some restrictions on the input we say it is a
partially defined operation.

We say that a type is closed under an operation if the combination of two items of the
type is another item of the type. So the integers are closed under addition, subtraction and
multiplication, but not under division since a + b need not be an integer even if a and b are.
The rational numbers and real numbers are also closed under all four operatons, keeping in
mind that a = b is undefined (and therefore has no meaning) when b = 0.

There is also the unary operation of negation x — —x. For the real numbers, we also have
the power operation x — xP.

Exercise 2.1. 1. If p is a fixed positive integer, for which values z is the operation x — x”
defined?

2. If p is a fixed negative integer, for which values of z is the operation x — 2P defined?

3. If p is a positive rational number, what are the restrictions on z needed so that r — a”

is defined?

Numerical and variable expressions. The sequence of symbols “(5+ 7) x (9 — (4 + 3))”
is called a numerical expression. It gives instructions for combining numbers into a single
number, and so is a way of representing a single number. More generally, we have expressions
that also involve variables such as (z —y X z) + (z +y + 4 X z). This expression also provides
instructions for combining number into a single number, but here the numbers to be combined
are not specified. We call this kind of expression a wvariable expression. This expression does
not represent a single number, but if we were to choose values for the variables, such as z = 5,
y = —3 and z = 7 then the expression does represent a specific number.

Comparison of numbers The natural way to compare numbers is via the relationships “less
than”, “less than or equal to”, “greater than” and “greater than or equal to”. These have the
familiar symbols: <,<, > and >.

There is another important way to compare numbers: by divisibility. We say that a is a
divisor of b or b is a multiple of a, provided that b+ a is an integer, and this is represented by
the notation a|b. Note that we usually use the notation a|b only in the case that a and b are
integers, but it makes sense for real numbers, so 1—72]%5 and 37|157.

Equality of numbers It may seem odd that we even have to discuss equality of numbers.
What is there to say? Two numbers are either the same of they’re not.

The issue of equality is interesting because we can describe numbers in different ways, and
when we do this it requires work to tell whether they are equal. To tell whether 18 x 24 and
192 + 140 can be done by straightforward computation. To show that 10257 x (98431 + 43572)
is equal to 10257 x 98431 4 43572 x 10257, we can show that these are equal by computation,
but a simpler way is to invoke the familiar distributive and commutative laws of arithmetic.
More generally, the dcommutative and associative laws of addition and multiplication, and the
fact that multiplication distributes over addition give us a way to change expressions involving
numbers and the operations +,—,x and -, into other expressions that represent the same
number. (We'll review these laws in detail later.)

Here are two other important criteria for numbers a and b to be equal:

If both a < b and b < a, then a and b must be equal.

If both a is a divisor of b and b is a divisor of a then either a = b or a = —b.

Specification of numbers. The familiar base 10 (or decimal) system uses 10 symbols
0,1,2,3,4,5,6,7,8, and 9 (called digits) and uses a string of these symbols, such as 483299, to
represent a positive integer. Most of us have used the base 10 representation since we were very
young, and it is common to think of the integer and its base 10 representation as being the
same thing. Strictly speaking, however, 1001 is not an integer, it is a string of symbols that is
used to specify a number. In the binary system for representing integers, every positive integer
is represented using strings consisting just of 0’s and 1’s. In the binary system 1001 represents
a different integer than in the base 10 system.

The decimal system establishes a correspondence between the set of strings of digits, and
the set of integers; every string of digits corresponds to an integer. It is possible for two strings
of digits to represent the same integer, for example 00456 specifies the same integer as 456. A
zero at the beginning of the string is called a leading zero and we usually don’t use leading Os
in our string since they are not needed. If we disallow leading 0’s then we have the remarkable
fact that the correspondence between the set of decimal strings without leading 0’s, and the
set of positive integers is a bijection or one-to-one correspondence. This statement means two
things:

1. For every positive integer there is a decimal string without leading 0’s that represents it
(so there is no positive integer that doesn’t have a string representing it.)

2. Two different decimal strings without leading 0’s represent different integers (so no integer
can be represented in this way by two different strings).

Teaser 2.2.

What is the justification for the above two claims?

The representation described so far only allows us to specify positive integers and 0. To
specify negative integers we use the familiar negation symbol “—”. Using this we get a unique
representation for all integers.

Using the operations on numbers, we can have more complicated specifications: for example
1145 x (9 — 3) specifies an integer. Once we allow operations, the representation of numbers
is no longer unique, in fact there are infinitely many ways to represent any integer.

What about the rational numbers? A rational number is the ratio of two integers, so (as
we all know) we represent a rational number by writing s/t where s and ¢ are decimal strings.

What about real numbers? For those real numbers that are rational, we can represent
them as a fraction as above. We have special symbols like 7 and e to name some of the most
important irrational numbers. Also, we can use the square root operator to specify numbers
such as v/2 and v/47. We can build up more complicated numbers such as:

\/5V/97 + 7V/3.

We can use expressions like this, involving addition, subtraction, multiplication, division,
square roots, cube roots and higher roots to greatly enlarge the collection of numbers we can
represent.

Teaser 2.3. Can all real numbers be represented by expressions of this kind? If yes, how can
we be sure that this is true. If no, this means that there are numbers that can’t be represented
by such an expression. How do we know that there are such numbers?

We'll see in a later chapter that the answer to this teaser is "no”; there are real numbers
that can’t be represented this way.

So we still have the problem of how to specify real numbers. You probably learned that
every real number can be represented by an infinitely long decimal such as 359.04370098. . ..

10

« 2

The catch is that we haven’t really fully specified the number. The at the end means
that we are omitting the digits that follow. We're not specifiying the real number, only an
approximation to it.

We can exactly represent every rational number by its decimal representation. In fact, we
have the following two facts:

e For every rational number its decimal representation either terminates (which means
that from some point on every digit is 0), for example 42.896 or is repeating (which means
that from some point on, there is a single pattern of digits that repeats), for example
28.5436723. Here the notation 6723 means the pattern 6723 repeats endlessly.

e Every terminating or repeating decimal represents a rational number.

