Intro to Mathematical Reasoning (Math 300)-Honors

Assignment $9{ }^{1}$

1. (30 points) Say that a relation R on A is a TR relation if it is both transitive and reflexive. (TR relation is not a standard term.) We know that a TR relation that is symmetric is an equivalence relation, and a TR relation that is anti-symmetric is a partial order. The purpose of this problem is to give a general characterization of TR relations. We'll prove: A relation R on A is a TR relation if and only if there is a set B with a partial order relation Q, and a function $f: A \longrightarrow B$ such that for all $x, y \in A, x R y$ if and only if $f(x) Q f(y)$.
This is an "if and only if" theorem so there are two directions of the implication to prove: \Rightarrow and \Leftarrow. The \Leftarrow direction is easy and is the first part of the problem. The rest of the problem is to prove the \Rightarrow directon.
(Warm up problem, not to be handed in: Prove the theorem in the case that (a) R is an equivalence relation, and (b) R is a partial order relation.)
(a) Suppose that Q is a partial order on B and that $f: A \longrightarrow B$. Define the relation R on A by $x R y$ if $f(x) Q f(y)$. Prove that R is a TR relation.
(b) For the rest of the problem, suppose R is an arbitrary TR relation on A. Define the relation W on A by $x W y$ if and only if $x R y$ and $y R x$. Prove that W is an equivalence relation.
(c) Let \mathcal{C} denote the set of equivalence classes of W. Define a relation P on the set \mathcal{C} where $C P D$ if there exists an $x \in C$ and a $y \in D$ such that $x R y$. Prove that in fact, for all $C, D \in \mathcal{C}$ if $C P D$ then for all $x \in C$ and $y \in D, x R y$.
(d) Prove that P is a partial order on \mathcal{C}.
(e) Finish the proof of the \Rightarrow direction.
2. Recall that if R is a relation on A, an R-chain is a list $\left(a_{1}, \ldots, a_{k}\right)$ such that for each $i \in\{2, \ldots, k\}$. $a_{i-1} R a_{i}$. An R-chain is said to be non-repeating if all of the entries of the chain are different. An R-chain is said to be a Hamilton path (named after the mathematician William Rowan Hamilton) provided that it is non-repeating and every element of A appears on ths list. (Notice that this requires that A is finite.) Recall that a relation R on A is full if for all $x, y \in A$ if $x \neq y$ then $x R y$ or $y R x$. Prove the following neat theorem: For any finite set A and full relation R on A, there is a Hamilton path in R. (A hint is given below. ${ }^{2}$)
3. Define a relation R on $\mathbb{Z}_{>0}$ as follows: For $m, n \in \mathbb{Z}_{>0}$, we have $m R n$ provided that there are odd numbers a and b so that $m a=n b$.
(a) Prove that this relation is transitive, symmetric and reflexive, and is therefore an equivalence relation.
(b) Let S be the set consisting of the smallest member from each R-equivalence class. Determine explicitly what the set S is (and prove that your answer is correct.)
4. (20 points) For a relation R on A, a subset X of A is R-independent provided that for all $x, y \in X$, if $x \neq y$ then $x \not K y$. Also, if A is finite, define $c(R)$ to be the length of the largest R-chain.
The purpose of this problem is to prove the following theorem: Suppose A is a finite partially ordered set with partial order R. Then there exists a partition of A into exactly $c(R)$ sets, each of which is R-independent. (As a warm-up, test out the theorem on a few small partially ordered sets.)

[^0](a) Define the function $h: A \longrightarrow \mathbb{Z}_{>0}$ as follows: $h(x)$ is the length of the longest chain that ends with x. Prove that for all $x \in A, 1 \leq h(x) \leq c(R)$.
(b) Let $\left(a_{1}, \ldots, a_{c(R)}\right)$ be an R-chain of length $c(R)$. Prove that for $i \in\{1, \ldots, c(R)\}, h\left(a_{i}\right)=i$. (Hint: Prove separately that $h\left(a_{i}\right) \geq i$ and $h\left(a_{i}\right) \leq i$.)
(c) Prove that for each $i \in\{1, \ldots, c(R)\}, h^{-1}(i)$ is an R-independent set. (Hint: Use proof by contradiction.)
(d) Finish the proof of the theorem.

[^0]: ${ }^{1}$ Version:11/5/16
 ${ }^{2}$ Let $\left(a_{1}, \ldots, a_{t}\right)$ be an R-chain of longest length that is non-repeating. Assume for contradiction that not all members of A appear in this R-chain, and derive a contradiction.

