
Annals of Mathematics

Nonsymmetric Koornwinder Polynomials and Duality
Author(s): Siddhartha Sahi
Source: The Annals of Mathematics, Second Series, Vol. 150, No. 1 (Jul., 1999), pp. 267-282
Published by: Annals of Mathematics
Stable URL: http://www.jstor.org/stable/121102 .
Accessed: 11/06/2011 15:32

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at .
http://www.jstor.org/action/showPublisher?publisherCode=annals. .

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of
Mathematics.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=annals
http://www.jstor.org/stable/121102?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=annals


Annals of Mathematics, 150 (1999), 267-282 

Nonsymmetric Koornwinder polynomials 
and duality 

By SIDDHARTHA SAHI* 

1. Introduction 

In the fundamental work of Lusztig [L] on affine Hecke algebras, a special 
role is played by the root system of type Cn. The affine Hecke algebra is a 
deformation of the group algebra of an affine Weyl group which usually depends 
on as many parameters as there are distinct root lengths, i.e. one or two for 
an irreducible root system. However in the Cn case, the Hecke algebra H has 
three parameters, corresponding to the fact that there is a simple coroot which 
is divisible by 2. 

Recently, Cherednik [C1]-[C3] has introduced the notion of a double affine 
Hecke algebra, and has used it to prove several conjectures on Macdonald 

polynomials. These polynomials, and Cherednik's double affine Hecke algebra, 
involve two or three parameters, i.e., one more than the number of root lengths. 

In this paper, motivated by the work of Noumi [N], we define a double 
affine Hecke algebra for the Cn case, which depends on three additional pa- 
rameters, making six altogether. The associated orthogonal polynomials are 

precisely the six-parameter family of polynomials PA introduced by Koorn- 
winder in [Ko]. 

These polynomials are themselves quite remarkable. Every symmetric 
Macdonald polynomial [M] associated to a classical root system (i.e. those 
of types A, B, C, D, and the two classes of type BC, not considered by 
Cherednik) can be obtained from the PA by a suitable limiting procedure [D]. 
Moreover, for n = 1, the P\ become the Askey-Wilson polynomials, which sit 

atop an impressive hierarchy of orthogonal polynomials in one variable [AW]. 
Koornwinder and Macdonald have formulated several conjectures for these 

polynomials, which are analogous to those proved by Cherednik for Macdon- 
ald polynomials. These are the "constant term," "norm," "evaluation," and 
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"duality" conjectures. For a certain five-parameter subfamily of the PA, these 

conjectures were proved by van Diejen in [D]. 
In the general (six-parameter) setting, van Diejen has shown that either 

of the last two conjectures implies the other three. One of the results in this 

paper is a proof of the duality conjecture which implies all the rest by van 

Diejen's work. 
Here is an outline of the paper: After a brief summary of the relevant 

results of Koornwinder and Noumi, we define the six-parameter double affine 
Hecke algebra K7 and establish its basic properties, including the existence of 
an involution. Next, we introduce certain commutators Si in 1, called the 

intertwiners, and use them to construct a family of polynomials {Ea}. We 
call these the nonsymmetric Koornwinder polynomials, and we describe their 

relationship to the PA. Finally, we establish the duality conjecture for PA 

together with its analog for Ea. 
A substantial part of this paper is directly motivated by the results of 

Cherednik in the two-/three-parameter setting. The idea of using intertwiners 
as creation operators was introduced in [K], [KS] and [S] for GLn, and in [C4] 
for other root systems. 

We have avoided one layer of notational complexity by identifying the 
coroot lattice of Cn with Zn. Thus we have suppressed explicit reference to 
roots and weights. Implicitly, though, these are ubiquitous. 

We have also obtained fairly precise results concerning the orthogonality 
and triangularity of the nonsymmetric Koornwinder polynomials, which we 
shall report elsewhere. 

Finally, we remark that according to the note added in proof to [D], Mac- 
donald has informed van Diejen that he has proved the evaluation conjecture. 
By van Diejen's work, this would also imply the duality conjecture for the PA, 

though not for the Ea. 