By now, the reader should be able to anticipate the following question:
Teaser 2.4. How do we justify the two statements above?

These two statements imply that the notation of terminating or repeating decimals gives
another way of specifying rational numbers. However, when we consider all real numbers we
remain with the question:

Teaser 2.5. Is there any notational system that allows us to specify every real number exactly?

It turns out that the answer is “no”, there is no notational system that allows us to specify
every real number exactly! This is a mind-boggling statement: we are not just saying that we
don’t know such a system, but that it is tmpossible to ever discover such a system. Later, we’ll
see how mathematicians have established this statement to be true.

But now we’re left in this situation: we have a type of mathematical object, the real
numbers, but we are only able to specify a small number of the objects of this type. This
turns out not to be such a problem. The “interesting” real numbers, those that have important
mathematical properties, and are solutions to mathematical problems, can all be specified. All
the others exist anonymously in the background of mathematics, and individually play almost
no role in our exploration of the mathematical universe.

Collection objects: Sets, Lists and Indexed Families

In astronomy, there are many basic types of objects such as stars, planets, moons, asteroids,
and comets. Then there are also more complex objects, such as solar systems. A solar system
consists of a star, together with all of the objects (planets, moons, comets, etc.) that orbit
around that star. A solar system is a single astronomical object that consists of a collection of
other astronomical objects.

In the mathematical universe, we can also collect together objects to create a single new
object There are two main types that represent collection objects: sets and lists; another
important type of object is indexed family, which generalizes lists.

11

Sets

The idea of a set. A set is a collection of objects where we ignore both the ordering of the
objects, and ignore duplicate copies of any object. For a set, every object is either a member of
the set or a non-member of the set For a set A and an object x we have the following important
notation:

z € A means that z is a member of A

x ¢ A means that x is not a member of A.

Comparison of sets, and Equality of sets. The most important way to compare two sets
is to ask whether one is a subset of another. We have the following definitions.

Definition 2.1. A is a subset of B, written A C B means that every element of A belongs
to B.

A is a superset of B, written A O B means that B is a subset of A.

A = B means that A C B and B C A.

Some examples of sets. Numbers were the first basic mathematical type we introduced.
Now that we’ve introduced sets, it is natural to first consider sets whose members are numbers.
Here are some examples of sets, specified using list notation.

A=1{2,4,6,8,10}

B = {10,8,6,4,2}

C ={2,2,4,4,6,6,8,8,10,10}
D = {2,6,10}

E = {2,4,8,10}.

F={2}

G={}

In thie above notation, we use one of the standard notations for sets, where we list the
members, separated by commas and surround the set by braces {}.

The final set G has no members, and is called the empty set. It may seem strange to consider
this a set, but it’s quite an important set. Think of a set as a container which may or may not
have things in it. Even if the container is empty it is still something. An alternative notation
for the empty set is (), so () and {} are both acceptable ways to represent the empty set, but
{0} is not the empty set. This set is a set, that has one member, and that member is (). Think
of this set as a box that has one object inside of it, and the object inside of it is an empty box.

12

Set I’ has one element. A set with one element is called a singleton set. It is tempting
to think of {2} and 2 as the same mathematical object, but they are not! The object 2 is an
object whose type is number. The object {2} is an object whose type is set.

Notice that sets A, B and C' are all the same set, so A = B = (', because our definition of
equality of sets ignores the order in which members are listed, and ignores repeated appearances
of a member. The notation used to describe set C' is strictly speaking legal, but in practice
there is rarely a good reason to list members more than once in a set, so we almost do it. We
only use it here to make the point that C' is exactly the same set as A.

Advanced remark 2.1. (Note: An advanced remark presents some related information that goes
beyond the scope of this course, that are included for students who want to delve more deeply.)
There is another type of mathematical object called a multi-set, which we mention now, but
won’t consider further. In a multiset, the same object may appear multiple times, and we care
not just about whether an object is a member of the set or not, but also how many copies of
the element belong to the set. If we are dealing with the multi-set object, then A and B are
still the same set, but C' is different from A and B.

Notice that D and E are subsets of A, B and C and neither is a subset of the other. Also F'
is a subset of all the sets that precede it, and G is a subset of every set. This last fact follows
from the general principle that the empty set is a subset of every set.

The above sets are all finite. We'll define more precisely what we mean by finite later, but
for now we’ll use the intuitive idea that a finite set is one where you can count all the members
to obtain a definite number called the size or cardinality of the set. The size of a finite set S is
denoted |S|. Notice that all three of the sets A, B,C' in the above exampe have size 5. Set F’
has size 1, and set GG has size 0.

Remark 2.2. This is the first of many examples of notation that has a different meaning de-
pending on the type of object it is applied to |Q] means “absolute value of Q" if @ is a number,
and means “the size of 7 if) is a finite set. So to understand what |@)| means it is crucial to
know what kind of object @ is.

Using the same notation in two different ways depending on context is called overloading
the notation. Mathematicians need to represent many different ideas, and there are a limited
number of symbols to choose from, so overloading is quite common.

Operations for combining sets. The main operations for combining sets are union
(written U), intersection (written N) and difference (written \). For sets A and B we define:

AU B is the set obtained by merging A and B. An object x is a member of AU B provided
that = € A or x € B. (Keep in mind that in mathematics “or” includes the possibility
that both z € A and z € B.)

AN B is the set of elements that belong to both A and B. Thus an object x is a member of
ANBifz € Aand x € B.

A\B is the set of elements that belong to A but not B. Thus an object x is a member of A\ B
ifre Aand x € B.

13

If A is a subset then the complement of A denoted A€ is the set U\ A where U is the universe
under discussion.

Question 2.2. (In these notes, a question is something to think about that you may not be
ready to fully solve yet. Questions are similar to teasers, but usually easier.)

