
12 A Glimpse of Number theory: Exploring the inte-

gers13

The most familiar mathematical objects are the integers, and number theory is the field of
mathematics that studies the integers. Despite the apparent simplicity of the integers, number
theory is an enormous and complex subject with many unsolved mysteries. Here are two
examples.

Twin primes. A pair of primes that differ by two, such as 3 and 5 or 17 and 19 are called
twin primes. One of the most famous unsolved puzzles in mathematics is the twin prime
conjecture which asserts that there are infinitely many twin prime pairs. Despite centuries of
study, mathematicians still don’t know whether this conjecture is correct.

Are there odd perfect numbers? An integer is said to be perfect if the sum of its proper
divisors (the positive divisors less than itself) is the number itself. For example, 6 is perfect
since 6=3+2+1 and 28 is perfect since 28=14+7+4+2+1. (See Exercise 12.16.) Are there any
odd perfect numbers?

Exercise 12.1. A prime triplet is a sequence of n, n+ 2, n+ 4 that are all prime. For example
3,5,7 is a prime triplet. Prove that there are no other prime triplets.

12.1 Solving a linear Diophantine Equation

Many problems in number theory deal with finding solutions to an equation, or to a system
of equations, where the variables are only allowed to take on integer values. If the equation
only involves polynomial functions of the variables, such an equation is called a Diophantine
equation.

Example 12.1. Consider the equation x2 + y2 = z2. If we require x, y and z to be integers
we get a Diophantine equation. The solutions to this equation are called Pythagorean triples.

Exercise 12.2. Prove that for any two integers m and n, x = m2−n2, y = 2mn and z = m2+n2

is a Pythagorean triple.

Example 12.2. Consider the equation x4 + y4 = z4. There are trivial integer solutions, where
either x = 0 or y = 0 (in which case the other two numbers are either equal, or one is the
negative of the other). Are there any nontrivial solutions (where none of the numbers is 0)?
Remarkably, it turns out that there are no such solutions. In fact, one can consider equations of
the form xk + yk = zk where k is a positive integer. If k = 1 the equation has many non-trivial
solutions, and if k = 2 solutions are Pythagorean triples. A very famous theorem of Andrew
Wiles says that when k ≥ 3 the only solutions are the trivial ones where x or y is 0. This
theorem was first proposed by the French mathematician Pierre de Fermat in 1637, and was
not proved until the mid 1990’s.

13Version 11/10/16. Copyright c©2016 by Michael E. Saks
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In this section we investigate the problem of solving a single linear Diophantine Equation

Definition 12.1. Let a1, . . . , ak be a list of integers and b be an integer and let x1, . . . , xk be
variables. The equation a1x1 + . . . + akxk is a linear equation in the k variables x1, . . . , xk. If
we require that the variables only take integer values, then the equation is a linear Diophantine
equation.

Example 12.3. 1. The equations 6x = 18 and 6x = 31 are one variable linear Diophantine
equations. The first has exactly one solution x = 3 while the second has no solution.

2. The equation 5x+ 8y = 11 is a linear Diophantine equation. A solution to this equation
is x = 7, y = −3.

3. Does the linear Diophantine equation 6x+ 15y = 20 have a solution?

We are interested in the following questions:

Question 12.3. 1. Is there an easy way to tell whether a Linear Diophantine equation has
a solution of not?

2. If the equation does have a solution is there an easy way to find one?

3. If the equation has a solution, how can we describe all of the solutions?

We will answer the first two questions, and give a partial answer to the third. Let’s start
with the first question. The simplest case is the case of equations with one variable. If we have
the equation ax = b then the only possible solution is b/a. If b/a is an integer, then this is the
unique solution to the Diophantine equation. If this is not an integer, then the Diophantine
euqation has no solutions.

Proposition 12.1. . Let a and b be arbitrary integers. The linear Diophantine equation ax = b
has exactly one solution if a is a divisor of b and has no solutions if a is not a divisor of b.

Exercise 12.4. Write a careful proof of Proposition 12.1.

Next, let’s consider linear Diophantine equations with two variables. Consider the third
example in Example 12.3, where you are asked whether 6x+ 15y = 20 has a solution. Notice
that 3 is a divisor of both 6 and 15. Therefore whatever integers we choose for x and y, the
lefthand side of the equation will be a multiple of 3, while 20 is not a multiple of 3. So it’s
impossible to find an integer solution to this equation.