2. Preliminaries 

In this section we briefly recall some results of Koornwinder, Lusztig, and 
Noumi which we shall need. For more details the reader should consult [Ko], 
[L], and [N]. 

We fix six indeterminates q, t, to, tn, uo, Un, and let F be the field of rational 
functions in their square roots. We also define 

(1) a = tl/2u1/2, b =-t2 /2u 1/2, c = q1/2t1/2 /2 d = q1/2t0/2 -1/2 

Let Z = F[xzl, , xl1] be the ring of Laurent polynomials in n variables 
over the field F, and let S be the subring consisting of symmetric polynomi- 
als, i.e. those which are invariant under permutations and inversions of the 
variables. 
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NONSYMMETRIC KOORNWINDER POLYNOMIALS 

2.1. Koornwinder polynomials. In [Ko], Koornwinder defined a basis {PA} 
of S which is indexed by A C Zn with A1 > . _ > An > 0, and defined as follows: 

Let Tq,xi denote the ith q-shift operator acting on RZ := F[xl, ... , xl] by 

Tq,xi f (xZ1, ' i, ' * Xn) := f(l? * ' * qxi, .. Xn). 

Consider the following q-difference operator 
n n 

D := i(x)(Tq,xi -1) + )ix-1)(T - 1) 
i=l i=1 

where (i(x) is a rational function in X1, . , Xn defined by 

(x 
? _(1 - axi) (1 - bxi) (1 - cxi) (1 - d) (1 - txix) (1 - txixj) 

t 
x,_ (1-X2) (l-q ) S= (1-xix1) ( 1-- xxixj) 

Koornwinder showed that D preserves S and is diagonalizable with dis- 
tinct eigenvalues 

n 

dA = [q-labcdt2ni-l(qAi 
- 1) + tt-l(q-i 

- 
1)]. 

i=1 

The Koornwinder polynomial Pa is characterized by the equation 

(2) DPA = dPA,, 

together with the condition that the coefficient of xA := xAl .. xAn in PA is 1. 
It turns out that Koornwinder's operator D is one among a commuting 

family of difference operators, all of which are simultaneously diagonalized by 
the PA. These higher operators were constructed abstractly by Noumi, and 
explicitly by van Diejen. 

To describe the results of Noumi, we need to introduce some additional 
notation. 

2.2. The affine Weyl group. The affine Weyl group W of type Cn is 
generated by elements sosl,.. , sn which satisfy s? = 1 and, for n > 1, also 
satisfy the braid relations 

SiSjSi 
' = SjSiSj' 

* 

with two, three, or four terms on each side accordingly as i and j are connected 
by zero, one or two lines in the Coexeter graph 

0 = 1 -2 -......... -(n - 2) -(n - 1) - n. 

The (finite) Weyl group Wo of type Cn is the subgroup generated by sl, * , Sn. 
W has a natural faithful affine action on V = IRn in which 

(3) Sn 'V = (Vl, .,Vn-1,-Vn), S 'V= (-Vl -, l2, , Vn) 
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and the other si act by interchanging vi and vi+l. Indeed W is the semidirect 

product of Wo and r(Zn), where T- denotes the translation by v. In terms of 
the generators, 

(4) T 71 ' ' Tn 7 i - (Si Sn-1)(Sn 
... so)(81- ' * S-1). 

Since the W-action on V is affine, we get a representation of W on the 
space V of affine linear functionals on V, which we identify with V x R 6 as 
follows: 

(5) (v + r6, v') := vvlv +.. + vnvn + r; (w(v + r6), v') := (v + rS, w-l v'). 

This representation is given explicitly by 

(6) si(v + r6) = siv + r6, i 7 0 

so(v + r6) = (-vl, v2, , vn) + (r - l)6. 

We define an exponential map from the lattice Zn x Z C V to 7? by 

(7) xv+k := q-kxl ... x, v c n, k E Z. 

Since the lattice is preserved under (6), we get a representation of W on 7? by 
putting 

(8) w(xV) := W(); E x 6. 

Then W acts by algebra homomorphisms and S = TZW. Explicitly we have 

(9) sof(x) = f(qx 1,X2,.', Xn) 

sif(x) = f(x1, , i+l,x i, ,Xn) i 7 O n 

Snf(x) = f(xl, , Xn-1, Xn1) 

Ti = Tq,xi. 