1. Is the operation U commutative? Is it associative?
2. Is the operation N commutative? Is it associative?
3. Is the operation \ commutative? Is it associative?

4. Does N distribute over U, that is, is it true for any three sets A,B,C that AN (BUC) =
(AUB)N(AUC)?

5. Does U distribute over N, that is, is it true for any three sets A,B,C' that AU (BNC) =
(ANB)U(ANC)?
6. Does N distribute over \7? Does U distribute over \?

7. Does \ distribute over N7 Does \ over U

We’ll return to these questions when we start doing mathematical proofs.

Using the sets in the previous example to illustrate these concepts we have C U D = C,
CnNnD =D, C\D = {4,8} and D\C = 0. Also DUFE = {2,4,6,8,10}, DN E = {2,10},
D\E = {6} and F\D = {4, 8}.

Two sets A and B are said to be disjoint if AN B = () and said to be intersecting otherwise.

“Simple sets” of real numbers. For now we're focusing on sets whose members are num-
bers. The examples given above are small finite sets. Here we’ll introduce notation for some
subsets of real numbers that are particularly important and, despite being infinite in most
cases, are conceptually quite simple

e R is the set of real numbers, and R+, R>o, Ry and R<y denote, respectively, the sets of
positive real numbers, nonnegative real numbers, negative real numbers and nonpositive
real numbers.

e 7 is the set of integers, and Z-o, Z>o, Z<o and Z<, denote, respectively, the sets of
positive integers, nonnegative integers, negative integers and nonpositive integers.

e Q is the set of rational numbers, and Q-o, Q>¢, Z-o and Z<, denote, respectively, the
sets of positive integers, nonnegative integers, negative integers and nonpositive integers.

There are some other subsets of R, for which we have special notation.

14

Intervals of real numbers For any two real numbers a and b we have the following notation:
(—o0, b] is the set of real numbers x satisfying x < b.

(—00,b) is the set of real numbers x satisfying x < b

la,00) is the set of real numbers x satisfying x > a.

(a,00) is the set of real numbers z satisfying = > a.

[a,b] , is the set [a, 00) N (00, b], which is the set of real numbers x satisfying a < z and z < b.
la,b) is the set [a,00) N (00, b), which is the set of real numbers z satisfying a < z and = < b.
(a,b] is the set (a,00) N (oo, b], which is the set of real numbers x satisfying a < z and = < b.
(a,b) is the set (a,00) N (oo, b), which is the set of real numbers x satisfying a < x and = < b.

Question 2.3. What can be said about the last four sets in the case that a > b7 What happens
when a = b7

The first four sets are always nonempty, but depending on the values of a and b, the second
four sets may be empty. We're usually only interested in the second four sets when they are
nonempty.

The final six sets contain no member smaller than a. We say that each of these sets is
bounded below. We also say that a is the lower endpoint of the set (except in the case that the
set is empty). The third, fifth and sixth sets all contain the lower endpoint, and are said to
be lower closed. The fourth, seventh and eighth sets do not contain the lower endpoint, and
are therefore said to be lower open. The first and second sets have no lower restriction on the
numbers in the set, and we say they are unbounded below.

Similarly, the first two sets and the last four are said to be bounded above and b is said to be
an upper endpoint of the set (unless the set is empty). The first, fifth and seventh sets contain
the upper endpoint and are therefore upper closed, while the second, sixth and eighth sets are
upper open.

The final four sets are bound bounded above and bounded below, and so are said to be
bounded. The fifth set is both upper closed and lower closed, so is said to be closed. The eighth
set is both upper open and lower open and so is said to be open.

Notice that if a > b then each of the sets [a,b), (a,b], (a,b) is empty. If a > b then [a, b] is
empty and if @ = b then [a,b] = {a}. If a < b then the sets [a,b], [a,]), (a,b] and (a,b) are all
infinite.

Question 2.4. Is the intersection of two intervals always an interval. Is the union of two
intervals always an interval? Is the difference between two intervals always an interval?

Two intervals whose union is not a single interval are said to be separated. A set that is the
union of intervals, where any two are separated, such as [-9,3) U (5,8) U [10, 00) is the union
of three intervals, is said to be in union of separated intervals form.

15

Intervals of integers There is an analog of interval for the set of integers. For any integers
a and b we have the following notation:

{a,..., 00} is the set of integers n satisfying n > a.
{—00,...,b} is the set of integers n satisfying n < b.
{a,...,b} is the set of integers n satisfying n > a and n < b.

Notice that {a,...,b} is always a finite set. It is empty if a > b and otherwise has size
b—a+1.

Question 2.5. You'll notice that we defined 8 types of real intervals, while only 3 types of
integer intervals. In the case of real intervals we distinguished between whether the variable
x satisfied x > a or x > a, while in the integer interval case we only considered whether the
variable n satisfied n > a. Why?

The power set For any set S, the power set of S, denoted P(S), is the set of all subsets of
S. For example P({1,2,3}) is the set {0, {1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}. We also
write Pan(S) for the set of all finite subsets of S. Thus Pgn(Z} is a set which has a member
the set of all integers from 1 and 100, but does not have as a member the set of even integers.

Fixing a universe Whenever we are discussing sets, we will assume that the sets under
consideration are all subsets of one common set, called the universe. The universe depends on
the context. All of the sets discussed so far in this section are sets of real numbers, and so we
can take the universe to be R. If all sets under discussion consist of integers, we might take
Z as the universe. Normally, we’ll always have some universe in mind. If we don’t specify the
universe, we often use the letter U to denote the universe. When the universe is U then “subset
of U” is a type of mathematical object. Notice that the set of all objects of type “subset of U”
is P(U).

W e have seen one way to specify a set is by listing all of its members. This is possible only
for finite sets. Even for finite but large sets (say more than 100 members) it is impractical to
list all of the elements.