For integers a, b and d, we say that d is a common divisor of a and b if d is a divisor of a
and d is a divisor of b. More generally, for a list (a1, . . . , ak) of integers, and an integer d, we
say that d is a common divisor of a1, . . . , ak if for each i ∈ {1, . . . , k} we have d is a divisor of
ai. This argument can be generalized to prove:

Proposition 12.2. For any integer b and list of integers (a1, . . . , ak), if the equation a1x1 +
· · ·+ akxk = b has a solution with x1, . . . , xk integers, then every common divisor of a1, . . . , ak
is a divisor of b.
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Exercise 12.5. Prove Proposition 12.2.

Proposition 12.2 gives a necessary condition on a1, a2, . . . , akand c that must be satisfied
for a1x1 + · · · akxk = b to have an integer solution. However, we don’t know yet whether that
requirement is sufficient, which leads to the following question:

Question 12.6. If a1, . . . , ak and b are integers and every common divisor of a1, . . . , ak is also
a divisor of b does this imply that the equation a1x1 + · · · akxk = b has an integer solution?

As we will see this question has an affirmative answer. We need some additional definitions.

Definition 12.2. Suppose a1, . . . , ak are integers.

Greatest common divisor. The greatest common divisor of a1, . . . , ak, denoted gcd(a1, . . . , ak)
is the largest integer that is a divisor of every one of the ai.

Least common multiple. The least common multiple of a1, . . . , ak denoted lcm(a1, . . . , ak)
is the smallest positive integer that is a multiple of every one of the ai.

Relatively prime. Two integers a and b are said to be relatively prime if gcd(a, b) = 1 (so a
and b have no common divisor larger than 1). The list (a1, . . . , ak) is a list of relatively
prime integers if gcd(ai, aj) = 1 for all i 6= j.

Proposition 12.3. For any two positive integers a and b, gcd(a, b)× lcm(a, b) = a× b.

Exercise 12.7. Prove Proposition 12.3. (Use the definition of lcm and gcd, and don’t use the
fact that every integer can be factored uniquely into prime factors.)

Theorem 12.4. For any nonempty list of positive integers (a1, . . . , ak) and for any positive
integer b, the following are equivalent:

1. The equation a1x1 + · · ·+ akxk = b has an all integer solution.

2. Every common divisor of a1, . . . , ak is a divisor of b.

3. The greatest common divisor of a1, . . . , ak is a divisor of b.

The proof goes by proving (1) implies (2), (2) implies (3), and (3) implies (1). The proof
of (1) implies (2) and (2) implies (3) are easy and left as exercises.

Exercise 12.8. Prove (1) implies (2) and (2) implies (3) for Theorem 12.4.

The hard part is the proof that (3) implies (1). The proof of this will introduce some
important new ideas. The first big idea is to change the way we’re looking at the problem.

Definition 12.3. For the list (a1, . . . , ak) of integers, we define S(a1, . . . , ak) to be the set of
all integers that can be expressed in the form a1x1 + . . .+ akxk where x1 . . . , xs are all integers.
In set notation S(a1, . . . , ak) = {a1x1 + . . .+ akxk : x1, x2, . . . , xk ∈ Z}.
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Example 12.4. We can define S(m) where m is a single integer. In this case, the definition
tells us that S(m) is the set of all multiples of m. In particular, S(0) = {0}.

The question of whether a1x1 + · · · + akxk = b has an integer solution can be restated
as: does b belongs to S(a1, . . . , ak)? To investiage this question, we will study the entire set
S(a1, . . . , ak). This seems like we are making the problem harder. However, it turns out that by
studying the entire set S(a1, . . . , ak) we will discover that this set has a very simple structure,
and once we understand the structure it will be easy to tell whether any particular number b
is in the set.

So we explore the set S(a1, . . . , ak) and discover some properties. We start with some simple
properties:

Proposition 12.5. For any integers a1, . . . , ak, the numbers a1, . . . , ak and 0 are members of
S(a1, . . . , ak).

Exercise 12.9. Prove Proposition 12.5.

Next we get to some more interesting properties of S(a1, . . . , ak). To state these properties
we need some additional definitions.

Definition 12.4. For a subset T of Z we say:

• T is closed under addition if for any r, s ∈ T we have r + s ∈ T .

• T is closed under multiplication by Z if for any r ∈ T and n ∈ Z we have nr ∈ T .

