1. Suppose k is a positive integer and consider the relation \equiv_{k} on \mathbb{Z} defined for integers m and n by $m \equiv_{k} n$ provided that $k \mid(m-n)$. Prove that for any integers $m_{1}, m_{2}, n_{1}, n_{2}$ if $m_{1} \equiv_{k} m_{2}$ and $n_{1} \equiv_{k} n_{2}$ then (1) $m_{1}+n_{1} \equiv_{k} m_{2}+n_{2}$ and (2) $m_{1} n_{1} \equiv_{k} m_{2} n_{2}$.
2. Let Q be the relation on the set \mathbb{R} consisting of all pairs $(x, y) \in \mathbb{R}^{2}$ satisfying $x+1<y$. Let P be the relation on the set \mathbb{R} consisting of of all pairs $(x, y) \in \mathbb{R}^{2}$ satisfying $x<y+1$. Prove or disprove:
(a) Q is antisymmetric.
(b) Q is transitive.
(c) P is antisymmetric.
(d) P is transitive.
3. (Recall that for real numbers x and $y,[x, y]$ is the set $\{z \in \mathbb{R}: x \leq z \leq y\}$.) Define $I[x, y]$ to be the set $[x, y] \cup[y, x]=[\min (x, y), \max (x, y)]$. Suppose that S is an arbitrary subset of \mathbb{R}. Define the relation R_{S} on S where $x R_{S} y$ provided that $I[x, y] \subseteq S$. Prove that R_{S} is an equivalence relation. (The proof of transitivity requires some care.)
4. Suppose Q is a relation on A. A Q-chain is a list $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ of elements of A such that for each i between 1 and $k-1, a_{i} Q a_{i+1}$. For elements a and b of A we say that b is Q-reachable from a provided that there is a Q-chain that starts at a and ends at b. Define Q^{*} to be the relation on A consisting of those pairs (a, b) such that b is Q-reachable from a.
(a) Prove: For any relation Q on A, Q^{*} is transitive.
(b) Prove or disprove: For any relation Q on A, if Q is symmetric then so is Q^{*}.
(c) Prove or disprove: For any relation Q on A if Q is antisymmetric then so is Q^{*}.
5. (Note: In this problem we will be defining a relation on the set $A \times A$. The elements of $A \times A$ are ordered pairs, so a pair of the relation we define is an ordered pairs each of whose coordinates is an ordered pairs. This can be confusing, so be sure to read and think about the problem carefully.) Suppose A is a set and R a partial order relation on A. Define a new relation Q on the set $A \times A$ as follows: For $a_{1}, a_{2}, b_{1}, b_{2} \in A$ we have $\left(a_{1}, a_{2}\right) Q\left(b_{1}, b_{2}\right)$ provided that ($a_{1} \neq b_{1}$ and $a_{1} R b_{1}$) or ($a_{1}=b_{1}$ and $\left.a_{2} R b_{2}\right)$.
(a) Prove that Q is a partial order on the set $A \times A$.
(b) Prove that if R is a total order (which means that for all $a, b \in A$ we have $a R b$ or $b R a$) then so is Q.
[^0]
[^0]: ${ }^{1}$ Version:11/3/16