Mathematicians have a general notation for specifying sets. The format of this notation is:

{[STUFF] : [STUFF]}

The format consists of an left set bracket “{” followed by some “STUFE” followed by a
colon “” followed by more “STUFF” and ending with a right set bracket “}”. Of course, we
need to say something about what kind of “STUFF” is allowed. Let’s look at two examples.

Example 1. {z: 2 € R,z — /r > 80 and 2 < 10000}.

This notation is read as:

16

The set of those objects x such that x is a member of R and satisfies the requirements
x — /x> 80 and x? < 10000.

This is often shortened as:
The set of all real number x that satisfy z — y/z > 80 and 2% < 10000.

The colon abbreviates the phrase “such that”. Before the colon is a single variable, and
after the colon there is a list of requirements that the object represented by the variable must
satisfy to be in the set. There is nothing special about the use of the variable x. We could have
used any letter in its place, but it is essential that the letter used before the colon matches the
letter used after the colon.

Example 2.{a* —0*:a € Z and b € Z}

This is read as:

The set of those objects that can be expressed as a? — b*> where a is an arbitrary
integer and b is an arbitrary integer.

This is often shortened to:
The set of numbers of the form a? — b? where a and b are aribtrary integers.

In this format, the part before the colon represents an expression involving one or more
variables. After the colon are the restrictions placed on the variables.

The general format of both of these examples is:
{ [expression involving one or more variables| : [constraints on the variables] }

In the first example, the expression on the left is very simple, it is just a single variable x,
while the constraints on the right are somewhat involved. We call this a constraint specification
of the set.

In the second example, the expression on the left is complicated, while the contstraints on
the left are simple, in that each variable is restricted separately to be in some “simple” set.
We call this a parametric specification of the set. What do we mean by a “simple” set? This is
somewhat vague, but in the case of real numbers; we usually think of a “simple” set as either
all of R or a union of intervals of real numbers, while in the case of integers, a simple set is
either all of Z or a union of intervals of integers..

To understand the difference between specification by constraint and parametric specifica-
tion, let’s consider two basic problems associated to a set .S:

Membership testing problem Given a particular object, is that object a member of S7

Example generation problem Produce an example of a member of S (or determine that S
is empty).

17

Question 2.6. The union of separated intervals form is a particularly convenient form for
solving both of these problems. Explain how you can solve these problems for a set given as a
union of a finite list of intervals.

Consider these problems for the two sets specified above. The first set is given by a constraint
specification, and if we’re given a number, say 50, we can easily check whether it is a member
of the set by by testing whether 50 satisfies the two requirements. However, if I ask you to
generate an example from the first set, it’s not obvious how to do it. You can start making
guesses and check your guesses by seeing if its in the set. But if all of our guesses fail to be in
the set, because each fails to satisfy one of the constraints, we still don’t know whether some
example might be in the set.

For the second example, the set is given by parameteric specification, if I want to generate
a single member of the set, that’s easy: just pick any two integers a and b, say 9 and 3 and
compute 92 — 32 = 72. But suppose I give you a number like 6774 and I ask whether it belongs
to the set. How can you check this? You can search for value of a and b that work, but it
may take a long time to find such values. Ane if you don’t manage to find a and b such that
a® — b? = 6774, you still can’t answer the question; maybe there are a and b that work but you
just didn’t look at them.

In general:

o [f the set S is given by a constraint specification then the membership testing problem
tends to be easy (and the example generation problem may be easy or hard).

e If the set S is given by a parametric specification, then the example generation problem
is easy, but the membership testing problem may be hard or easy.

It turns out that using the above notation, there are many different ways to specify the same
set. Very often mathematicians are given a set in one form, say by constraint satisfaction, and
wish to find an alternate specification of the same set, for example by parametric specification.

We can relate this to the kind of mathematics that you've done in previous classes. In a
typical mathematical problem, you are given one or more variables, and one or more require-
ments or constraints, and you are asked to “solve” for the variables. For example, you are given
the variable z and asked to find all real number solutions to the inequality z?z > 8. The set of
solutions can be expressed by constraint specification as:

{r:r € Rand 2* — 2z > 8}.

Now, this completely specifies the set of solutions, but it is not considered to be a satisfactory
solution. All we’ve done is reformulate the information given in the problem. As discussed
above, a constraint specification often doesn’t allow us to tell whether the set is nonempty.
What we are asked to do in such a problem find an alternative way to specifiy the set that
makes it easy to tell whether the set is empty, and if it’s not empty makes it easy to find
solutions. For sets of real numbers, often the most desirable specification is as a finite union of
intervals, but such a specification is not always possible. For this problem (and many like it)

18

it is possible, and we can rewrite the above set as (—oo, —2] U [4,00)}. In cases where we don’t
have a representation as a finite union of intervals, we may still be able to give a parameteric
representation, which enables us to tell whether the set is empty, and to generate members.

Constraint specification and parametric representation are two examples of a general method
of specifying sets. The general format is:

{[Expression involving one or more variables] : [Requirements involving the same set of variables|}

Here’s an example of the use of this more general format:

{r xy:x€Z,ye€Z,x+yis equal to a power of 2}.

For example, 12 belongs to this set since 12 = 6 x 2, and 6 + 2 is a power of 2. On the other
hand 5 does not belong to this set since 5 can only be written as a product as 5 x 1 and 5+ 1
is not a power of 2.

The more general specification is more expressive (it can describe more sets than either con-
straint specification or parameteric specification) but it is oftenless useful. For example, given
a set with this more general specification, it may not be easy to solve either the membership
testing problem or example generation problem.