• T is an integer ideal if it is nonempty, closed under addition and closed under multilpli-
cation by Z.

Proposition 12.6. For any integers a1, . . . , ak, the set S(a1, . . . , ak) is an integer ideal.

Exercise 12.10. Prove Proposition 12.6.

In particular, the set S(0) = {0} is an ideal, called the zero ideal.
So now we know that S(a1, . . . , ak) is an integer ideal. Our next step is a big one. We will

show that every integer ideal is a very simple set. Recall from Example 12.4 that S(m) is the
set of multiples of m.

Theorem 12.7. For every integer ideal T , there is a nonnegative integer m such that T =
S(m).

This type of theorem is called a structure theorem. It says that even though the definition
of ideal is somewhat complicated and mysterious, every integer ideal T actually has a very
orderly structure.
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Proof. Suppose T is an arbitrary integer ideal. We will show that there is an integer m so that
T = S(m).

Let’s observe first that T must contain 0: Since T is nonempty it contains some integer
we’ll call t, and by closure under multiplication, 0× t = 0 is in T .

Now we consider two cases: (1) T = {0} (T is the zero ideal) and (2) T 6= {0} (T is a
non-zero ideal).

Case 1. T = {0}. Then T = S(0).
Case 2. T 6= {0}. Our goal is to show that there is a positive integer m such that T = S(m).
[Comment: How are we going to give instructions to find m? Imagine that what we are

trying to prove is true. Then T consists of all multiples of some positive number m. In this
case the positive members of T would be m, 2m, 3m, etc. and m is the smallest positive member
of T . So this suggests an idea. Even though we don’t know that T has the right form, let’s pick
m to be the smallest positive member of T and try to show that T = S(m).]

We consider the set T>0 consisting of members of T that are positive. We claim T>0 is
nonempty. Since T is nonempty and not equal to {0}, it must contain a nonzero member, we’ll
call t. By closure under multiplication, −t is also in T . One of the numbers t and −t is in T>0.

Since T>0 is a nonempty subset of positive integers, the well-ordering principle implies that
T>0 has a smallest member, which we’ll call m. Our goal now is to show that T = S(m). To
do this we will show S(m) ⊆ T and T ⊆ S(m).

The proof that S(m) ⊆ T is left as an exercise.

Exercise 12.11. For any ideal T and for any d ∈ T , S(d) ⊆ T .

The more interesting part is to show that T ⊆ S(m). Suppose t is an arbitrary member of T .
We must show that t is a multiple of m. By the quotient-remainder theorem (Theorem 10.14)
there are integers q and r with r ∈ {0, . . . ,m − 1} such that t − qm = r. We will now show
that r = 0, which implies that t ∈ S(m). Since m ∈ T and T is closed under multiplication,
we have −qm is in T . Since T is closed under addition t+ (−qm) = t− qm = r belongs to T .
Now r ∈ {0, . . . ,m− 1} ∩ T implies r < m, and since m is the smallest positive member of T ,
r can’t be a positive integer. Therefore r = 0. Therefore t = qm and t ∈ S(m).

We are now ready to prove that (3) implies (1) in Theorem 12.4. Recall that a1, . . . , ak are
arbitrary positive integers. Suppose that d = gcd(a1, . . . , ak).

We must show that S(a1, . . . , ak) = S(d). Since S(a1, . . . , ak) is an ideal, Theorem 12.7
implies that there is an integer we’ll call m such that S(a1, . . . , ak) = S(m). So we will show
m = d. To do this we’ll show m ≥ d and m ≤ d.

First we show that m ≥ d. Since d is a divisor of each of the ai, it is a divisor of any number
of the form a1x1 + · · ·+akxk where x1, . . . , xk are integers and so d is a divisor of every member
of S(a1, . . . , am). In particular d is a divisor of m and since d and m are positive, d ≤ m.

Next we show m ≤ d. By Proposition 12.5, a1, . . . , ak all belong to S(a1, . . . , ak) and since
this equals S(m) we have that each ai is a multiple of m, so m is a common divisor of a1, . . . , am,
so m ≤ d.

Since d ≤ m and m ≤ d we have m = d and so S(a1, . . . , am) = S(d) as required to prove
the theorem.

139



�.
The following Corollary is a useful restatement of Theorem 12.4.

Corollary 12.8. For any integers a1, . . . , ak, there are integers b1, . . . , bk such that a1b1 + · · ·+
akbk = gcd(a1, . . . , ak).

