Intro to Mathematical Reasoning (Math 300)-Honors Assignment 4^{1}

1. For each of the following assertions, identify the free variables and the bound variables.
(a) (Variables: integers n, m, r, For every positive integer n the set $\left\{m \in \mathbb{Z}: m^{2}-\right.$ r is divisible by $n\}$ is nonempty.
(b) (Variables: real numbers x, y, ε, and subset $S \subseteq \mathbb{R}$.) x is not a member of S and for all real numbers $\varepsilon>0$, there exists a member y of S such that $|x-y| \leq \varepsilon$.
(c) (Variables: functions f, g and h and real number x) There is a function g and a functon h such that for every real number $x, f(x)=g(x)+h(x)$ and $g(x)=g(-x)$ and $h(-x)=-h(x)$.
2. (20 point problem.) Below several pairs of assertions are given. For each pair do the following:

- Identify the atomic assertions common to each pair of assertions and assign a variable to each of these assertions. (Note: if two atomic assertions have opposite meaning such as " $y \leq 3$ " and " " $y>3$ " you should represent one as an assertion $S(y)$ and the other as $\neg S(y)$ rather than give them two different letters.)
- Find logical expressions for each sentence in terms of the variables.
- Determine whether the first can be logically deduced from the second, and whether the second can be logically deduced from the first. Explain your answers.

Note 1. You are not asked to determine the truth or falsity of any of these sentences.
Pair 1 In the two sentences: a positive integer n is composite if there are two integers different from 1 whose product is n.
(a) (n is prime or $n+2$ is prime) implies that $n^{2}+2$ is prime or $n^{2}-2$ is prime
(b) $n^{2}+2$ is composite and $n^{2}-2$ is composite implies n is composite and $n+2$ is composite.
Pair 2 (a) For all real numbers x, there is a real number y such that $y^{2}+y+10 x=0$, or $x \leq 9$ and there is a real number z such that $z^{2}+2 z+15 x=0$.
(b) For all real numbers $x, x \leq 9$ or there is both a real number y such that $y^{2}+y+10 x=$ 0 and a real number z such that $z^{2}+2 z+15 x=0$.
Pair 3 (a) $f(x)>y$ and $g(y)>x$ implies $f(g(y))>y$ and $g(f(x))>x$.
(b) $f(g(y)) \leq y$ implies $f(x) \leq y$, and $g(f(x)) \leq x$ implies $g(y) \leq x$.

Pair 4 In this pair of assertions, S, T, V, and W are all sets.
(a) $S \subseteq T$ if and only if $S \subseteq V$, or $S \subseteq T$ if and only if $W \subseteq T$
(b) $S \subseteq T$ if and only if ($S \subseteq V$ or $W \subseteq T$).
3. (a) Give an example of a collection of 4 sets such that any two distinct sets in the collection intersect in exactly one element, and no element belongs to more than 2 sets.
(b) Generalize the previous example: For each positive integer k give an example of a collection of k sets such that any two distinct members of the collection intersect in exactly one element and no element belongs to more than 2 sets.

[^0]4. Let x and y be real variables, and let $C(x, y)$ be an indefinite assertion involving x and y. Consider the two scenarios:

Scenario 1 Input variable: x. Assumption: For every $y \in \mathbb{R}, C(x, y)$ is true.
Scenario 2 Input variable y. Assumption: For every $x \in \mathbb{R}, C(x, y)$ is false.
Observe that in the first scenario y is a bound variable, while in the second x is a bound variable. Consider the set S_{1} of feasible instances to scenario 1 and S_{2} of feasible instances to scenario 2.
Can S_{1} and S_{2} both be nonempty? Explain.

[^0]: ${ }^{1}$ Version 9-28-2016

