Intro to Mathematical Reasoning (Math 300)–Honors Assignment 8 $^{\rm 1}$

- 1. Suppose k is a positive integer and consider the relation \equiv_k on \mathbb{Z} defined for integers m and n by $m \equiv_k n$ provided that k|(m-n). Prove that for any integers m_1, m_2, n_1, n_2 if $m_1 \equiv_k m_2$ and $n_1 \equiv_k n_2$ then (1) $m_1 + n_1 \equiv_k m_2 + n_2$ and (2) $m_1 n_1 \equiv_k m_2 n_2$.
- 2. Let Q be the relation on the set \mathbb{R} consisting of all pairs $(x, y) \in \mathbb{R}^2$ satisfying x + 1 < y. Let P be the relation on the set \mathbb{R} consisting of all pairs $(x, y) \in \mathbb{R}^2$ satisfying x < y + 1. Prove or disprove:
 - (a) Q is antisymmetric.
 - (b) Q is transitive.
 - (c) P is antisymmetric.
 - (d) P is transitive.
- 3. (Recall that for real numbers x and y, [x, y] is the set $\{z \in \mathbb{R} : x \leq z \leq y\}$.) Define I[x, y] to be the set $[x, y] \cup [y, x] = [\min(x, y), \max(x, y)]$. Suppose that S is an arbitrary subset of \mathbb{R} . Define the relation R_S on S where xR_Sy provided that $I[x, y] \subseteq S$. Prove that R_S is an equivalence relation. (The proof of transitivity requires some care.)
- 4. Suppose Q is a relation on A. A Q-chain is a list (a_1, a_2, \ldots, a_k) of elements of A such that for each *i* between 1 and k 1, a_iQa_{i+1} . For elements a and b of A we say that b is Q-reachable from a provided that there is a Q-chain that starts at a and ends at b. Define Q^* to be the relation on A consisting of those pairs (a, b) such that b is Q-reachable from a.
 - (a) Prove: For any relation Q on A, Q^* is transitive.
 - (b) Prove or disprove: For any relation Q on A, if Q is symmetric then so is Q^* .
 - (c) Prove or disprove: For any relation Q on A if Q is antisymmetric then so is Q^* .
- 5. (Note: In this problem we will be defining a relation on the set $A \times A$. The elements of $A \times A$ are ordered pairs, so a pair of the relation we define is an *ordered pairs each of whose coordinates is an ordered pairs*. This can be confusing, so be sure to read and think about the problem carefully.) Suppose A is a set and R a partial order relation on A. Define a new relation Q on the set $A \times A$ as follows: For $a_1, a_2, b_1, b_2 \in A$ we have $(a_1, a_2)Q(b_1, b_2)$ provided that $(a_1 \neq b_1 \text{ and } a_1Rb_1)$ or $(a_1 = b_1 \text{ and } a_2Rb_2)$.
 - (a) Prove that Q is a partial order on the set $A \times A$.
 - (b) Prove that if R is a total order (which means that for all $a, b \in A$ we have aRb or bRa) then so is Q.

 $^{^{1}}$ Version:11/3/16