Exercise 12.12. Prove Corollary 12.8

Corollary 12.9. Suppose m1, . . . ,mk are integers.

1. If d is a common divisor of m1, . . . ,mk then d is a divisor of gcd(m1, . . . ,mk).

2. If m is a common multiple of m1, . . . ,mk then m is a multiple of lcm(m1, . . . ,mk).

Exercise 12.13. Prove Corollary 12.9. (Hint: use induction on k. For the second part, the
result of Exercise 12.7 is useful.)

As an application of Corollary 12.8 we will use it to answer a new question:

Question 12.14. Suppose r is a prime number, and (b1, . . . , bs) is a list of integers. If r is not
a divisor of any of the bi, is it possible that r is a divisor of the product?

The following theorem, which is known as Euclid’s lemma, shows that the answer to this
question is no.

Theorem 12.10. (Euclid’s lemma) For any prime number r and any list of integers (b1, . . . , bs)
if r is a divisor of the product b1b2 . . . bs then there is an index i ∈ {1, . . . , s} such that r is a
divisor of bi.

Proof. Suppose that r is an arbitrary prime number and (b1, . . . , bs) is an arbitrary list of
integers. We will prove the result by induction on the length s of the list (b1, . . . , bs). By
induction we may assume that for any list (e1, . . . , et) of integers with t < s, if r is a divisor of
the product then r divides at least one of the ei. [Comment:The prime r is fixed throughout
the proof.]

We consider two cases, depending on whether s = 1, s = 2 or s > 1.
Case 1. Assume s = 1. Then the list is (b1) and the hypothesis is that r is a divisor of b1

which is the same as the conclusion.
Case 2. Assume s = 2. Then r is a divisor of b1 × b2. Assume for contradiction that r is

not a divisor of either b1 or b2. Since r is prime and r is not a divisor of b1, gcd(r, b1) = 1. We
will show that gcd(b1b2, r) = 1 which will contradict that r is a divisor of b1b2. To show that
gcd(b1b2, r) = 1 we will find integers v and w so that vb1b2 + wr = 1, which by Proposition
12.2 implies that b1b2 and r have no common divisor bigger than 1.

By Corollary 12.8 there are integers we’ll call c1 and d1 so that c1r+d1b1 = 1, and there are
integers we’ll c2 and d2 so that c2r+d2b2 = 1. Rewriting these equations we have d1b1 = 1−c1r
and d2b2 = 1−c2r. Multiplying these two equations together gives d1d2b1b2 = 1− (c1 +c2−r)r,
which is equivalent to d1d2b1b2 + (c1 + c2 − r)r = 1. So we’ve found two integers v = d1d2 and
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w = c1 + c2 − r so that vb1b2 + wr = 1. By Theorem ??, b1b2 and r have no common divisor
greater than 1, contradicting that r is a divisor of b1b2.

Case 3. Assume s ≥ 2. Let c = b2 × · · · × bs. Then (b1, c) is a list of length 2 such that r is
a divisor of b1c so by Case 2, r divides b1 or r divides c. If r divides b1 we have what we want.
If r divides c then we have that r is a divisor of the product of the list (b2, . . . , bs−1). Since this
list has length s− 1, by the induction hypothesis, r is a divisor of at least one of the numbers
b2, . . . , bs, as required.

We will apply this Theorem in the next two sections to prove additional results in number
theory.

12.2 The fundamental theorem of arithmetic

Recall that a factorization of a positive integer n is a list of positive integers, all greater than 1,
whose product is n; the list may just be the single entry list (n). Recall that a prime number
is an integer greater than 1 that has no divisors other than itself and 1. A prime factorization
of n is a factorization of n consisting entirely of primes. For example, (2, 2, 2, 3, 5) is a prime
factorization of 120. There are two obvious questions to ask about prime factorizations:

Question 12.15. 1. Does every positive integer greater than 1 have a prime factorization?

2. Does any integer have more than one prime factorization?

In middle school or high school you probably learned about prime factorizations, and had
practice finding the prime factorization of a number. From your experience, you can probably
guess that the answer to the first question is yes: Every positive integer greater than 1 has a
prime factorization. You may recall that this statement was proved earlier as Theorem ??.

The answer to the second question is no since (2, 3, 3) and (3, 3, 2) are two different prime
factorizations of 18. Of course, one of these lists is just a rearrangement of the other: every
prime appears the same number of times in each list, but in a different order. So we modify
the second part of Question 12.15 to ask: can an integer have two prime factorizations that
are not rearrangements of each other?