2.3. The affine Hecke algebra. The affine Hecke algebra H of type Cn 
is generated over IF by elements To, T1, , Tn which satisfy the same braid 
relations as the si, and also satisfy 

? r-1 1/2 1/2 i- i-l = ti - 

where tl = = tn1_ = t. 
The elements T1, . , Tn generate the (finite) Hecke algebra Ho of type Cn. 

H and Ho have natural bases {Tw} consisting of w in W and Wo, respectively, 
where 

(10) Tw = Ti ... Ti 

if w = si, ... Si is a reduced (i.e. shortest) expression of w in terms of the si. 
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The analogs of the translations ri in (4) are the elements 

(11) Yi = --(Ti.. Tn-1)(Tn'. To)(T1 1'' 1 / ), i = 1..., n. 

Lusztig [L] has shown that the Yi commute pairwise and generate a sub- 

algebra 
TRy F[Y1, ... nl], 

and that multiplication gives us a vector space isomorphism 

(12) Ho 0 y H. 

2.4. The Noumi representation. Let si act on 1Z by (9); then Noumi in 

[N] has shown that the following map 7r extends to a representation of H 
on I: 

(13) t(TI1) . t 1/+ 2 
(1 

-cx1) (so-1) 1 - qxi 

r(T7z1) tl/2(- + (S1+l) - 1) 0, 

IT-(T?1) t?1/2 + t-1/2 (1- axn)(1 - bxn) - 
n n n ^2 sn 

1 -x2 

where a, b, c, d are as in (1). 
Moreover if f is in S then r(f) := r (f(Yi, , Yn)) preserves S. Noumi 

showed that the restriction of 7r(YI + + Yn + Y1- +'' + Yn 1) to S is a linear 
combination of the Koornwinder operator D and a scalar. This means that the 
Koornwinder polynomials are simultaneous eigenfunctions for the IT(f). More 

precisely, PA is characterized by 

(14) T(f)P(x) = f(q\+P) P(x), 

where qA+p means (qA+, ..., qAn+Pn) and p is defined by 

(15) qPi = stn-i, with s := (totn)1/2 = /q-1abcd. 

Remark. The fact that 7r extends to a representation can be derived from 

Proposition 3.6 in [L], along the lines suggested in Proposition 4.6 of [M]. 

3. The double affine Hecke algebra 

We now introduce the algebra 'H which will be the principal object of 

study in this paper. For convenience, we will write Z - z as an abbreviation 

for the relation 
Z - Z-1 = z1/2 _ z-1/2 
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Definition. Let H be the algebra generated over IF by elements Til1, 
i = 0, n, and commuting elements X 1, i = 1, n, subject to the re- 
lations: 

(i) T - ti, 

(ii) the Cn braid relations for the Ti's, 

(iii) TiXj =XjTi if i - j > 1, or if i = n andj =n- 1, 

(iv) TiXi = Xi+T-, i = 1, ,n- 1 

(v) Xn- 11 ~ U, 

(vi) Uo - q-1/2T1X1 uo. 

If we set uo = Un = 1 and to = tn, then KH specializes to the three- 

parameter double affine Hecke algebra considered in [C1] for the affine root 
system Cn. 

Our definition is motivated by the following considerations: 
Define a map 7r from the generators of H to End(R) by letting 7r(Tl) be 

as in (13), and letting 7r(X/1) be the operator of multiplication by x41i. 

3.1. THEOREM. The map 7r extends to a representation of KH on 7R. 

Proof. We need only verify that (i)-(vi) hold for 7r(TI1) and 7r(Xil). 
The relations (i) and (ii) follow from Noumi's result, and (iii) and (iv) are 

easily verified using the formulas. For (v) we have 

T,X1 - t'/2x 1 + t-/2(1- axn)( - bxn)( -I x) 
n n n ^n- n Sn - X 

1 - X 

Since SnXn = XnlSn and xn - xn-1 - -n(1 - x), we get 

Xn! Tn - TnXn ~-+ tn1/2xn1 - t/2Xn - tnl/2xn(1 - axn)(l - bx) 

= -(t/2 + tnl/2ab)xn + tn/2(a + b). 
1/2 1/21/2 nl/2 1/2 -1/2 

Substituting a = tn /2U and b = -tn /2u , this becomes un -Un 
proving (v). 

