1. (20 point problem.) Suppose $f: S \longrightarrow T$. Recall that for $X \subseteq S$, the image of X under f, denoted $\operatorname{im}_{f}(X)$ is the set $\{f(x): x \in X\}$ and for $Y \subseteq T$, the preimage of Y under f, $\operatorname{denoted}_{\operatorname{preim}_{f}}(Y)$ is the set $\{x \in S: f(x) \in Y\}$.
For each of the following assertions determine whether it's true or false. If it's true prove it. If it's false, disprove it.
(a) For any two subsets X_{1} and X_{2} of $S, \operatorname{im}_{f}\left(X_{1} \cup X_{2}\right)=i m_{f}\left(X_{1}\right) \cup i m_{f}\left(X_{2}\right)$.
(b) For any two subsets X_{1} and X_{2} of $S, i m_{f}\left(X_{1} \cap X_{2}\right)=i m_{f}\left(X_{1}\right) \cap i m_{f}\left(X_{2}\right)$.
(c) For any two subsets Y_{1} and Y_{2} of T, $\operatorname{preim}_{f}\left(Y_{1} \cap Y_{2}\right)=\operatorname{preim}_{f}\left(Y_{1}\right) \cup \operatorname{preim}_{f}\left(Y_{2}\right)$.
(d) For any subset X of $S, \operatorname{preim}_{f}\left(\operatorname{im}_{f}(X)\right) \supseteq X$.
(e) For any subset X of S, $\operatorname{preim}_{f}\left(\operatorname{im}_{f}(X)\right)=X$.
(f) For any subset Y of $T, \operatorname{im}_{f}\left(\operatorname{preim}_{f}(Y)\right) \supseteq Y$.
(g) For any subset Y of $T, \operatorname{im}_{f}\left(\operatorname{preim}_{f}(Y)\right)=Y$.
(Hint: As usual, to get some intuition about each statement, construct some examples of a function with a finite domain and target and see what's true in the examples.)
2. A rational number is defined to be a real number r that can be written as a ratio of two integers. Formally, this means that r is rational provided that there exist integers a and b such that $r=a / b$. The set of rational numbers is denoted \mathbb{Q} and $\mathbb{Q} \geq 0$ is the set of nonnegative rational numbers.
(a) Consider the function $f: \mathbb{Z}_{>0} \longrightarrow \mathbb{R}$ defined by the following rule: on input $n \in \mathbb{Z}_{>0}$ let a be the largest integer such that 2^{a} is a divisor of n. Let $b=\left\lceil\frac{n}{2^{a+1}}\right\rceil$, where, for any real number $x,\lceil x\rceil$ is defined to be the least integer that is greater than or equal to x. Then $f(n)=\frac{a}{b}$. Prove that the range of f is $\mathbb{Q} \geq 0$.
(b) Intuitively, the set of rational numbers seems much bigger than the set of integers. What does the result of the previous part say about this intuition. (This question is not a fomal math problem: I'm asking you to think about what the previous result means and comment on it.)
(c) Suppose someone makes the following definition: Let $g: \mathbb{Q} \longrightarrow \mathbb{Z}$ be the function defined by $g(a / b)=a+b$. Is this a proper function definition? Why or why not?
3. A set \mathcal{S} of sets is said to be intersecting if for any two members A and B of \mathcal{S}, we have $A \cap B \neq \emptyset$. Prove that for any nonempty set U and for any intersecting collection \mathcal{S} of subsets of U and for any $X \subseteq U$ at least one of the two collections $\mathcal{S} \cup\{X\}$ and $\mathcal{S} \cup\{U \backslash X\}$ is intersecting.
continued...

[^0]4. A function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is said to be even if for every $x \in \mathbb{R}, f(-x)=f(x)$ and is said to be odd if for every $x \in \mathbb{R}, f(-x)=-f(x)$. (Not to hand in: Find examples of an even function and an odd function that are given by polynomials, and find examples that are not polynomials.) Also for functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ and $g: \mathbb{R} \longrightarrow \mathbb{R}$, then the functions $f+g: \mathbb{R} \longrightarrow \mathbb{R}$ and $f-g: \mathbb{R} \longrightarrow \mathbb{R}$ are defined by the rules $(f+g)(x)=f(x)+g(x)$ and $(f-g)(x)=f(x)-g(x)$. Prove that every function $h: \mathbb{R} \longrightarrow \mathbb{R}$ is the sum of an odd function and an even function. This footnote ${ }^{2}$ provides a hint.

[^1]
[^0]: ${ }^{1}$ Version:10/9/16

[^1]: ${ }^{2}$ Hint: Consider the two functions r and s given by the rules $r(x)=h(x)+h(-x)$ and $s(x)=h(x)-h(-x)$.

