
11 Introduction to Mathematical Induction 12

The Principle of Mathematical Induction (PMI), is a very powerful proof technique with many
variations. The version we discuss here is somewhat different from the version typically taught
in introductory courses, but has important advantages over the typical version:

1. It fits well with the general method of proving universal assertions. (The more common
methods do not.)

2. It is harder to misuse than the more common methods. (This is crucial; the more com-
monly taught versions of induction are often misapplied by students.)

Remark 11.1. A caution to the reader. You may have seen mathematical induction before,
and you may think you already know it. Mathematical induction comes in many forms, and
the form usually taught in elementary classes has limited usefulness. Furthermore, when stu-
dents try to apply this form in more complex situations, it leads them to make serious errors.
The form of mathematical induction presented in this book will probably be different than
what you learned before, and is intended to prepare you to use induction properly in complex
mathematical situations. So for now you should forget everything you think you know about
induction, and learn it as presented here. Later on, we’ll relate the form of induction presented
here to the more elementary forms of induction usually taught in elementary classes.

When can mathematical induction be used? We’ve seen that to prove a universal as-
sertion, we start by setting up the scenario that represents the hypothesis of the assertion.
This scenario involves certain hypothetical objects, and certain assumptions. We then use the
information of the scenario to work towards the desired conclusion.

The principle of mathematical induction (PMI) says that in certain common situations there
is an additional assumption, called the induction assumption or induction hypothesis, that you
are permitted to add to your list of assumptions. We’ll state this assumption below. As with
any assumption you are not required to use it, but may use it if it is helpful.

The principle of mathematical induction is often useful when proving universal assertions
when the universe of the assertion is:

• The set of nonnegative integers, or the set of positive integers, or the set of integers
greater than or equal to some fixed number.

• The set of finite subsets of some set.

• The set of finite lists with entries in some set.

It is typically not useful if the universe of the assertion is the set of all real numbers, or
involves infinite sets. As we’ll see later, the principle applies more generally whenever the
universe is partially ordered and the partial order satisfies a condition called well-foundedness.
But that’s later; for now we’ll start with the simplest situation for induction: when the universe
is the set of nonnegative integers.
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The principle of mathematical induction for nonnegative integers Suppose we want
to prove a universal principle about the set of nonnegative integers, of the form:

For all n ∈ Z≥0, we have C(n),

As always, our proof of such an assertion starts something like:

Suppose n is an arbitrary member of Z≥0. We must prove C(n).

The principle of mathematical induction says that in such a proof you are permitted to use
the following assumption, called the induction assumption or the induction hypothesis.

For all k ∈ Z≥0 such that k < n, C(k) is true.

Three questions come to mind when seeing PMI for the first time:

• What exactly does the induction assumption mean?

• How is this assumption useful in proving things?

• Why are we allowed to make this assumption?

The third question will be discussed later. The important thing to know now is PMI is
“safe to use”. More precisely, mathematicians have determined that PMI is a sound reasoning
principle, which means that you can not prove something that’s false using it. So if you manage
to prove something using induction you can be assured that it is true!

When we assume the induction hypothesis it may look like we are assuming what we are
trying to prove, but we are not. In our proof we are trying to prove C(x) for an arbitrary but
specific x of T . We are not allowed to assume C(x)! We are only allowed to prove C(y) for y
smaller than x.

Here’s a simple example of a proof by induction:

Theorem 11.1. For every positive integer n ≥ 2, there exists a list of primes whose product
is n.

Proof. Suppose n is a positive integer greater than 2. We must show that there is a list of
primes whose product is n. We will use induction on n. By induction, we may assume that if
m is an integer smaller than n such that m ≥ 2, then there is a list of primes whose product is
m,

We divide into two cases, depending on whether n is prime or n is not prime.
Case 1. Assume n is prime. Then the list (n) is the desired list.
Case 2. Assume n is not prime. Then there are two integers greater than 1, call them a and b
such that n = ab. Necessariliy a and b are both less than n. So using the inductive assumption,
there is a list r of primes whose product is a and a list s of primes whose product is b. Consider
the list r ∗ s obtained by concatenating r and s. Then r ∗ s consists only of primes, and the
product of the entries is equal to the product of entries in r (which is a) times the product of
the entries in s (which is b) which is ab = n. So r ∗ s is the desired list.
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Notice that the proof breaks into cases. In the second case we are able to show that n
has the required property by using the fact that smaller integers have the property, using the
induction assumption. This case is called the induction case or the induction step. In the other
case, the induction assumption is not useful, and we have to argue directly. This case is called
the basis case or basis step.