All of the examples we've seen are sets of numbers. We can specify sets of other objects.
Here’s a specification for a set whose members are sets:

{[a,b] : a,b € R and a® < b}

Here, the expression on the left is [a, b], which as defined earlier is an interval of real numbers.
So the set being defined is a set of intervals. The restriction implies that only those intervals
with a® < b are included, so this would include the intervals [—2,7], [2,7] and [3,10] but not
4, 8].
Remark 2.3. A commonly used variant for constraint specification. When we use constraint
specification: {z : [constaints on z|}, it is often the case that one of the constraints is a type
specification of the form“z € T” where T is a type of mathematical object. This constraint
simply tells us that the set is a subset of T. For example in the specification {n : n €
Z,n has at most 2 prime divisors}, the first constraint just tells us that the set consists only
of integers.

There is a commonly accepted way to shorten the specification by replacing “z : z € T” sim-
ply by “z € T :”. Using this format the above set is written {n € Z : n has at most 2 prime divisors},
which is read as “The set of integers n that have at most 2 prime divisors”.

Lists

A list is a different kind of collection of objects, in which the objects are presented in a specific
order and we pay attention to repeated elements.. Each separate appearance of an object in a
list is called an entry or a coordinate of the list. Here are some examples of lists:

19

a=(2,4,6,8,10)
b= (10,8,6,4,2)
c=(

=(3,3,3,3)
d=(1,3,1,3,1,3)
e = (17).

=0

These lists are represented in the standard notation for lists, in which the entries are sepa-
rated by commas and the list is surrounded by parentheses (). Lists a and b each have 5 entries.
Notice that entries of these two lists are the same, but in different order, and for this reason
a # b.

List ¢ has 4 entries, all of which are the same. List e has a single entry, and list f has no
entries, and is called the empty list.

All of the above lists have entries that are numbers, but as we’ll see, the entries of a list can
be any mathematical object. You've probably already encountered lists of numbers in prevous
courses, where they were called vectors.

Unlike sets, lists are restricted to have a finite number of entries. For a list v, the number
of entries is called its length and is denoted length(v). Each entry of v appears in a specific
position that is a number from 1 to length(v). Thus in the list a, 8 appears in positon 4, and

in list b, 8 appears in position 2. We often write L; for the entry of L appearing in position j.
Thus for list d we have dy = d3 =ds; =1 and dy = dy = dg = 3.

Notation for lists If a is a list of length & we denote this by (a; : 1 <7 < k) or (a; : i €

{1,...,k}). A common, but less formal way to denote a list is (ay,...,ar). Sometimes the
parentheses are omitted and we write simply aq,...,a; (although we won’t do this in these
notes.)

Specification of lists. We can specify a list by writing it out as above. However, for long lists
this is impractical. Most lists we study have a pattern where the ¢th entry can be determined
by a simple rule that depends on i. For example, the list a = (1,4, 8,9,16,25) is the list of

length 5 whose entries are given by the rule a; = 2.

Equality of lists. Two lists v and w are considered to be equal if they have the same length,
and for each j between 1 and length(v) we have v; = w; (so that the entries in matching
positions are the same).

20

Combining lists There is a natural operation for combining two lists into one list called
concatenation; the concatenation of list @ wth list b, denoted a * b, is obtained by appending
the items of b to the items of a. The length of a * b is the sum length(a) + length(b). The
entries of a * b satisfy:

(a D) a; if i < length(a)
a i =
bi— length(e) if length(a) <i < length(a) + length(b).

For example, if a = (1,6,1) and b = (2,3) then a xb = (1,6,1,2,3).

Comparing lists If a and b are lists we say that a is a prefiz of b, denoted a <, b provided
that length(a) < length(b) and for each i € {1,..., length(a)}, a; = b;. For example,
(1,3,5) is a prefix of (1,3,5,2,4). Another way to express this definition is that a is a prefix
of b provided that there is a list ¢ such that b=aoc.

Sets of lists We now introduce an important construction, which allows us to describe certain
sets whose members are lists.

If A is any set, we write A* for the set of all lists with entries coming form A. If k£ is an
integer, we write A¥ for the set of all possible lists of length k& whose entries are from the set
A For example, as you probably learned in previous courses, R? is the set of lists (vectors)
of length 3 with real number entries, and R* is the set of lists of real numbers of all possible
(finite) lengths.

Remark 2.4. Notice that the meaning of A* depends on the type of object that is represented
by A. If A is a number, then A¥ means the number obtained by multiplying & A’s together.
If Ais a set then A* is a set of lists of length k This is an example of a common feature of
mathematical terminology: the meaning of notation depends on the types of objects involved
This is one of many reasons why in a mathematical discussion, it is crucial to be aware of
the types of each object under consideration. There is an interesting connection between the
notation A* when A is a set and A* when A is a number If A is a finite set, then A* is also a
finite set (whose members are lists of length k) It turns out that the size of the set A*, denoted
| A¥|, is equal to |A|*, which is the size of A raised to the k power.

Lists of size 2 are called ordered pairs. If A and B are sets, then A x B, the product of A
and B denotes the set of all ordered pairs (a,b) such that a € A and b € B. Thus, A x A is
the same as A2.

More generally, if Aj, As, ..., Ay is a list of k sets then theproduct of Ay, ..., Ay, denoted

k
[
i=1
is the set of lists (ay, ..., ax) of length k such that a;, € A; for each i € {1,...,k}. For example

if A; is the set {1,7} then Hle A; includes the lists (1,2,3,4) and (1,1,1, 1) but not (4, 3,2,1).
If Ay,..., Ay are all the same set A, then Hle A, is equal to A*.

21

Remark 2.5. Mathematicians often use the notation A; X Ay x As instead of H?Zl A;. However,
the reader should be aware that this notation, while common, creates some possible difficulties.
If we write C' = Aj x Ay x A, we might think that this is equal to D = (A; x As) x A3 and also
to £ = Ay x (Ay x A3). Technically, though, these three sets are different! The members of C'
are lists of length 3. The members of D are ordered pairs whose first entry is an ordered pair
in A; X Ay, and whose third coordinate is in As. Similarly F consists of ordered pairs, whose
first entry belongs to A; and whose second entry belongs to Ay x As. For example, suppose
that Ay = Ay = A3 =Z. Then (1,2,3) € C, ((1,2),3) € D and (1,(2,3)) € E.

