1. Use PMI to prove the following: For any positive integer n, and real number r, and real number b, if $r \neq 1$ then $\sum_{i=0}^{n-1} b r^{i}=\frac{b\left(1-r^{n}\right)}{1-r}$. (Hint: hold b and r fixed, and do induction on n).
2. Prove that for all positive integers $n, \sum_{i=1}^{n} i^{3}=\left(\sum_{i=1}^{n} i\right)^{2}$.
3. (20 points) : A k th order recurrence equation is a linear homogeneous constant coefficient (LHCC) recurrence if there are real numbers $a_{1}, a_{2}, \ldots, a_{k}$, called the coefficients of the recurrence, with $a_{k} \neq 0$, and a constant $T \geq k$ such that for every $n \geq T, s_{n}=a_{1} s_{n-1}+a_{2} s_{n-2}+\cdots+a_{k} s_{n-k}$. The number T tells us the smallest n for which the equation is valid. For $n<T$, the values of the sequence must be specified in some other way.
The characteristic polynomial of the aboveLHCC recurrence is the polynomial The characteristic polynomial of the recurrence R is the polynomial $p(x)=x^{k}-\sum_{i=1}^{k} a_{i} x^{k-i}$.
In the following problem, a_{1}, \ldots, a_{k} are fixed real numbers with $a_{k} \neq 0$, and R is the LHCC $s_{n}=$ $a_{1} s_{n-1}+a_{2} s_{n-2}+\cdots+a_{k} s_{n-k}$ for $n \geq k$. (This LHCC is not fully specified since we don't have the initial conditions for s_{0}, \ldots, s_{k-1}.
(a) Prove that if r is a root of the characteristic polynomial then the sequence given by $s_{n}=r^{n}$ is a solution to the LHCC.
(b) Suppose that r_{1}, \ldots, r_{j} are all roots of the characteristic polynomial. Prove: For any choice of constants c_{1}, \ldots, c_{j}, the sequence whose nth term is $\sum_{i=1}^{j} c_{i} r_{i}^{n}$ satisfies recurrence R. (If we are given initial considitions, we can try to choose the c_{i} to make the initial conditions true).
(c) Consider the Fibonacci sequence given by $f_{0}=f_{1}=1$ and for $n \geq 2, f_{n}=f_{n-1}+f_{n-2}$. Use the above method to find an explicit formula for f_{n} as a function of n alone.
4. In this problem we will prove two familiar rules about exponentiation. If r is a real number, r^{n} can be defined to be the nth term in the recurrence given by $s_{0}=1$ and for $n \geq 1, s_{n}=r \times s_{n-1}$.
(a) Use the recurrence and PMI to prove that for all nonnegative integers m and $n, r^{m+n}=r^{m} \times r^{n}$. (Hint: Formulate the statement to be proved as "For all nonnegative integers m, it is the case that for all nonnegative integers $n, r^{m+n}=r^{m} \times r^{n}$. Prove this for each fixed m using induction on n.)
(b) Prove: For all nonnegative integers m and $n,\left(r^{m}\right)^{n}=r^{m n}$. (Hint: Again hold m fixed an prove the result by induction on n.)
5. A pair of sets A and B are said to be neighbors if their symmetric difference $A \triangle B$ has size exactly one. A list of sets A_{1}, \ldots, A_{t} is neighborly if for each $i \in\{1, \ldots, t-1\}, A_{i}$ and A_{i+1} are neighbors. Prove that for all $n \geq 1$, we can form a neighborly list of the subsets of $\{1, \ldots, n\}$ in such a way that every subset of $\{1, \ldots, n\}$ appears in the list exactly once.
6. Let a_{1}, \ldots, a_{k} be a list of integers. Define the function f that maps a list of k integers to an integer by the rule $f\left(x_{1}, \ldots, x_{k}\right)=a_{1} x_{1}+\cdots+a_{k} x_{k}$. Let R be the range of the function f. Prove:
(a) For all $m, n \in R$ we have $m+n \in R$.
(b) For all $n \in R$. and for all integers c we have $c n \in R$.
[^0]
[^0]: ${ }^{1}$ Version:11/14/16

