Intro to Mathematical Reasoning (Math 300:H2)–Honors Assignment 12 $^{\rm 1}$

1. Suppose x_1, \ldots, x_n and y_1, \ldots, y_n are lists of real numbers and let $x_0 = y_0 = x_{n+1} = y_{n+1} = 0$. Prove:

(a)
$$\sum_{i=1}^{n} (x_{i+1} - x_{i-1}) y_i = \sum_{i=1}^{n} (y_{i-1} - y_{i+1}) x_i.$$

(b) $\sum_{i=1}^{n} (x_{i+1} - 2x_i + x_{i-1}) y_i = \sum_{i=0}^{n} (y_{i+1} - y_i) (x_i - x_{i+1}).$

Be sure to explain carefully any changes of indices you do in the summations.

- 2. Prove that for any positive real numbers x and y, $\sqrt{2(x+y)} \ge \sqrt{x} + \sqrt{y}$. (Note: This inequality, and those that follow should be proved without using calculus.)
- 3. Prove that for any real numbers x and y and real number λ between 0 and 1, that

$$(\lambda x + (1 - \lambda)y)^2 \le (\lambda x^2 + (1 - \lambda)y^2).$$

(If you're having trouble, try the case $\lambda = 1/2$ first.)

4. Recall that for a sequence x_1, \ldots, x_n of positive real numbers,

$$AM(x_1, ..., x_n) = \frac{1}{n} \sum_{i=1}^n x_i$$

$$GM(x_1, ..., x_n) = (\prod_{i=1}^n x_i)^{1/n}$$

$$HM(x_1, ..., x_n) = \left(\frac{1}{n} \sum_{i=1}^n \frac{1}{x_i}\right)^{-1}$$

Here are two theorems:

Theorem A For any list x_1, \ldots, x_n of positive real numbers $AM(x_1, \ldots, x_n) \ge GM(x_1, \ldots, x_n)$ **Theorem B** For any list x_1, \ldots, x_n of positive real numbers $GM(x_1, \ldots, x_n) \ge HM(x_1, \ldots, x_n)$.

We'll prove Theorem A later in class. In this problem, assume Theorem A, and use it to prove Theorem B.

5. Suppose that M is an n by n symmetric matrix and that x_1, \ldots, x_n is a list (vector) of real numbers. Let I denote the set $\{1, \ldots, n\} \times \{1, \ldots, n\}$. Prove: If every row sum of M is 0, and all of the entries off the diagonal are nonpositive, then for any list (vector) x_1, \ldots, x_n

$$\sum_{(i,j)\in I} x_i M_{i,j} x_j \ge 0.$$

(Hints: (1) Prove that under the given assumptions,

$$\sum_{(i,j)\in I} x_i M_{i,j} x_j = -\frac{1}{2} \sum_{(i,j)\in I} (x_i - x_j)^2 M_{i,j}.$$

(2) If you're having trouble, try the case n = 2 first.)

¹Version: 12/13/16

- 6. Consider the set \mathbb{Z}_m consisting of the equivalence classes under the relation \equiv_m , together with the operations $+_m$ and \times_m . (There are *m* equivalence classes, denoted [0], [1], ..., [*m*-1]. It is often customary to drop the brackets around "[*i*]" and write simply "*i*".) As mentioned in class, \mathbb{Z}_m satisfies the field axioms if and only if *m* is prime. The key difference between the prime and non-prime case is the existence of multiplicative inverses:
 - (a) Prove that if m is prime, then for every $i \in \{1, ..., m-1\}$ there is a $j \in \{1, ..., m-1\}$ such that $i \times j \equiv_m 1$.
 - (b) Prove that if m is not prime, then there is an $i \in \{1, ..., m-1\}$ for which there is no $j \in \{1, ..., m-1\}$ for which $i \times j \equiv_m 1$.
- 7. Let X be a totally ordered set. We say that X has the *least upper bound property* property if every subset of X that is bounded above has a least upper bound. We say that X has the *greatest lower bound property* if every subset of X that is bounded below has a greatest lower bound. We say that X satisfies the *no gaps property* if for every pair of subsets A and B of X, if for all $a \in A$ and $b \in B$ we have $a \leq b$ then there exists a $c \in X$ so that for all $a \in A$, $a \leq c$ and for all $b \in B$, $c \leq b$. (Note: the terminology "no gaps property" is not standard.) Prove that the following three conditions on X are equivalent: X has the least upper bound

Prove that the following three conditions on X are equivalent: X has the least upper bound property, X has the greatest lower bound property, and X has the no gaps property.