Even though the lists (1,2,3), ((1,2),3) and (1,(2,3)) are different, for some purposes we
can treat them as the same. It is common in mathematics that for some purposes we want to
treat certain objects as the same. This is formally accomplished by the idea of an equivalence
relation. In a given context, we can declare that we will be treating certain groups of objects as
the same, provided that we precisely define which objects will be treated as the same. In the
above example, we can define two lists as equivalent if they are the same if you eliminate all
internal parentheses. The notion of equivalence relation is fundamental to mathematics, and
we will deal with it in detail later.

Nested types

We have now discussed three types: numbers, and the two “collection” types, set and list. All
of the examples of sets and lists we've seen are sets of numbers or lists of number. Now we
are in position to give examples of sets with more complicated members and lists with more
complex entries. For example:

e a={{1,2},{2,3},{3,5}}

e b=1{{3,2},{1,2},{5,3}}

e c= ({1},{1,2},{1,2,3},{1,2,3,4})

o d=({1},{2,1},{3,2,1},{4,3,2,1})

o c=({1,2,3,4},{1,2,3},{1,2}, {1}

o f={0}

e g=1{}

o h=(0)

o j={({1,2,3},{1,3}), ({2,4}. {}). ({1,3,5,6},{2,4,6,8})

The object a is a set with three members. Each member of a is itself a set of numbers
having two members. The object b is also a set with three members, with each member being
a set of numbers having two members. In fact we have a = b! This is because each member of
a is a member b and vice versa.

22

Objects c,d and e are lists, each having four entries, where each entry is a set. We have
¢ = d because they have the same length, and ¢; = d; for j between 1 and 4. However, c # e
since, for example, ¢; # e;.

Object f and g are sets. g is the empty set and has size 0. Note that f is not equal to
g and is not the empty set. Instead f is a set having exactly one member, and that member
is the empty set. Object h is the list that has one entry (the empty set) and is not the same
object as f because h is a list and f is a set. Object j is a set, whose members are lists of size
2 (order pairs) where the entries of each list are sets of integers.

Indexed families

We now consider a generalization of lists called indexed families. If d is a list of length 5 whose
entries belong to set S then the entries dy, ds, ds,dy, ds are each members of S, The subscripts
1,2,3,4, and 5 serve as reference labels. These reference labels are called indices, and one can
think of each of index as pointing to the appropriate item on the list. The set of indices,
{1,2,3,4,5} is called the index set of the list.

In a list the index set is always of the form {1,...,m} where m is the length of the list.
When we think of a list in this way, it is natural to consider the possibility of using a different
index set for the collection. If we call our index set .J, then for each 5 € J we have an object
d;. If all of the objects in the collection are of some type 7", we call this collection an indexed
family of objects from T with index set J. We denote such a collection using the notation
d = (dj : j € J), which means that d has one entry for each index j belonging to J.

Example 2.1. An indexed family of objects with index set Z- or Z> is called a sequence.
For example (j : j € Zso) is the sequence of positive perfect squares 0,1,4,9,16, ..., and
({1,...,7} : j € Z>p is the sequence of sets (), {1},{1,2},{1,2,3},....

Example 2.2. Suppose we take an indexed collection of numbers m with the index set the set
J =1{1,2,3} x {1,2,3} which (as discussed earlier) is the set of ordered pairs (i, j) with both
entries in {1,2,3}. For example, our indexed collection might be given by mq 1y = 7,m 2 =
4,ma3) = 1, m@e1 = 8, mpa = 5,mpea) = 2,m@z1) = 9,m@z2 = 6,ms3 = 3. Because the
index set is ordered pairs, it is natural to visualize this collection by arranging the entries in a
3 by 3 table:

© 00 ~J|
[©)ENG IS)
W N N

j |
I
2 |
3

Thus an indexed collection with index set {1,2,3} x {1,2,3} is naturally thought of as a 3
by 8 matriz. In general an indexed collection with index set {1,...,m} x {1,...,n} is called
an m by n matrix.

We can take any other index set. Another index set that arises commonly is the index set Z~
of positive integers. An indexed collection with this index set has the form a = (a; : j € Z+)

23

and is called a sequence, which can be thought of as a list that doesn’t end. Sequences of real
numbers are commonly encountered, for example, in calculus.

Remark 2.6. For sequences, it is common to use the less formal notation aq, as, ..., in place of
the (aj j S Z>0).

Specification To specify an indexed family b, we specify the index set J. amd for j € J,
we specify an object b;, which is the object in family b indexed by j € J. As with lists, it is
common to provide a rule so that for each j € J,the rulle specifies the entry b;.

Normally, we are interested in indexed families in which all of the objects are of some
common type T. In this case we refer to b as an indexed family of objects from 7T'. Indexed
collections are commonly used in mathematics where the objects in the collection are sets. For
example A = ([a,00) : a € R) is an indexed collection of subsets of the reals. The index set is
the set of real numbers, and the number a indexes the interval [a, 00).

Equality Two indexed families a and b are the same provided that they have the same index
set , and for each index 7 in the index set, a; = b;.

Reindexing an indexed family Given an indexed family a = (a; : j € J) it is sometimes
convenient to change the index set as follows. Let J’ be a set such that there is a one-to-one
correspondence f from I and J. We can associate a to an indexed family b = (b; : i € I), given
for i € I by b; = ay;). We say that b is a reindexing of a. For most purposes, we often think of
b as the same as a; technically they are equivalent under an appropriate notion of equivalence.

Combining Indexed famlies The operation “concatenation” which was introduced for lists,
can be extended to indexed families.. Suppose a = (a;:j € I) and b = (b; : j € J) are indexed
families where I and J are two disjoint index sets. Then a * b is the indexed family with index
set [U J, given by the rule that for i € TU J, axb(i) = a(i) if i € I and is b(i) if i € J.