This is typical of a proof by induction. The proof breaks up into two (or sometimes more)
cases. In some cases the induction assumption is useful, and in others we give a direct argument.

11.1 Sequences and recurrences

One place that PMI is in the study of sequences. Recall that a sequence of real numbers is a
function whose domain is either the set of positive integers, or the set of nonnegative integers.
When the domain is the set of positive integers the sequence b is denoted by b1, b2, . . . , or
(bi : i ∈ Z>0}. When the domain is the set of nonnegative integers, the sequence is denoted by
b0, b1, . . . or {b0 : i ∈ Z≥0}.

Sequences are most easily specified by a rule that expresses the nth term in the sequence in
terms of n. For example the sequence with an = 2n− 1 for i ≥ 1 is the sequence 1, 3, 5, . . . of
positive odd integers and the sequence an = 1/n for n ≥ 1 is the sequence 1, 1

2
, 1
3
, 1
4

of recipocals
of integers. These are examples of direct specifications of a sequence.

Another common way to describe a sequence is by a recurrence equation. A recurrence
equation for a sequence expresses the nth term as a function of n and the list of previous terms.

Example 11.1. Consider the sequence (bn : n ≥ 1) described by:

bn =

{
bn−1 + 3 if n ≥ 2

1 if n = 1.

In this recurrence, the first entry of the sequence is specified to be 1. Every other entry is
defined in terms of the previous entry. We can figure out the terms of this sequence starting
from b1 = 1 by applying the recurrence equation, to get b2 − 4, b3 = 7, b4 = 10, etc.

Here are several other examples:

Example 11.2. 1. The sequence (fn : n ≥ 1) described by:

fn =

{
fn−1 + fn−2 if n ≥ 3

1 if n ∈ {1, 2}.

2. The sequence (cn : n ≥ 0) such that for all n ≥ 0,

cn = 1 +
n−1∑
j=1

cj
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3. The sequence (dn : n ≥ 1) given by:

dn =


d2n−1

dn−2
if n ≥ 3

2 if n = 1

3 if n = 2

4. The sequence (en : n ≥ 1) described by:

en =


en−1 + 2 if n is even

en−1 − 1 if n is odd and greater than 1

1 if n = 1.

5. The sequence (rn : n ≥ 1) given by:

rn =

{
rn−1 + 1/rn−1 if n ≥ 2

1 if n = 1.

6. The sequence (un : n ≥ 0) given by:

un =

{
n2un−1 if n ≥ 1

1 if n = 0.

7. The sequence (vn : n ≥ 0) given by:

vn =

{
4vn−2 − 3vn−3 if n ≥ 2

n if n ∈ {0, 1, 2}.

8. The sequence (wn : n ≥ 1) given by:

wn =

{
wdn/2e + 1 if n ≥ 2

1 if n = 1.

Exercise 11.1.

For each of the sequences in Example 11.2, compute the first 6 terms.

These examples are different, but in each case the sequence is defined by a rule that ex-
presses, for each integer n ≥ 1, how one computes the nth term of the sequence given all of the
previous terms. A recurrence equation of this form is called a fully specified recurrence. The
rule often has different cases depending on properties of the number n. Most commonly, the
recurrence specifies a single equation that works for all but a few small values of n, and for the
remaining small values of n explicit values are specified. The values of the sequence for small
n are called the initial conditions of the recurrence. In the above example, the sequence v has
initial conditions v0 = 0, v1 = 1 and v2 = 2.
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Example 11.3. Here’s an example of a recurrence that is not fully specified. Consider the
sequence (yn : n ≥ 1) described by:

yn =

{
yn−1 + n for n ≥ 2.