Relation (vi) can be proved similarly using soxl = qx1 so. 

3.2. THEOREM. The representation wr is faithful. 

Proof. We first note that in any word in I involving the generators, the 
relations (i)-(vi) allow us to commute the Ti's past the Xj's. Thus every 
element of KI can be written as a linear combination of Xn TW, where Xa = 
X1 1. Xnn and TW is as in (10). 
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Suppose a nontrivial linear combination maps to 0 under rt. We then get 

S cw,aXa(Tw) = 0 

in End(R), where cw,a are scalars in F, not all zero. 
The left side is a rational expression in the square roots of q, t, to, tn, uo, un, 

and we consider what happens if we specialize the last five indeterminates to 
1. By clearing denominators and eliminating common factors, we may ensure 
that at least some of the cw,a have nonzero specializations; by (1), (10), and 

(13), r(Tw) specializes to the action of w as in (9). 
Thus we get a nontrivial dependence relation in End(R) of the form 

5 cW,O'w = , w E W, aE Zn 

Since W = Wo-(Zn), we can rewrite this as 

cE cwa,,3X w = O, w E Wa, , E Zn. 

Collecting the terms for 3, we get 

XWPw,a (T1 
* * 

.n), 
= 0, W C WO,a E Z7, 

where pw,a(X) is the Laurent polynomial >p Cw,a,^oX, Since ri(x7) = (qai)x7, 

applying the expression to xa we obtain 

+x Pw, (q 1,... qan) = 0 

It follows that pw, (qY1, .., qn ) = 0 for all -y in Zn outside the finite union 

of hyperplanes determined by the conditions a + wy = a' + w'y for a, a', w, w' 

occuring in the last expression. But then pw,a must be identically 0, and we 
conclude that all cw,a,o = 0, contrary to the assumption. D 

Let us define Zx := IF[Xl1, ", X+1]; then the above proof shows: 

3.3. COROLLARY. The natural maps from H, Ho, 1?y and R1x into IH 
are injective. 

We shall identify the above algebras with their images in 7-. Then we 
have: 

3.4. COROLLARY. The multiplication maps from 1x 0 H and Zx 0 Ho 
O Ry into TI are linear isomorphisms. 

We conclude this section by giving an intrinsic definition of the represen- 
tation 7r. First, by the definition of H, it is clear that the map 

1/2 
(16) X: Ti t12, i = 0, - ,n 

extends to a one-dimensional character of H. 

273 



SIDDHARTHA SAHI 

3.5. PROPOSITION. The representation r is isomorphic to Ind1I(x). 

Proof. The induced representation is Kt/I where I is the left ideal of 7Y 
1/2 

generated by Ti- ti/, i = 0, , n. On the other hand, ir 1 H/J where J is 
the annihilator of the cyclic vector 1 E R. It remains to show that I = J. 

First, since si(l) = 1 it follows from formula (7) that 7(Ti - ti2)(1) = 0, 
and so 

zCJ. 

Next consider the left ideal I in H generated by Ti - ti/ Then we have 
H = F + I; thus Rx ? H = Rx ? F + lx ? I. Applying Corollary 3.4 we 
conclude that 

H = Rx +Z. 

This mean that the isomorphism lZx --> given by Xi -+ x 7r(Xi) 1 
can be factored as the following sequence of surjective maps 

Rx '- UI -> 'H/J -- R. 

In particular, the middle map is an isomorphism, and so I= J. [ 

4. The involution 

Let E denote the involution on F which sends q, t, tn, uo to their inverses, 
and which maps 

to ^ u~-1 tO Un 

We shall show that e extends to an involution on 7K. First we prove 

4.1. LEMMA. Let Un - XX-1TOY-1 = X-1T-1 T 1 . . T-1, then 

Un Un. 

Proof. By (iv) we have X-lT-1 = TiX+1, and applying this repeatedly, 
we get 

Un = (T .. Tn-l ) (Xn-lTn-l)(T--ll T ... l). 