This answer to this question is provided by the following theorem, which is so important
that it is called the fundamental theorem of arithimetic.

Theorem 12.11. (Fundamental theorem of arithmetic) For any integer n ≥ 2, the prime
factorization of n is unique up to rearrangement, which means that any two prime factorizations
of n must be rearrangements of each other.

Proof. Suppose n is an arbitrary integer greater than 1. We already proved that n has at least
one factorization, so now we show that for any two factorizations, one must be a rearrangement
of the other. We use mathematical induction. By induction we may assume that for any integer
k such that k > 1 and k < n, any two factorizations of k must be rearrangements of each other.

Suppose that (p1, . . . , pk) and (q1, . . . , qm) are arbitrary prime factorization of n. We now
show that at least one of the primes in the list (q1, . . . , qm) is equal to p1. Since n = q1 . . . qm
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and p1 is a divisor of n, we have p1|q1 · · · qm. By Euclid’s lemma 12.10, there is a j ∈ {1, . . . ,m}
such that pi is a divisor of qj. Since qj is prime and p1 > 1 we must have p1 = qj.

So p1 appears on both lists (possibly more than once). Let P be the list obtained by
removing p1 from the first list and let Q be the list obtained by removing qj from the second.
We then have two lists of primes that both are factorizations of the number n′ = n/p1. We
also have n′ > 1 since by the case assumption n is not prime. So n′ > 1 and n′ < n so by
the induction hypothesis P and Q must be rearrangements of the other. Since (p1, . . . , pk) is
obtained by adding p1 to the list P and (q1, . . . , qm) is obtained by adding qj = p1 to the list Q
we have that (p1, . . . , pk) is a rearrangement of (q1, . . . , qm) as required.

Exercise 12.16. Recall that a number is perfect if the sum of its proper divisors is the number
itself. (A proper divisor of the positive integer n is a positive divisor less than n.) Prove that
if n is a positive integer such that 2n − 1 is prime then 2n−1(2n − 1) is perfect. Use this result
to find a perfect number bigger than 30.

12.3 Systems of congruences in one variable

Let’s start with a sample problem:

Question 12.17. Is there a number n such that n ≡3 1 and n ≡4 2 and n ≡5 4? If so find
such a number.

Here we have three separate requirements on n, the first says that n − 1 is divisible by 3,
the second says n− 2 is divisible by 4 and the third says n− 4 is divisible by 5.

In this section, we consider problems with this general form.

Definition 12.5. A system of congruences in the variable n is a sequence of constraints on n
that is described by a list of pairs of integers (b1,m1), (b2,m2), . . . , (bk,mk) where each mi is
positive. The constraints are:

n ≡m1 b1 (1)

n ≡m2 b2 (2)

· (3)

· (4)

· (5)

n ≡mk
bk. (6)

• We refer to mi as the modulus of the ith constraint and bi is the remainder of the ith
contraint.

• We refer to the list m1, . . . ,mk as the list of moduli, and to the list b1, . . . , bk as the list
of remainders of the system.
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The solution set S(b1, b2, . . . , bk;m1, . . . ,mk) is the set of integers n that satisfy (1).

Given a list of pairs of integers (b1,m1), . . . , (bk,mk), there are some natural questions:

Question 12.18. 1. Does the associated system of congruences have a solution? (Is
S(b1, . . . , bk;m1, . . . ,mk) nonempty?)

2. If the system has a solution, what is a method to find it?

3. Is there an easy way to describe the set S(b1, . . . , bk;m1, . . . ,mk)?

In this section we’ll investigate these questions. We will think about the problem in the
following way: Think of m1, . . . ,mk as fixed. For each choice of the list of remainders b1, . . . , bk
we get a solution set (which might be empty). As we vary b1, . . . , bk we want to understand how
the solution set changes. The following fact says that we can relate the solutions of different
lists of remainders. First we need a definition:

Definition 12.6 (Sum of lists). If a = (a1, . . . , ak) and b = (b1, . . . , bk) are lists then a + b is
defined to be the list (a1 + b1, . . . , ak + bk).

Lemma 12.12. Suppose m1, . . . ,mk is a list of positive integers.