Advanced remark 2.7. If the index sets [and J are not disjoint, then before combining the two
indexed families, we reindex them so that the sets are disjoint. A common way to do this is to
change the index set of I to the set of ordered pairs {(i,1) : ¢ € I} and change the index set J
to the set of ordered pairs {(¢,2) : i € J}.

Given sets S and J we can form the set of all indexed families of objects from S using index
set J. The notation for this is SY. Here we are using “exponential” notation, but where the
objects S and J are sets not numbers.

the notation for lists introduced earlier, we have that Sy xy and S ¥ mean the same thing.
In general, if S and J are finite sets then |S”7|, which counts the number of indexed families

from S indexed by J is equal to [S|VI. (Why?)

24

Functions

The final group of basic objects are mathematical objects that represent a correspondence
between two sets of objects. These are called functions and are at the heart of modern mathe-
matics. Most students start this course with some familiarity with functions, and view functions
as formulas such as f(x) = 2% — 2z + 1 or as curves drawn in the z-y plane. These examples
and pictures are useful, but may give a misleading picture of what kind of object a function is.

The idea of a function is of a small “computer” that can receive certain mathematical
objects as input, and for each input object it might receive, produces an output that depends
on the input. The function is associated with two unique sets, the domain of f, which is the set
of allowed inputs to the function and the target of f, which is a set that contains all possible
output values and possibly some members that are not output values. When the function f
is given an input x from the domain, the function produces an output from the target. Each
time you give f the same input x you get the same output. The outputs that f gives for two
different inputs x and z may be the same or different.

Figure 1 illustrates the idea of a function.

X—— f —> f(X)

Figure 1: A pictorial view of a function

Let’s express this idea a bit more carefully. A function is a mathematical object g with the
following characteristics:

1. Associated to g are two sets, the domain of g, denoted Dom(g), and the target of g,
denoted Target(g).

2. To each permissible input = € Dom(g), g associates a mathematical object denoted g(z)
(which is read “g of 7). g(x) is called the image of g on = and is the output of the
function g when z is input.

The notation g : S — T means that S and T are sets and g is a function with domain S
and target T. The set of all functions with domain S and target 7" is denoted by 7°°.

25

1. If S € Dom(g), the image of S under g, denoted Im,(S) is the set consisting of all
elements of the target. Using the notation for specifying sets, we have Im,(S) = {g(x) :
xinS}, which

2. The image of the entire domain of f, Im;(Dom(f)) is called the range of f, and is
denoted Range(f). Thus the range consists of those members of the target that are the
output of f for at least one input from the domain.

3. It T C Target(g), the inverse image of T under g is denoted PreIm,(T') is the set of all
x € Dom(g) such that g(x) € T. If T consists of a single object y then we often write
Prelm,(y) instead of PreIm,({y}).

Advanced remark 2.9. In many books, you'll see a different notation for image and inverse image.
It is common to write ¢(S) instead of Im,(S), and to write g~ *(7') instead of PreIm, (7). This
notation has a potential for confusion. When we write g(z), x should be member of the domain
of g, but S is not a member of the domain, but a subset of the domain. Also, the notation ¢!
has other meanings, as we’ll see later, and to avoid confusion, we don’t use the notaiton in this
situation.

This is an example where experienced mathematicians safely use notation that has multiple
meanings because they have the experience to separate the different meanings, and know which
applies in a given context. Since we're starting out, we avoid these ambiguities.

For most of the functions you’ve encountered in the past, the domain and target sets are
both R, or subsets of R. In fact, a function is allowed to have any set as its domain, and
any (nonempty) set as its target. Throughout these notes, we’ll see functions with a variety of
different domains.

Specifying a function. To fully describe a function g, you need to specify the set Dom(g)
and the set Target(g), and for each x € Dom(g) specify what g(z). If the domain of g is a
finite set we can simply describe the domain by listing its elements, and listing a function table.

Example 2.3. Let h be the function with Dom(h) = {1, 2,3} given by the table:
1| 2] 3| 4165

h(z) | 3 | 2] 2] 1] 3

There are various ways to visualize a function. In figure 2, we present a domain-target
diagram. Here the elements of the domain are pictured on the left, and the output elements

are pictured on the right. There is an arrow from each domain member to its corresponding
output member.

26

10

2 O O 1
30 5
4 O

O 3
50/

Figure 2: Domain-Target diagram of function h from Example 2.3
When the domain and target are subsets of the real numbers, we can illustrate the function

using the familiar function graph in the x-y plane as in Figure 3. For each point plotted in the
graph, the z-coordinate is a domain value, and the y coordinate is the function value.

y=h(x)

Figure 3: A graph of function h from Example 2.3

If the domain is infinite then we can’t describe the function by a table, so we need other
ways to specify a function. The most common way of specifying a function is to give the

27

domain, together with a rule that precisely describes how the output object is built from the
input object. Usually the rule is described by giving an expression involving the input.

Example 2.4. Let f be the function with domain R given by the rule f(z) = 22 for all z € R.
Here’s a simple but important function.

Example 2.5. Let D be an arbitrary set. The identity function on D is the function idp with
domain D given by the rule idp(z) = x for all x € D.

The rule that specifies a function may be complicated.

Example 2.6. Let h be the function defined on Z by the rule:

foz/2 if x is even
h(x)_{ 3r+1 if xis odd

A rule of this form is expressed by dividing the domain into pieces. Here we divide the set
of integers into the set of even integers and the set of odd integers.

Example 2.7. Here’s a function that maps a number to a set of numbers. Let Div be the

function with domain Z- given by the rule Div(n) is the set of positive integer divisors of n.
Thus Div(12) = {1,2,3,4,6,12} and Div(0) = Z.

We can take our target set to be Pgn(Z) and write Div : Z — Pgn(Z), since every output
value is a finite set of integers.