Thus Un is conjugate to Xn1Tn-1 and the lemma follows from relation (v). DC 

4.2. THEOREM. The map e extends to an involution of H which maps 
Xi to Yi, sends T1, .., Tn to their inverses, and maps 

To - 1 
Unl 

Proof. We first verify that the E-transforms of (i)-(vi) hold in tI. For 
i y 0 the relation (i) becomes Ti-1 - t-1, which is implied by Ti - ti; while 
for i = 0 it becomes Un1 - un1, which follows from Lemma 4.1. 
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All the e-transforms of the braid relations (ii) are immediate, except for 

Un-1T-l U-llT 1 ? T- 1 Un-lT 1T Un 

We shall check this directly. Write ( = T2 .. Tn' * T2; then X14 = (X1, 
and we get 

Tx1IUn-1T-1UnI- = (ITIXI(ITIX1 = )Ti(X1iTlXTi = -ITIDIX1X2Tf-1 

Un l T- UnlT-=1 = T1&T1X1i T1X1iT-1 = T1i Ti TX1T1XiTT-1 

= Ti,TI(TlX1XiX2T7-1. 

By multiplying both sides by TlX1X2-lTl on the right, it suffices to show 

(T2 . .. Tn T2)T (T2 'Tn .. T2)Ti T (T2 . Tn .. T2)Tl (T2 . T .. .T2). 

We apply T2T1T2 = TiT2T1 to both sides and commute the resulting Tl's 
as far to the extremes as possible. Using TiT2T1 = T2T1T2 once on each side 
and cancelling, we get 

(T3 ... Tn ... T3)T2(T3... Tn ... T3)T2 
? 

T2(T3.. Tn .. T3)T2(T3... Tn ... T3). 

Iterating, we reach the true relation TnTn-_TnTn-1 = Tn-1TnTn-1Tn, which 

proves (ii). 
The e-transforms of (iii)-(iv) are easily checked. For (v) we get 

e(XnlT-l) = Y-Tn = (Tn-1 .. 
Ti)To-(T-1' T. l) 

which is conjugate to To1. Hence the desired relation follows from To - to. 

Finally, for (vi) we have 

e(Uo) = q nY = qql/2(X lToY- )y - q/X-To = 
Uo1 

Thus (vi) follows from its original counterpart. 
It follows that e is a homomorphism, and it remains only to prove that 

2 = 1. Since 7H is generated by {Ti,Xi,Y I i = 1,, n}, it suffices to show 

that e(Yi) = Xi for all i. But 

e(Y1) = T-1* T1.. . TT-l 1-l = X1. 

Since TiXiTi = Xi+l and Ti-YiTi-L = Yi+i, the result follows for all i by 
induction. ] 

5. Intertwiners 

In this section we introduce certain commutators in -H, and prove that 

they enjoy a crucial intertwining property with respect to the commutative 

family ity. 
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Definition. We define operators Si in HI as follows: 

(17) Si := [TVi, Y/], i= 1,.-, n; So := [Yl, Un]. 

We also introduce the following notation, analogous to (7): 

(18) XtV :=+k : q-kX1l ...X ; yv+k6 qxkyn . yvv+k v y Zn, k E Z. 

5.1. THEOREM. For all v in Zn x 25, 

(19) ySi - SiYSi(); i = , .. ,n. 

Proof. By Theorems 3.2 and 4.2, it is enough to prove the 7r o transform 
of (19). Applying 7r o e to (18) and (17), we get: 

7r o ?(YV) = XV; T o g(YSi(V)) = xsi(V) 

7T E(SO) - [x1, 7(To&1)]; rT o (Si) = [7r(T-1), i], i = 1,... , . 

Now, an easy calculation in End(R), using formulas (13) gives 

1to/2 ( - cx1)(1 - dxl') i = 0 
(20) o ?(Si) = i(x)si; i(x) = -1/2 (l - ax)(1 - bxn) i= n 

t l1/2xi+l(1 - tixix-I) i 0, n. 

Thus the 7roe transform of (19) becomes the following assertion in End(R7): 

xVji(X)Si ' qi(x)Sis(v). 

