Intro to Mathematical Reasoning (Math 300:H2)-Honors
 Assignment $12{ }^{1}$

1. Suppose x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} are lists of real numbers and let $x_{0}=y_{0}=x_{n+1}=y_{n+1}=0$. Prove:
(a) $\sum_{i=1}^{n}\left(x_{i+1}-x_{i-1}\right) y_{i}=\sum_{i=1}^{n}\left(y_{i-1}-y_{i+1}\right) x_{i}$.
(b) $\sum_{i=1}^{n}\left(x_{i+1}-2 x_{i}+x_{i-1}\right) y_{i}=\sum_{i=0}^{n}\left(y_{i+1}-y_{i}\right)\left(x_{i}-x_{i+1}\right)$.

Be sure to explain carefully any changes of indices you do in the summations.
2. Prove that for any positive real numbers x and $y, \sqrt{2(x+y)} \geq \sqrt{x}+\sqrt{y}$. (Note: This inequality, and those that follow should be proved without using calculus.)
3. Prove that for any real numbers x and y and real number λ between 0 and 1 , that

$$
(\lambda x+(1-\lambda) y)^{2} \leq\left(\lambda x^{2}+(1-\lambda) y^{2}\right)
$$

(If you're having trouble, try the case $\lambda=1 / 2$ first.)
4. Recall that for a sequence x_{1}, \ldots, x_{n} of positive real numbers,

$$
\begin{aligned}
A M\left(x_{1}, \ldots, x_{n}\right) & =\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
G M\left(x_{1}, \ldots, x_{n}\right) & =\left(\Pi_{i=1}^{n} x_{i}\right)^{1 / n} \\
H M\left(x_{1}, \ldots, x_{n}\right) & =\left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}\right)^{-1} .
\end{aligned}
$$

Here are two theorems:
Theorem A For any list x_{1}, \ldots, x_{n} of positive real numbers $A M\left(x_{1}, \ldots, x_{n}\right) \geq G M\left(x_{1}, \ldots, x_{n}\right)$
Theorem B For any list x_{1}, \ldots, x_{n} of positive real numbers $G M\left(x_{1}, \ldots, x_{n}\right) \geq H M\left(x_{1}, \ldots, x_{n}\right)$.
We'll prove Theorem A later in class. In this problem, assume Theorem A, and use it to prove Theorem B.
5. Suppose that M is an n by n symmetric matrix and that x_{1}, \ldots, x_{n} is a list (vector) of real numbers. Let I denote the set $\{1, \ldots, n\} \times\{1, \ldots, n\}$. Prove: If every row sum of M is 0 , and all of the entries off the diagonal are nonpositive, then for any list (vector) x_{1}, \ldots, x_{n}

$$
\sum_{(i, j) \in I} x_{i} M_{i, j} x_{j} \geq 0
$$

(Hints: (1) Prove that under the given assumptions,

$$
\sum_{(i, j) \in I} x_{i} M_{i, j} x_{j}=-\frac{1}{2} \sum_{(i, j) \in I}\left(x_{i}-x_{j}\right)^{2} M_{i, j}
$$

(2) If you're having trouble, try the case $n=2$ first.)

[^0]6. Consider the set \mathbb{Z}_{m} consisting of the equivalence classes under the relation \equiv_{m}, together with the operations $+_{m}$ and \times_{m}. (There are m equivalence classes, denoted $[0],[1], \ldots,[m-1]$. It is often customary to drop the brackets around " $[i]$ " and write simply " i ".) As mentioned in class, \mathbb{Z}_{m} satisfies the field axioms if and only if m is prime. The key difference between the prime and non-prime case is the existence of multiplicative inverses:
(a) Prove that if m is prime, then for every $i \in\{1, \ldots, m-1\}$ there is a $j \in\{1, \ldots, m-1\}$ such that $i \times j \equiv_{m} 1$.
(b) Prove that if m is not prime, then there is an $i \in\{1, \ldots, m-1\}$ for which there is no $j \in\{1, \ldots, m-1\}$ for which $i \times j \equiv_{m} 1$.
7. Let X be a totally ordered set. We say that X has the least upper bound property property if every subset of X that is bounded above has a least upper bound. We say that X has the greatest lower bound property if every subset of X that is bounded below has a greatest lower bound. We say that X satisfies the no gaps property if for every pair of subsets A and B of X, if for all $a \in A$ and $b \in B$ we have $a \leq b$ then there exists a $c \in X$ so that for all $a \in A$, $a \leq c$ and for all $b \in B, c \leq b$. (Note: the terminology "no gaps property" is not standard.)
Prove that the following three conditions on X are equivalent: X has the least upper bound property, X has the greatest lower bound property, and X has the no gaps property.

[^0]: ${ }^{1}$ Version: 12/13/16