Example 2.8. Consider the function m whose domain is the set of finite subsets of real
numbers given by the rule that for any set S, m(S) is the least member of S. For example,
m ({17, —m,1,100.25}) = —m. This function has domain Pg,(R) and target set R.

Example 2.9. Consider the function w whose domain is R? and target is R? given by the rule
fl@,y,2) = (vyz,x +y + z) for all (v,y,2) € R,

Remark 2.10. This is an example in which the f takes 3 inputs. However, we think of the three
inputs as a single list, so the function takes a single input (z,y, 2).

Strictly speaking, the correct notation is f((z,y,z)) rather than f(x,y,z), because the
notation is f(“input object”) and the input object is the list denoted (z,y,z) rather than
x,1y, z. However, it is customary to simplify the notation in this case and use only one set of
parentheses.

When are two functions equal? The criterion for two functions f and g to be equal is
that they have the same domain, and that for each member z of the domain f(z) = g(z).

28

Well-defined rules for functions. A proper description of f by a rule should clearly state
the domain of f, and provide clear instructions that given z allows one to determine f(z). A
rule that does this is said to be well-defined. A function rule may fail to be well-defined for
two main reasons: (1) The function is undefined for some element of the domain, which means
that rule supplied does not make sense for that element, or (2) The rule is ambiguous for some
element of the domain, so that for that domain element the rule either produces more than one
output value.

Example 2.10. (An invalid function definition.) Let f : R — R be defined by f(z) =
x/(x+1).

This function definition is invalid because the rule does not make sense for all values of the
domain, namely if x = —1 then the rule does not produce a real number.

Example 2.11. (An ambiguous function definition.) Let r : R>g — R be defined by the rule
r(z) is the real number such that r(z)? = .

This rule is ambiguous because for each input z, there are two choices of r(x) such that
r(z)? = z.

Natural domain of a rule and partial functions. Example 2.10 is an example where the
rule of definition for the function does not make sense for the point x = —1 in the domain.
Still, we want to make sense of the rule f(x) = z/(x + 1) as representing a function. The
obvious way to do this is to restrict the domain by eliminating the domain elements for which
the rule does not make sense. In this example, we would restrict the domain to R — {—1}. We
then say that f is a partial function on R, which means that the domain is a subset of R.

More generally given a rule that makes sense only for some values of the input, we can
use the rule to define a function by restricting the domain to those values for which the input
makes sense. The resulting domain is called the natural domain for the rule.

For example, the rule f(z) = /1 + 1/x makes sense only if the quantity to which square
root is applied is nonnegative. This will be true if + < —1 or if > — but fails if z € (—1,0].
So we restrict the domain to the set (—oo, —1] U [0, 00).

In some cases, we might want to have a function that is defined for all real numbers.

For Example 2.11, the rule is ambiguous for every member of the domain, so removing
all of these inputs from the domain will leave a very uninteresting function. In the case of
an ambiguous rule, we can try to restrict the target so as to eliminate the ambiguity. In
Example 2.11, if we reduce the target set to R, then the rule becomes unambiguous, since
now for each input x there is one and only one choice of 7(x) € Rsq so that r(x)? = z.

In the case of a rule that is undefined for some values, we can simply specify a value for the
function for those values. For example, the function in Example 2.10 could be modified to:

z/(x+1) ifz# -1
f(”“"):{o ifz=—1

29

In this case, our choice to set f(—1) to 0 is arbitrary, which may or may not be okay
depending on the context. Later we’ll see that in some cases we’ll see that there is a natural
choice for filling in undefined values.

Example 2.12. (Another invalid function definition.) Suppose we define the function h : Z —
Z be the function given by the rule h(n) = n/2. If we take an odd input, then the output is
not an integer and therefore it is outside the specified target set. If our given situation allows
for h to output numbers that are not integers, one easy repair is to change the target set to R.
If we need the function to output integers, then either we have to restrict the domain to the
set of even integers, or we have to modify the function rule for odd integers.

Composition of functions The primary way to combine two functions into one is by com-
position. The idea of function composition is represented in Figure 4, namely the composition
of two functions is the function built by chaining the functions together so that the output of
one becomes the input of the other.

30

x—| f [—=f(x) z—| 8 (—g(2)

x —=—| f——1fx) ——| g gof(x)

Figure 4: The function g o f obtained by composing functions g with f. Notice that when
applying g o f, f is applied first, then ¢ is applied.

The normal situation for composing functions is when we have two functions: f: S — T
and g : U — V, where the target T of f is a subset of the domain U of g. We define
go f:S — V to be the function given by the rule g o f(s) = g(f(s)) for all s € S. For this
rule to make sense we need that f(s) belong to Dom(g). this rule makes sense for all s € S,

Advanced remark 2.11. Functions and Indexed collections

The observant reader may notice a close similarity between functions and indexed col-
lections. A function f associates to each member of the domain an element in the target.
An indexed collection C' of objects in T with index set J consists of a collection of objects
(C; :j € J) where each C; € T

In fact functions and indexed collections are really just two different ways of representing
the same thing. Given a function f : X — Y we can build an indexed collection (C, : x € X)
of objects in Y with index set x where C,, = f(x), so we can think of the function as an indexed
collection. Similarly, if we start with an indexed collection (C; : j € J) of objects in T', we can

31

build from it a function g : J — T defined by g¢(j) = C;. In particular, a list b of length m
can be associated to a function whose domain is {1,...,m}.

Since functions and indexed families are essentially the same, we use the same notation for
the set of functions from X and Y, and the set of indexed families Given that functions and
indexed families are essentially the same thing, why do we bother defining both of them? We
do this because both concepts appear frequently in the literature (with functions being much
more common.) There is a subtle difference in how they are used. When we study indexed
families, we are often (though not always) mostly interested in the objects in the families
and not in which indices correspond to which objects. The indices are simply a convenient
label to reference all of the objects. With functions, we generally care very much about the
correspondence between domain elements and target elements.

32