1 for n = 1.

The recurrence is not fully specified because it doesn’t specify what d1 is. Thus, instead of
representing a unique sequence, there are different possibilities for the sequence depending on
what d1 is.

Formally, when we give a fully specified recurrence for a sequence (an : n ≥ 1) we have a
function A, called the recurrence function that takes as input an integer n and a list of n − 1
real numbers and outputs a real number. We use the notation A(n; a1, . . . , an−1) to indicate the
value of the recurrence function for a given n and list (a1, . . . , an−1). (Here we use a semi-colon
to clearly separate the index n from the list of previous terms.) The recurrence is then given
by: an = A(n; a1, . . . , an−1). Note that when n = 1, the list (a1, . . . , an−1) is the empty list.

If we are dealing with a sequence whose index set starts at 0, then the recurrence function
has the form A(n; a0, . . . , an−1). For (cn : n ≥ 1) in Example 11.2, the recurrence function is
given by A(n; c0, . . . , cn−1) = 1 + c0 + · · · + cn−1. For the sequence (fn : n ≥ 1) in the same
example, the recurrence function is:

A(n; f1, . . . , fn−1 =

{
fn−1 + f(n− 2) for n ≥ 3.

1 for n ∈ {1, 2}.

Exercise 11.2. For each of the sequences in Example 11.2 give the recurrence function.

Theorem 11.2. Given any fully specified recurrence, there is one and only one sequence that
satisfies the recurrence.

This truth of this theorem is intuitively clear. Using the recurrence you can compute the
sequence one term at a time. For each n, once you have the first n− 1 terms, the value of the
nth term is uniquely determined by using the recurrence function applied to the list of the first
n− 1 terms. We will accept this theorem as true without providing a formal proof.

Recurrences are a natural and convenient way to specify a sequence. When we have such a
recurrence we can use it to compute the terms one at a time. However, it has some disadvan-
tages. It does not immediately give us a good way to compute, or even estimate, specific terms
in the sequence without computing all of the terms that come before. What we’d like is to
solve the recurrence, which means to give a formula that expresses the nth term as a function
of the integer n alone, not involving the previous terms. There is a large mathematical theory
concerned with solving recurrences. We will only touch on this theory here; our focus will be
on seeing how PMI helps analyze sequences.

It is sometimes possible to guess a solution to a recurrence by discovering a pattern in the
few terms. If we have a correct guess for a solution, we can usually prove our guess to be correct
using mathematical induction.
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Let’s go back to the example of (bn : n ≥ 1) above. Looking at the first few terms it’s not
hard to make a guess that bn = 3n − 2 for all n ≥ 1. Let’s use induction to prove that this
guess is correct.

Proposition 11.3. Let (bn : n ≥ 1) be the sequence defined by b1 = 1 and for n ≥ 2, bn =
bn−1 + 3. For all positive integers n, bn = 3n− 2.

Proof. Suppose n is an arbitrary positive integer; we must show that bn = 3n− 2. We will use
induction on n. By induction we may assume that for all positive integers k that satisfy k < n,
bk = 3k − 2. two cases: n = 1 and n ≥ 2.
Case 1. Assume n = 1. Then bn = 1 which equals 3(1)− 2.
Case 2. Assume n ≥ 2. Then bn = bn−1 + 3. Since n− 1 ≥ 1 we have that n− 1 is a positive
integer less than n and so may use the induction hypothesis to say that bn−1 = 3(n− 1)− 2 =
3n− 5. Then bn = bn−1 + 3 = (3n− 5) + 3 = 3n− 2 as required.

Remark 11.2. 1. Notice that as in the proof of Theorem 11.1, the proof breaks up into two
cases, an induction case, which uses the induction hypothesis, and the base case, which
doesn’t. In this proof the base case consists only of the case n = 1. (Compare this with
the proof of Theorem 11.1, where the base case that n is a prime number.) This is very
common, but we’ll see later that the base case may sometimes involve more than a single
value of n.

