
Intro to Mathematical Reasoning (Math 300:H2)–Honors
Assignment 12 1

1. Suppose x1, . . . , xn and y1, . . . , yn are lists of real numbers and let x0 = y0 = xn+1 = yn+1 = 0.
Prove:

(a)
∑n

i=1(xi+1 − xi−1)yi =
∑n

i=1(yi−1 − yi+1)xi.

(b)
∑n

i=1(xi+1 − 2xi + xi−1)yi =
∑n

i=0(yi+1 − yi)(xi − xi+1).

Be sure to explain carefully any changes of indices you do in the summations.

2. Prove that for any positive real numbers x and y,
√

2(x+ y) ≥
√
x +
√
y. (Note: This

inequality, and those that follow should be proved without using calculus.)

3. Prove that for any real numbers x and y and real number λ between 0 and 1, that

(λx+ (1− λ)y)2 ≤ (λx2 + (1− λ)y2).

(If you’re having trouble, try the case λ = 1/2 first.)

4. Recall that for a sequence x1, . . . , xn of positive real numbers,

AM(x1, . . . , xn) =
1

n

n∑
i=1

xi

GM(x1, . . . , xn) = (Πn
i=1xi)

1/n

HM(x1, . . . , xn) =

(
1

n

n∑
i=1

1

xi

)−1
.

Here are two theorems:

Theorem A For any list x1, . . . , xn of positive real numbersAM(x1, . . . , xn) ≥ GM(x1, . . . , xn)

Theorem B For any list x1, . . . , xn of positive real numbersGM(x1, . . . , xn) ≥ HM(x1, . . . , xn).

We’ll prove Theorem A later in class. In this problem, assume Theorem A, and use it to
prove Theorem B.

5. Suppose that M is an n by n symmetric matrix and that x1, . . . , xn is a list (vector) of real
numbers. Let I denote the set {1, . . . , n} × {1, . . . , n}. Prove: If every row sum of M is 0,
and all of the entries off the diagonal are nonpositive, then for any list (vector) x1, . . . , xn∑

(i,j)∈I

xiMi,jxj ≥ 0.

(Hints: (1) Prove that under the given assumptions,∑
(i,j)∈I

xiMi,jxj = −1

2

∑
(i,j)∈I

(xi − xj)2Mi,j .

(2) If you’re having trouble, try the case n = 2 first.)
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6. Consider the set Zm consisting of the equivalence classes under the relation ≡m, together with
the operations +m and ×m. (There are m equivalence classes, denoted [0], [1], . . . , [m− 1]. It
is often customary to drop the brackets around “[i]” and write simply “i”.) As mentioned in
class, Zm satisfies the field axioms if and only if m is prime. The key difference between the
prime and non-prime case is the existence of multiplicative inverses:

(a) Prove that if m is prime, then for every i ∈ {1, . . . ,m− 1} there is a j ∈ {1, . . . ,m− 1}
such that i× j ≡m 1.

(b) Prove that if m is not prime, then there is an i ∈ {1, . . . ,m − 1} for which there is no
j ∈ {1, . . . ,m− 1} for which i× j ≡m 1.

7. Let X be a totally ordered set. We say that X has the least upper bound property property
if every subset of X that is bounded above has a least upper bound. We say that X has the
greatest lower bound property if every subset of X that is bounded below has a greatest lower
bound. We say that X satisfies the no gaps property if for every pair of subsets A and B of
X, if for all a ∈ A and b ∈ B we have a ≤ b then there exists a c ∈ X so that for all a ∈ A,
a ≤ c and for all b ∈ B, c ≤ b. (Note: the terminology “no gaps property” is not standard.)

Prove that the following three conditions on X are equivalent: X has the least upper bound
property, X has the greatest lower bound property, and X has the no gaps property.
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