1. Suppose that a1, . . . , ak and b1, . . . , bk are two lists of integers. Suppose that n belongs to
S(a1, . . . , ak;m1, . . . ,mk) and r belongs to S(b1, . . . , bk;m1, . . . ,mk). Then n + r belongs
to S(a1 + b1, . . . , ak + bk;m1, . . . ,mk).

2. Suppose we have t lists of possible remainders

b1 = (b11, . . . , b
1
k), b2 = (b21, . . . , b ∗ 2k), . . . , (bt1, . . . , b

t
k)

and that n1, . . . , nt are integers such that for each i, ni ∈ S(bi1, . . . , b
i
k;m1, . . . ,mk).

Let c = (c1, . . . , ck) be the sum of the lists b1 + · · · + bt. Prove that n1 + . . . , nt ∈
S(c1, . . . , ck;m1, . . . ,mk)

Exercise 12.19. Prove Lemma 12.12. When proving the second part, use induction on t, and
notice that the case t = 2 is equivalent to the first part.

Now, let’s consider the case that all of the remainders are 0. This is referred to as a system
of homogeneous congruences. This case has a simple solution:

Proposition 12.13. For any list of positive integers m1, . . . ,mk, the set S(0, . . . , 0;m1, . . . ,mk)
of all solutions to the system of congruences n ≡mi

0 for each i ∈ {1, . . . , k} is equal to the set
of multiples of lcm(m1, . . . ,mk).

Exercise 12.20. Prove Proposition 12.13. (Hint: Corollary 12.9 is helpful.)

Now let’s consider the case of general congruences where the remainders are not all 0. In
this case, finding a solution is not so easy. However, it turns out that if we are able to find one
solution, then there is an easy way to determine the entire set of possible solutions!
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Proposition 12.14. Suppose (b1,m1), . . . , (bk,mk) is a list of pairs of integers and n0 is a
member of S(b1, . . . , bk;m1, . . . ,mk). Then for all integers n, n is a solution if and only if
n− n0 is a multiple of lcm(m1, . . . ,mk).

Exercise 12.21. Prove Proposition 12.14.

Armed with Proposition 12.14, we only need to find a single solution to a system of
congruences and then we know all solutions. So we focus on the first two parts of Question
12.18. We will not answer these questions for all possible systems, but we will give a solution
in the special case of relatively prime moduli, which means that any two moduli in the system
have greatest common divisor equal to 1. For example, the system in Question 12.17 has
moduli 3,4 and 5, which are relatively prime. In the case of relatively prime moduli we’ll show
that there is always a solution, and we’ll show how to find one. This theorem is often called the
Chinese Remainder Theorem, because the earliest known discovery of it was in the 3rd century
C.E. by the Chinese mathematician Sunzi.

Theorem 12.15. Every system of congruences with relatively prime moduli has a solution.

We will give two proofs of this theorem. The proofs are quite different and each proof is
interesting. The proofs both require the assumption that the moduli are relatively prime. Here
are the facts that we need about lists of relatively prime integers.

Proposition 12.16. Let r1, . . . , rj be a list of positive integers that are relatively prime. Then:

1. lcm(r1, . . . , rj) = r1 × · · · × rj.

2. For any number s that is relatively prime to each rj, s is also relatively prime to the
product r1 × · · · × rj

Exercise 12.22. Prove Proposition 12.16. (Hint: For the first part use induction on j. The
case j = 1 is trivial. Prove the case j = 2 using Proposition 12.3. Use the induction hypothesis
to prove the case j ≥ 3. For the second part, use Euclid’s Lemma (Theorem 12.10)).

Proof 1 of Theorem 12.15. Suppose m1, . . . ,mk are positive integers and b1, . . . , bk are inte-
gers. We want to show that there exists a solution to (1). We will do this by showing how to
construct a solution.

Here’s our strategy: We saw above that if the bi are all equal to 0, then its easy to find
a solution. Suppose for the moment we could find a solution in the case that all but one of
the bi are 0. Define k lists, d1, d2, . . . , dk where the list di has ith entry bi and all other entries
0. Notice that b is the sum of the lists d1, . . . , dk. Suppose for each i, we manage to find a
solution ni to the congruences when the remainder list is di. Then by Lemma 12.12 we have
that n1 + · · ·+ nk is a solution to the congruences with remainder list (b1, . . . , bk).