2. Notice that in the inductive case, we apply the induction assumption to n − 1. This
may look as though we are assuming what we are trying to prove, but we aren’t! Here n
represents an arbitrary positive integer, and we must draw a conclusion about n. We use
the inductive assumption to say that the conclusion of the theorem holds for n − 1, not
n.

3. Before applying the induction assumption to n − 1 (or to any number) we must check
that it satisfies the hypotheses of the induction assumption, specifically, that it is less
than n and is at least 1.

4. In the case n = 1, the induction assumption is not helpful since there are no positive
integers k that are less than 1.

Exercise 11.3. Use mathematical induction to prove that for all positive integers n, the nth
odd number is 2n− 1.

Exercise 11.4. For the sequence (cn : n ≥ 1) given above, guess a solution, and use PMI to
prove it.

Next we consider the sequence (dn : n ≥ 1) defined by the above recurrence. It is not hard
to guess that dn = 3n−1/2n−2 for all n ≥ 1.

Proposition 11.4. The sequence (dn : n ≥ 1) given by the recurrence dn =
d2n−1

dn−2
for n ≥ 3,

and the initial conditions d1 = 2, d2 = 3, satisfies dn = 3n−1/2n−2 for all n ≥ 1.
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Proof. Suppose n is an arbitrary integer; we must show dn = 3n−1/2n−2. We will use induction.
Since the recurrence is only valid for n ≥ 3 we break into cases according to whether n ≥ 3 or
n ≤ 2.
Case 1. Assume n ≤ 2. For n = 1 we have 3n−1/2n−2 = 2 as required, and for n = 2 we have
3n−1/2n−2 = 3 as required.

Case 2. Assume n ≥ 3. Then dn =
d2n−1

dn−2
. Since n−1 and n−2 are at least 1 and less than n we

can apply the induction hypothesis to conclude that dn−1 = 3n−2/2n−3 and dn−2 = 3n−3/2n−4.
Substituting into the recurrence we get:

dn =

(
3n−2

2n−3

)2

/
3n−3

2n−4 =
32n−4−(n−3)

22n−6−(n−4) =
3n−1

2n−2 .

In this proof, the basis case is n ∈ {1, 2}. The induction hypothesis is only useful for the
values of n for which the recurrence equation depends on previous terms of the sequence In
this case, the recurrence for dn involves previous values of n only when n ≥ 3.

Sum sequences and simple recurrences Here’s a common situation that leads to a re-
currence equation. Suppose we are given a sequence of numbers a = a1, a2, . . .. From this
sequence, we can form from a a new sequence s = s0, s1, . . . , where sj is the sum of the first j
terms of a (and so s0 = 0). We say that s is the partial sum sequence of the sequence a. The
sequence (sn : n ≥ 0) satisfies the recurrence equation sn = sn−1 +an, with the initial condition
s0 = 0.

Consider the following example: Suppose (aj : j ≥ 1) is the sequence of positive odd
numbers and for each positive n ≥ 0, sn be the sum of the first n positive odd numbers. We
have s0 = 0, s1 = 1, s2 = 1 + 3 = 4, s3 = 1 + 3 + 5 = 9 and s4 = 1 + 3 + 5 + 7 = 16. The pattern
suggests that sn = n2 for every nonnegative integer n and the obvious question is whether this
pattern holds for all terms of the sum sequence. The answer is yes:

Theorem 11.5. For all nonnegative integers n, the sum of the first n positive odd integers is
n2.

Proof. For j ≥ 1, let aj denote the jth positive odd number and for j ≥ 0, let sj denote the
sum of the first j positive odd integers. An earlier exercise shows that aj = 2j − 1 for all
positive integers j. Suppose n is an arbitrary nonnegative integer. We must show sn = n2. By
induction, we may assume that for all nonnegative integers k that are less than n, sk = k2. We
consider two cases:
Case 1. Assume n = 0. Then s0 = 0 which is equal to 02 as required.
Case 2. Assume n ≥ 1. We have sn = sn−1 + an = sn−1 + (2n− 1). Since n− 1 a nonnegative
integer that is less than n we may use the induction hypothesis to say that sn−1 = (n − 1)2.
Therefore sn = (n− 1)2 + 2n− 1 = n2 − 2n+ 1 + (2n− 1) = n2, as required.