After cancelling the qi, this follows from (8). D 

5.2. COROLLARY. Let a', b', c', d' be the e transforms of a, b, c, d, then 

unq-l(1 - c'Yl-1)(l - d'Y-l)(l - qc'Y)(1 - qd'Yl) i = 0 

(21) S2 - tn(1 - a/Yn)(1 - bYn)(1 - a'Yn)(1 - b'Yn-1) i = n 

tiYii+l(1 - t-iYYi-+)(1 - t-lY-1Yi+l) i 0, n. 

Proof. By (20), we get 7r o (Si2) = isisi = isi(s = qsi(i), and 
the result follows from the explicit formula for /i. D 

In the next section we will use the Si's as creation operators for the EQ, 
starting with the constant function 1, which is an eigenfunction of Yi, satisfying 

(22) 7r(Yi)(1) = qi (1); i ,..., n. 

This is an immediate consequence of the equation 7r(Ti)(l) - ti/2(1) and the 
definitions of Yi and p in (11) and (15). To describe the other eigenvalues, we 
proceed as follows: 
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Definition. For a in Zn, we define 

wQ, := the shortest element in Wo such that w-1 * a is a partition; 
:= a + ww, p where p is as in (15); 

1, := the space of all f E 7 satisfying Yif = qoi+(Wo.P)if for all i. 

Alternatively, w, in Wo = (?i)nSn can be described as W, := aU7ra, 
where acr E (il)n is simply (sgn(al), .. ,sgn(an)) with sgn(0) defined to be 

1; and r, is the permutation in Sn defined as follows: order the indices first 
by decreasing ail , then for fixed laoi from left to right for ai > 0, and finally 
from right to left for ai < 0. 

For example if a = (-2,2,1,-1, 0, 1,-1), then ao = (-1, 1, 1,-1, 1, 1,-1) 
and 7ra is the permutation (2, 1, 3, 6,7, 4,5). 

5.3. THEOREM. If si * a 7x a, then r(Si) is a linear isomorphism from 
ZRa to tsi.a. 

Proof. Let f E Z,. Then by (5) and (18) it follows that for all v in 
Zn x ZS, 

yv(f) = q(V,cx+w.P)f. 

Let us write a- = a + wa p. Then from Theorem 5.1 and (3) we get 

7(YV)7r(Si)f = 7r(Si)7(YSi(v))f = q(si(v)'>)7r(Si)f = q(v'si'>)7r(Si)f. 

Thus to prove that 7r(Si)f E Ts,.a, it suffices to show that si a ~ a 

implies 

(23) si ' = s a; i = 0, , n. 

For i = 0, write p = so ca = (-al - 1, a2, * * an). Then we claim that 
the permutations 7r, and 7rO are the same. Indeed if a, is positive then, in the 

ordering corresponding to 7ra, the index 1 is the first among the indices j with 

loajy = al; while in the ordering for 7ra, 1 is the last index in the higher group of 
indices satisfying I3jl = al + 1. Thus the relative position of 1 with respect to 
other indices stays the same, as do those of other indices with respect to each 
other. A similar argument works if al is negative, and taking into account the 

sign change we conclude that: 

/13 = -1 + (w- p)l = -- -- 1 - (wa P)) = -ai - 1; p3i = i, i > 2, 

which is precisely the content of (23) for i = 0. 
The argument for i > 1 is similar and simpler. We observe that if 3 := si.a 

is different from a, then w, equals siwa. Since si acts linearly, we get 

Si a= Si * a + Si . (wa . p) = 3 + wo p = P = Si a. 
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Thus we conclude that 7r(Si) maps 1R, into R,so. for all i > 0. But, by 
Corollary 5.2, S2 is in 7Ry; hence 7r(S2) acts by a scalar ci on R7, which can 
be readily computed by substituting Yi = 5i in (21). In particular, we see that 
if si j a 4 a then ci is not zero. Thus 7r(Si) is a linear isomorphism from 7Za 
to TZs .c, with inverse c-lTr(Si). D 

6. Nonsymmetric Koornwinder polynomials 

In this section we will define the nonsymmetric Koornwinder polynomials. 
The crucial result is: 

6.1. THEOREM. The spaces 7t are all one-dimensional. 

Proof. We first prove that the spaces Ra are nonzero. For a = 0, w, is 
the identity in Wo and so a = p. Thus by (22), the constant functions belong 
to R, for a = 0. For other a E Zn we use Theorem 5.3 together with the fact 
that the affine action of W on Zn is transitive. 