So now we only have to show how to find a solution ni for the congruence with remainder
list di whose only nonzero entry is dii = bi. For the moment, let’s consider the problem of
finding a number that satisfies all of the requirementsexcept possibly for the n ≡mi

bi. Then
we have k − 1 requirements all having remainder 0. Define Ni to be the product of all of the
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moduli except for mi. By Proposition 12.16, part 1, since the mi are relatively prime, Ni is
also equal to the lcm of all of the moduli except for mi. By Proposition 12.13, any multiple of
Ni satisfies all congruences except the ith. So now we just need to find a multiple of Ni that
satisfies the ith requirement, since that number will satisfy all of the requirements. We want
to find a number ri so that riNi − ai is a multiple of mi, which means that we want to find
integers ri and si so that riNi + simi = ai. Now, since mi is relatively prime to mj for every
j 6= i, by Proposition 12.16, Part 2, mi is relatively prime to Mi, so by Corollary 12.8 there
are integers we’ll call b and c so that bmi + cMi = 1. Multiplying both sides by ai we have
(aib)mi + (aic)Mi = ai. So we let niaicMi − ai which is divisible by mi and is a multiple of
every other mi.

Now, following the above strategy we define n =
∑k

i=1 ni, which is a solution to the original
system of congruences.

Now we’ll move on to the other proof. This proof is quite different from the previous.
Notice that the theorem we’re proving is a “universal-existential” assertion, it says that “for
all system of congruences having relatively prime moduli, there exists a solution”. The first
proof followed the usual pattern for a universal-existential assertionL An arbitrary system of
congruences was introduced. We then had to show that there exists a solution, so we gave
instructions for building a solution. The second proof will not follow this pattern. We will
manage to show that there exists a solution, not by giving instructions for building a solution,
but by a completely new method.

Proof 2 of Theorem 12.15. Suppose m1, . . . ,mk are positive integers and b1, . . . , bk are inte-
gers. We want to show that there exists an integer n such that for each i ∈ {1, . . . , k},
n ≡mi

bi.
We now do a few things to modify our goal. For i ∈ {1, . . . , k} define the set Si to be

{0, . . . ,mi − 1. For each i ∈ {1, . . . , k}, let ci be the remainder when bi is divided by mi.
Observe that ci ∈ Si. Since bi ≡mi

ci we can reformulate our goal as: Does the system of
congruences n ≡mi

ci for i ∈ {1, . . . , k} have a solution?
Next we define a function r that maps each integer n to a list of k numbers, where the ith

entry of the list is denoted ri(n), so r(n) = (r1(n), . . . , rk(n)). The function ri(n) is defined to
be the remainder when you divide n by mi, so that ri(n) ∈ Ai. So the range of the function r
is a subset of S1 × · · · × Sk. We can restate what we want to show in terms of the function r:
we want to show that (c1, . . . , ck) is in the range of r, which means that there is an integer n
such that r(n) = (c1, . . . , ck). Such an n is a solution to the system of congruences.

Usually, the way we show that a particular object is in the range of a function is to construct
a member of the domain that maps to that object. Here we’ll use a very different technique.
We will show that the range of r is the entire set S1×· · ·×Sk. Since (c1, . . . , ck) ∈ S1×· · ·×Sk

we will conclude that (c1, . . . , ck) ∈ Range(r).
Observe that the size of the set S1×· · ·×Sk is |S1|× · · ·× |Sk| = m1×· · ·×mk. Let us call

this last number N . Consider the function q obtained by restricting the function r to the with
domain {0, . . . , N−1}. Call this function q, so that q : {0, . . . , N−1} −→ S1×· · ·×Sk. Notice
that both of these sets have the same size N . We will prove that q is onto, which obviously
implies that r is onto.
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To prove that q is onto we’ll use the following fact.

If A and B are finite sets of the same size, then any one-to-one map from A to B
is also onto.

This fact is intuitively obvious and is stated as Proposition ??. This fact is useful because
it gives us a completely different way to prove that the function q is onto: since the domain
and codomain of q are finite sets that the same size, it is enough to show that q is one-to-one.
So we do this.

Suppose s and t are integers in {0, . . . , N − 1}. Assume q(s) = q(t). We must show s = t.
Assume without loss of generality that s ≥ t and let w = s− t. Then q(w) is equal to (0, . . . , 0)
so w is a solution to the homogenous system of congruences n ≡mi

0 for all i ∈ {1, . . . , k}. By
Proposition 12.13, we know that w is a multiple of lcm(m1, . . . ,mk), which is equal to N by
Proposition 12.16, Part 1. But w ∈ {0, . . . , N − 1} so w = 0 and therefore s = t as required
to prove that q is one-to-one. Therefore q is also onto!