Recall that a geometric sequence is a sequence in which the ratio of each pair of successive
terms is constant. Such a sequence is determined by two numbers b and r, and the sequence is
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given by the rule that for n ≥ 0 gn = brn. The sum sequence s has nth term sn =
∑n

i=0 br
i.

The explicit formula for sn is given by the following:

Proposition 11.6. (Geometric series) For all real numbers b and r 6= 1, we have
∑n

i=0 br
i =

b(1−rn+1)
1−r .

Exercise 11.5. Why do we need to require r 6= 1 in Proposition 11.6. What is the value of
the sum

∑n
i=0 br

i in the case that r = −1?

Exercise 11.6. Use PMI to prove Proposition 11.6

Linear constant coefficient recurrences We’ve seen that a recurrence equation for a
sequence (sn : n ≥ 1) expresses each term as a function of some or all of the previous terms.
There are certain special types of recurrences that are especially common.

In many recurrence equations, the value of sn is a function of previous terms that are
“nearby”. For example, for the sequence b in Example 11.1 and for each of the sequences e, r
and u in Example 11.2, the recurrence function for the nth depends only on the previous term.
For each sequence dn and fn in Example 11.2, the nth term depends only on the previous 2
terms, and for the sequence v, it involves the n− 2nd and n− 3rd terms.

Definition 11.1 (Order of a recurrence equation). For an integer k ≥ 1, a recurrence equation
is said to be of kth order if the value of nth term an is expressed as a function of the previous k
terms an−1, an−2, . . . , an−k. It is said to be of bounded order if it is of kth order for some fixed
k that does not depend on n, and to be of unbounded order otherwise.

Thus b, e, r and u in Example 11.2 are all of first order, d and f are of second order, and
v is of 3rd order.

If the equation for sn depends on sn−1 and on none of the other terms in the sequence, for
example sn = (sn−1)

2, we say the recurrence equation is first order. We say the recurrence
equation is kth order where k is a fixed integer, if each sn can be expressed as a function of
sn−1, . . . , sn−k that depends in a nontrivial way on sn−k. For example, sn = sn−1sn−3 is a
third order. All of these are of bounded order. The sequences c and w are of unbounded order,
because in each case there is no fixed k independent of n such that the nth term of the sequence
depends only on the previous k terms.

Definition 11.2. [Linear homogeneous constant coefficient recurrence] A kth order recurrence
equation is a linear homogeneous constant coefficient (LHCC) recurrence if there are real num-
bers a1, a2, . . . , ak, called the coefficients of the recurrence, with ak 6= 0, and a constant T ≥ k
such that for every n ≥ T , sn = a1sn−1 + a2sn−2 + · · · + aksn−k. The number T tells us the
smallest n for which the equation is valid. For n < T , the values of the sequence must be
specified in some other way.

Exercise 11.7. 1. Explain how sequence f is given by an LHCC recurrence of order 2 with
T = 3.

2. Explain how sequence v is given by an LHCC recurrence of order 3 with T = 3.
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Sequence b is not an LHCC because of the “+3” in the recurrence. Sequence e is not
an LHCC recurrence because the coefficients change depending on whether n is odd or even.
Sequence r is not an LHCC recurrence because the recurrence function involves the recipricol
of the previous term. Recurrence u is not an LHCC recurrence because the coefficient of un−1
is not a constant, but rather changes with n.

When we have a k-th order LHCC recurrence for sequence s, T is usually the index of the
k + 1st entry of the sequence. Thus if the sequence starts from s0, then T is usually k and if
the sequence starts from s1, T is usually k + 1. The first k terms are specified separately. The
values of the k terms are called the initial conditions. If the initial conditions are specified,
then every other term can be determined by applying the recurrence. If the initial conditions
are not specified then there are many possible solutions. For example the trivial first order
recurrence equation sn = sn−1 for n ≥ 2 is solved by sn = A for all n ≥ 1, where A is any
constant.

