Intro to Mathematical Reasoning (Math 300)–Honors Assignment 4 $^{\rm 1}$

- 1. For each of the following assertions, identify the free variables and the bound variables.
 - (a) (Variables: integers n, m, r.) For every positive integer n the set $\{m \in \mathbb{Z} : m^2 r \text{ is divisible by } n\}$ is nonempty.
 - (b) (Variables: real numbers x, y, ε , and subset $S \subseteq \mathbb{R}$.) x is not a member of S and for all real numbers $\varepsilon > 0$, there exists a member y of S such that $|x y| \le \varepsilon$.
 - (c) (Variables: functions f, g and h and real number x) There is a function g and a function h such that for every real number x, f(x) = g(x) + h(x) and g(x) = g(-x) and h(-x) = -h(x).
- 2. (20 point problem.) Below several pairs of assertions are given. For each pair do the following:
 - Identify the atomic assertions common to each pair of assertions and assign a variable to each of these assertions. (Note: if two atomic assertions have opposite meaning such as " $y \leq 3$ " and ""y > 3" you should represent one as an assertion S(y) and the other as $\neg S(y)$ rather than give them two different letters.)
 - Find logical expressions for each sentence in terms of the variables.
 - Determine whether the first can be logically deduced from the second, and whether the second can be logically deduced from the first. Explain your answers.
 - Note 1. You are *not asked* to determine the truth or falsity of any of these sentences.
 - **Pair 1** In the two sentences: a positive integer n is *composite* if there are two integers different from 1 whose product is n.
 - (a) (n is prime or n+2 is prime) implies that n^2+2 is prime or n^2-2 is prime
 - (b) $n^2 + 2$ is composite and $n^2 2$ is composite implies n is composite and n + 2 is composite.
 - **Pair 2** (a) For all real numbers x, there is a real number y such that $y^2 + y + 10x = 0$, or $x \le 9$ and there is a real number z such that $z^2 + 2z + 15x = 0$.
 - (b) For all real numbers $x, x \le 9$ or there is both a real number y such that $y^2 + y + 10x = 0$ and a real number z such that $z^2 + 2z + 15x = 0$.
 - **Pair 3** (a) f(x) > y and g(y) > x implies f(g(y)) > y and g(f(x)) > x.
 - (b) $f(g(y)) \le y$ implies $f(x) \le y$, and $g(f(x)) \le x$ implies $g(y) \le x$.
 - **Pair 4** In this pair of assertions, S, T, V, and W are all sets.
 - (a) $S \subseteq T$ if and only if $S \subseteq V$, or $S \subseteq T$ if and only if $W \subseteq T$
 - (b) $S \subseteq T$ if and only if $(S \subseteq V \text{ or } W \subseteq T)$.
- 3. (a) Give an example of a collection of 4 sets such that any two distinct sets in the collection intersect in exactly one element, and no element belongs to more than 2 sets.
 - (b) Generalize the previous example: For each positive integer k give an example of a collection of k sets such that any two distinct members of the collection intersect in exactly one element and no element belongs to more than 2 sets.

¹Version 9-28-2016

4. Let x and y be real variables, and let C(x, y) be an indefinite assertion involving x and y. Consider the two scenarios:

Scenario 1 Input variable: x. Assumption: For every $y \in \mathbb{R}$, C(x, y) is true. **Scenario 2** Input variable y. Assumption: For every $x \in \mathbb{R}$, C(x, y) is false.

Observe that in the first scenario y is a bound variable, while in the second x is a bound variable. Consider the set S_1 of feasible instances to scenario 1 and S_2 of feasible instances to scenario 2.

Can S_1 and S_2 both be nonempty? Explain.