Now let f = ,cpc cpx3 be a nonzero function in k,. Then f satisfies 

7r(Yi)f :=- q(+w.aP)if; i = 1, ... n. 

As in the proof of Theorem 3.2, we set t, to, tn, uo, un equal to 1 in the expres- 
sion. Then p specializes to the zero vector, and Yi specializes to 7r(Ti) = Tq,xi. 
Clearing denominators and eliminating common factors, we may also assume 
that the c, have finite specializations, not all zero. Letting g 0 denote the 
specialization of f, we get 

Tq,xig = q ig 

which means that g is a nonzero multiple of x'. 
In particular, the coefficient c, has a nonzero specialization and so must 

be nonzero. The result follows, since if there were two linearly independent 
functions in Ja, we could construct a nonzero f with c, = 0. DC 

The proof of the theorem shows that a function f in RZa is uniquely de- 
termined by the knowledge of the coefficient of xa in f. 

Definition. The nonsymmetric Koornwinder polynomial Ea is the unique 
polynomial in JZa in which the coefficient of xa is 1. 

6.2. THEOREM. The polynomials Ea form a basis for 7Z over F. 

Proof. Let us consider the degree filtration 7R(o) C R(1) C ... C R, where 

7Z(k) is spanned by all monomials xa with lal := ljail + * .. + lanl < k. We 
claim that for lal < k, 

, C RT(k). 
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For a = 0, we use Theorem 6.1 to see that 7R consists precisely of the 

constants, which lie in 71(o). For other a, we observe that by (13) the filtration 

is invariant under Ti and Yi, while Un = X11ToY7-1 raises degree by at most 
one. Thus S1, . , Sn preserve the filtration while So raises degree by at most 
one. Now any a can be obtained from 0 by applying a sequence of si's in which 

so occurs exactly lal times. Applying the corresponding Si's to 7?o, we deduce 
the claim. 

It follows that the set {E': lal < k} is contained in lR(k) and has the 
same cardinality as the monomial basis. Therefore it suffices to prove that the 

E, are linearly independent. For this we choose a polynomial f in 7 which 
takes distinct values on the finite set {q' : lal < k}. Then the Es belong to 
distinct eigenspaces under the operator ir(f(Yi, , Yn)) and hence are linearly 
independent. [ 

6.3. COROLLARY. The representation 7r is irreducible. 

Proof. Let V be a 7r(7t)-invariant subspace of 7?, and suppose f = Z caEc 

belongs to V, with some cp Z 0. Choose a function g in 7 such that g(q/) = 

1/c,, and g(qr) = 0 for all other a for which ca $ 0. Then applying 
7r(g(Yi, .. ,Yn)) to f we conclude that E, belongs to V. Now applying the 

7r(Si)'s we conclude that every Ea belongs to V. D 

Next we consider the restriction of 7r to H. 

Definition. For each partition A we write 7?A for the subspace of 7Z 

spanned by the {E a: c E Wo ' A}. 

6.4. COROLLARY. The R7A are irreducible 7r(H)-modules, and R is their 
direct sum. 

Proof. For the irreducibility, we repeat the previous argument without 

involving So. The second assertion follows from Theorem 6.2. 0 

Finally we discuss the connection with the symmetric Koornwinder poly- 
nomials PA. 

6.5. COROLLARY. The symmetric Koornwinder polynomial P\ can 
be characterized as the unique Wo-invariant polynomial in R?A which has the 

coefficient of xi equal to 1. 

Proof. We note that if a E Wo ? A, then e = a + w, ? p = wa ? (A + p). 
In particular, if f is in S, then f(c) = f(A + p), and so ?Ax is precisely the 

f(A + p)-eigenspace of 7r(f(Yi, v , Yn)) for f E S. The result now follows from 
the characterization (14). a 

Definition. Define C E Ho by C := (EweWo x(Tw)2)-1 Ewo X(Tw)Tw. 
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6.6. COROLLARY. 7r(C) is a projection from rT to FPx. 