12.4 Decimal representations of integers

Our culture represents integers using the base 10 representation. In this representation we
have 10 symbols called digits, which are 0,1,2,3,4,5,6,7,8,9 and which stand for the first 10
nonnegative integers. If d0, d1, . . . , dk is a sequence of digits then when we write them in reverse
order dkdk−1 . . . , d0 (without commas) this means the number

∑k
i=0 di10i. This is called the

base 10 or decimal representation of an integer. When representing a positive integer, we insist
the highest order digit be nonzero, so we don’t allow 00353, and instead write 353. There are
two key questions:

• Can every positive integer be represented in this way.

• Is the decimal representation of every positive integer unique?

Of course, our experience tells us that these things seem to be true. Now we’ll prove them.

Theorem 12.17. For every positive integer n, there is a unique sequence of digits d0, . . . , dk
that gives the decimal representation of n.

We’ll prove this in two parts. First we prove that every positive integer n has a decimal
representation. Then we’ll prove that n has at most one decimal representation. In the proof
of the first part, we’ll use induction, but it will not be enough just to apply the induction
hypothesis to n− 1.

Proof. Suppose n is an arbitrary positive integer. We’ll show that n has a unique decimal
representation. First we prove that n has a decimal representation. Then we’ll prove that any
two such representations must be the same.

We start by showing that n has a decimal representation.
Case 1. If n ≤ 9 then n has a single digit decimal representation.
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Case 2. Assume n ≥ 10. We divide into case depending on whether 10|n or not.
Subcase 2a. Assume n is divisible by 10. Let m = n/10. By the induction assumption, there
are numbers a0, . . . , at such that m =

∑t
i=0 ai10i. Then n = 10 ∗ m. Define c0, . . . , ct+1 by

c0 = 0 and for 1 ≤ j ≤ t+ 1, cj = aj−1. Then n =
∑t

i=0 ai10i+1 =
∑t+1

j=1 aj−110j =
∑t+1

j=0 cj10j.
Subcase 2a. Assume 10 is not a divisor of n. Apply the induction hypothesis to n− 1 to get
a decimal representation bjbj−1 . . . b0 for n − 1. We claim that b0 < 9. If not then n − 1 − 9
is divisible by 10, and so n − 10 is divisible by 10, contradicting that n is not divisible by 10.
Since b0 < 9 we can simply define c0 = b0 + 1 and cj = bj for j ≥ 1, and then

∑j
i=0 ci10i = n.

This completes the proof that n has a decimal representation. Next we want to prove that
the representation is unique.

Lemma 12.18. For any positive integer j and for any sequence a0, . . . , aj−1 of digits we have
10j >

∑j−1
i=0 ai10i.

Proof. Suppose j is a positive integer and that a0, . . . , aj−1 is a sequence of digits. We have∑j−1
i=0 ai10i ≤

∑j−1
i=0 9× 10i, since ai ≤ 9 for each i. Now using the formula for geometric series,

Proposition 11.6, we have
∑j−1

i=0 9(10i) = 9(10j − 1)/9 = 10j − 1, which is an upper bound on
the sum.

Now given the lemma, suppose that djdj−1 . . . d0 and ckck−1 . . . c0 are both decimal represen-
tations of n. Note that by the requirements on decimal representations dj 6= 0 and ck 6= 0. We
need to show that these representations are the same. So we have to show j = k and that two
sequences have the same digits. We claim that j = k. By the lemma, n =

∑j
i=0 di10i < 10j+1

and also n ≥ dj10j ≥ 10j. Similarly n < 10k+1 and n ≥ 10k. So 10k+1 > n ≥ 10j which implies
k ≥ j and 10j+1 > n ≥ 10k which implies j ≥ k. Thus j = k.

Suppose for contradiction that dj . . . d0 and cj . . . c0 are different. Let h be the largest index
such that ch 6= dh. We may assume that dh > ch (the other case is similar.) Then:

j∑
i=0

di10i −
j∑

i=0

ci10i =

j∑
i=0

(di − ci)10i

≥
h∑

i=0

(di − ci)10i

= (dh − ch)10h +
h−1∑
i=0

(di − ci)10i

≥ 10h −
h−1∑
i=0

ci10i.

By the lemma, this difference is positive, which contradicts that both of these sequences rep-
resent the same number n.
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