It turns out that there is a beautiful theory of LHCC recurrences that allows us to solve
them. Here we will present part of this theory. Throughout this discussion, let k and T denote
fixed positive integers with T ≥ k and (a1, . . . , ak) be a fixed list of real numbers with ak 6= 0.
We are considering the recurrence equation sn = a1sn−1 + a2sn−2 + · · · + aksn−k, for n ≥ T .
We’ll call this recurrence equation R. We do not specify initial conditions.

Definition 11.3 (Characteristic polynomial of a LHCC recurrence). Suppose k and T are
positive integers with T ≥ k and (a1, . . . , ak) is a list of numbers. Suppose further that the
sequence s is given by the LHCC recurrence R which says sn = a1sn−1 + a2sn−2 + · · ·+ aksn−k,
for n ≥ T . The characteristic polynomial of the recurrence R is the polynomial p(x) = xk −∑k

i=1 aix
k−i.

For example, the characteristic polynomial of the recurrence for f in Example 11.2 is
p(x) = x2 − x− 1.

Exercise 11.8. Find the characteristic polynomial for the recurrence for the sequence v in
Example 11.2.

Theorem 11.7. Let R be an LHCC recurrence, and let {r1, . . . , rj} be roots of the character-
mistic polynomial.

1. For each i ∈ {1, . . . , j}, the sequence (rni : n ≥ 1) satisfies the LHCC recurrence.

2. For any choice of constants c1, . . . , cj, the sequence whose nth term is
∑k

i=1 cir
n
i satisfies

recurrence R.

Exercise 11.9. Prove Theorem 11.7.

This proposition provides a possible method for solving an LHCC recurrence:

1. Find the roots of the characteristic polynomial.

2. For each root ri, introduce an unspecified constant ci and form the corresponding solution
to the recurrence in terms of the ci and the ri.
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3. Use the initial conditions to determine the ci.

Exercise 11.10. Use the above method to solve the recurrence for v in Example 11.2.

Exercise 11.11. Use the above method to solve the recurrence for f in Example 11.2.

The above method may be difficult to apply because it requires you to find the roots of
the characteristic polynomial. If the characteristic polynomial factors nicely (for example, with
integer roots as in Exercise 11.10) of if the characteristic polynomial is a quadratic (as in
Exercise ??) then we can find the roots, but in general we may not be able to solve for the
roots of the characteristic polynomial.

Even when we can find all of the roots of the characteristic polynomial, the method may
not work:

Exercise 11.12. Consider the sequence q given by the recurrence qn = 2qn−1 + 4qn−2 − 8 for
n ≥ 3 with the initial conditions q0 = 1, q1 = 3 and q3 = 5. The above method doesn’t work
for this example. What goes wrong?

The above method does not work for all LHCC recurrence equations, but it is guaranteed
to work if the characteristic polynomial is “nice enough”:

Theorem 11.8. For any LHCC recurrence of order k, if the characteristic polynomial has k
distinct roots r1, . . . , rk then for any initial conditions, there exist unique constants c1, . . . , ck
such that the sequence with nth term

∑k
i=1 cir

n
i is a solution to the recurrence with the given

initial conditions.

The proof of this theorem is outside the scope of this course.

11.2 Further practice with induction

Exercise 11.13. Use PMI to prove the following beautiful formula: For all n ≥ 1,
∑n

i=1 i
3 =

(
∑n

i=1 i)
2.

Exercise 11.14. Suppose (b1, . . . , bk) is a list of length real numbers. Use PMI to prove∏k
i=1(1 + bi) =

∑
J⊆{1,...,k}

∏
j∈J bj.

Exercise 11.15. We say that two sets A and B are neighbors if their symmetric difference
A4B has size exactly one. A list A1, . . . , At of sets is a neighborly list provided that any two
consecutive sets on the list are neighbors. Prove: For all n ≥ 1, it is possible to form neighborly
list of subsets of {1, . . . , n} so that every subset of {1, . . . , n} appears exactly once on the list.
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