Proof. First of all, an easy calculation as in Lemma 2.5 of [S] shows that 

TiC = t/2C for i = 1,., n; hence ir(Ti)r(C)f = tl/2r(C)f for all f E 7z. By 
(13), this implies that ir(C)f is W0-invariant, and so must be a multiple of Px. 

Moreover, for f C S, 7r(Tw)f = X(Tw)f; hence r(C) acts by the identity 
on S. [ 

7. Duality 

Let t denote the involution on F which sends q, t, to, t,, uo, Un to their 
inverses. 

7.1. PROPOSITION. The map t extends to an anti-involution on -H 
satisfying 

Tt = T.-, x7 = xt-, X- Yt = Y- 

Proof. For the proof we merely observe that each defining relation of N 
is t-invariant. D 

Definition. We define the duality anti-involution * on N~ by 

h* = E(ht) = e(h)t, h E H. 

On F, * simply switches to and un; while on the generators, 
* =Ti, X-* = Yi-, Y* = X- , i = ,n; To* U. 

We also extend * from IF to an involution on Ta by defining x =- x-1 for 
all i. Observe that if f is in S, then f is invariant under xi I-> x1, and so f* 
is obtained just by switching to and Un in the coefficients of f. 

Next, we define p* by the requirement that qP* = (qP)*. Explicitly, 

qP = (qPi)* = ((to)l/2tn-i)* 1= (ut/2tn-i 

The duality conjecture of Macdonald can be stated as follows: 

7.2. CONJECTURE. For any two partitions A and t, we see that 

Px (q+P*) P p(qA+p) 

PA(qP*) P (qP) 

This is seen to be equivalent to the formulation in (4.4) of [D], after the 
easy verification that our definition of duality (to +- un), is the same as that 
in (4.1) of [D]. 

To establish Conjecture 7.2 and its analog for Ea, we introduce the fol- 
lowing: 
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Definition. Let S be the map from 'H to F defined by 

S(h):= Fh(q-P*); where Fh = -r(h)(1) 7Z. 

7.3. THEOREM. We have S(h*) = S(h)* for all h E H. 

Proof. By linearity and Corollary 3.4 it is enough to prove this for h of 
the form X'aTWY, with a,/3 E Zn, w E Wo. Then by (16) and (22), 

(24) Fh = q(/xP)x(Tw)xC; and S(h) = q(/'P)X(Tw)q-("*) 

On the other hand h* = X- TwY-, and so 

(25) Fh* = q-('P)(Tw)x-3; and S(h*) = q-('P(Tw)q(' 

For w c Wo, x(Tw) only involves t and tn; and Tw is simply obtained from 
Tw by reversing its product expansion (10) in terms of T1, T , T. Thus 

(TW)*= x(Tw) = X(T); w E Wo. 

Since * interchanges p and p*, the result now follows by comparing (24) 
and (25). D 

We now define scalars ?,p, Px, in IF by 

.?a := E;(q/)EO(q-P*); PxV := p* (q/L+P)p(q-P*). 

7.4. THEOREM. We have ?p* = ?po and P - = P,\. 

Proof. For the first assertion we consider h := E^(Y)E/(X). Then by the 
definition of *, we get h* = E3(Y)Ea(X). Now, 

Fh := 7r(E' (Y))EQ (x) = E(q)E (x), 

and so S(h) = ?,. Similarly S(h*) = ?p,, and the result follows from Theo- 
rem 7.3. 

The second assertion is proved similarly by considering h := PA (Y)P, (X). 

7.5. COROLLARY. Conjecture 7.2 is true. 

Proof. Since P\ is invariant under xi -> xi- we get 

P,x := P,(qX+P)P (q-P*) = P,(qX+P)px(qP*). 

On the other hand, 

Pb :=. (P*(q PP)p(qP*))* = P(q- )P )(q = P px(qI+P*) P(qP). 

Thus the result follows from Theorem 7.4. D 
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