1. Recall that a number is perfect if the sum of its proper divisors is equal to the number itself. Prove the following: if n is a positive integer such that $2^{n}-1$ is prime, then $2^{n-1}\left(2^{n}-1\right)$ is perfect.
2. Recall that $\operatorname{gcd}(m, n)$ is the greatest common divisor of m and n and $\operatorname{lcm}(m, n)$ is the least common multiple of m and n. Prove that for any two positive integers m and $n, \operatorname{gcd}(m, n) \times \operatorname{lcm}(m, n)=m \times n$.
3. Suppose b is an integer greater than 1. Prove that for every positive integer n, there is a unique list $\left(n_{0}, n_{1}, \ldots, n_{k}\right)$ with each $n_{i} \in\{0, \ldots, b-1\}$ such that $n=\sum_{i=0}^{k} n_{i} b^{i}$. (So you are being asked to prove that every positive integer has a unique base b representation. Refer to Section 12.4 of the notes.)
4. Here is an algorithm that takes as input two positive integers m and n and outputs an integer. (Recall that for numbers $a, b, \max (a, b)$ is the maximum of a and b and $\min (a, b)$ is the minimum of a and b.)

1 Let $g=\max (m, n)$.
2 Let $s=\min (m, n)$.
3 If s is a divisor of g then output s and stop.
4 Otherwise, let r be the remainder when g is divided by s.
5 Change the value of g to the value of s.
6 Change the value of s to the value of r.
7 Go to line 3 .
Prove that this algorithm outputs the greatest common divisor of m and n. (Hint: use induction on the maximum of m and n.)
5. Let $\left(b_{1}, m_{1}\right), \ldots,\left(b_{k}, m_{k}\right)$ be a sequence of pairs of integers where $m_{i} \geq 1$ for all i and consider the system of congruences with variable n : for each $i \in\{1, \ldots, k\}, n \equiv_{m_{k}} b_{k}$. Suppose n_{0} is a solution to the system. Prove that for all integers t, t is a solution to the system if and only if $t-n_{0}$ is a multiple of $\boldsymbol{\operatorname { l c m }}\left(m_{1}, \ldots, m_{k}\right)$.
6. If A and B are sets, we say that A embeds in B if there is a one-to-one function from A to B. We say A strictly embeds in B if A embeds in B and B does not embed in A. Prove that the relation strictly embeds is a strict partial order on the set of sets.

[^0]
[^0]: ${ }^{1}$ Version:11/27/16

