These problems provide practice with the proper and careful use and interpretation of notation for specifying mathematical objects. When specifying objects, use the specification rules for different object types described in section 2 of the notes.

1. For each of the following sets, give a description in words of the type of object that are members of the set, and give an example of a member of the set.
(a) $\mathbb{R} \times \mathbb{Z} \times \mathcal{P}_{\text {fin }}(\mathbb{R})$
(b) $\left(\mathcal{P}\left(\mathbb{Z}_{>0}\right)\right)^{\mathbb{R}^{2}}$.
2. The entries of any matrix M can be rearranged into a list $r(M)$ by forming the list row-by-row starting from the first row, and also into a list $c(M)$ by forming the list column-by-column starting from the first column. If m and n are positive integers and A is an $m \times n$ matrix give a careful specification of the lists $r(M)$ and $c(M)$.
3. Let S be the set $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{3} \leq 1\right\}$. Let ($B_{y}: y \in \mathbb{R}$) be the indexed family of subsets of \mathbb{R} where $B_{y}=\{x \in \mathbb{R}:(x, y) \in S\}$. For each $y \in \mathbb{R}$, provide a specification of B_{y} as a union of intervals.
4. A finite arithmetic progression is a list of numbers with the property that the difference between any two successive entries of the list is the same.
(a) Give three examples of finite arithmetic progressions.
(b) What is the minimum information you need to completely specify an arithmetic progression? (The information should be represented by some input parameters that can be used to fully describe the list.)
(c) In terms of the parameters given in the previous part, provide a specification for the terms of the arithmetic progression (as a list).
[^0]
[^0]: ${ }^{1}$ Version 9/17/16

