Invent. math. 138, 203–224 (1999) Digital Object Identifier (DOI) 10.1007/s002229900008

Explicit Hilbert spaces for certain unipotent representations II

Alexander Dvorsky, Siddhartha Sahi

Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA (e-mail: dvorsky@math.rutgers.edu/sahi@math.rutgers.edu)

Oblatum 4-I-1999 & 14-IV-1999 / Published online: 6 July 1999

0. Introduction

To each real semisimple Jordan algebra, the Tits-Koecher-Kantor theory associates a distinguished parabolic subgroup P = LN of a semisimple Lie group G. The groups P which arise in this manner are precisely those for which N is abelian, and P is conjugate to its opposite \overline{P} .

Each non-open *L*-orbit \mathcal{O} on N^* admits an *L*-equivariant measure $d\mu$ which is unique up to scalar multiple. By Mackey theory, we obtain a natural irreducible unitary representation $\pi_{\mathcal{O}}$ of *P*, acting on the Hilbert space

$$\mathcal{H}_{\mathcal{O}} = L^2(\mathcal{O}, d\mu)$$

In this context, we wish to consider two problems:

- 1. Extend $\pi_{\mathcal{O}}$ to a unitary representation of *G*.
- 2. Decompose the tensor products $\pi_{\mathcal{O}} \otimes \pi_{\mathcal{O}'} \otimes \pi_{\mathcal{O}''} \otimes \cdots$

If the Jordan algebra is Euclidean (i.e. formally real) then G/P is the Shilov boundary of a symmetric tube domain. In this case, the first problem was solved in [S1], [S2], where it was shown that $\pi_{\mathcal{O}}$ extends to a unitary representation of a suitable covering group of G. The second problem was solved in [DS], where we established a correspondence between the unitary representations of G occurring in the tensor product, and those of a "dual" group G' acting on a certain reductive homogeneous space. This correspondence agrees with the θ -correspondence in various classical cases, and also gives a duality between E_7 and real forms of the Cayley projective plane.

In this paper we start to consider these two problems for *non-Euclidean* Jordan algebras. The algebraic groundwork has already been accomplished in [S3], however the analytical considerations are much more subtle, and

here we only treat the case of the representation $\pi_1 = \pi_{\mathcal{O}_1}$ corresponding to the *minimal L*-orbit \mathcal{O}_1 .

It turns out that in order for the first problem to have a positive solution, one has to exclude certain Jordan algebras of rank 2. This is related to the Howe-Vogan result on the non-existence of minimal representations for certain orthogonal groups.

To each of the remaining Jordan algebras we attach a restricted root system Σ of rank *n*, where *n* is the rank of the Jordan algebra. The root multiplicities, *d* and *e*, of Σ play a decisive role in our considerations. For the reader's convenience, we include a list of the corresponding groups *G* and the multiplicities in the appendix.

For these groups, we show that π_1 extends to a spherical unitary representation of *G*, and that the spherical vector is closely related to the *one* variable Bessel *K*-function $K_{\tau}(z)$, where

$$\tau = \frac{d - e - 1}{2}$$

The function $K_{\tau}(z)$ can be characterized, up to a multiple, as the unique solution of the modified Bessel equation

$$\psi'' + z^{-1}\psi' - \left(1 + \frac{\tau^2}{z^2}\right)\psi = 0$$

that decays (exponentially) as $z \to \infty$; and, to us, one of the most delightful aspects of the present consideration is the unexpected and uniform manner in which this classical differential equation emerges from the structure theory of *G*.

More precisely, we establish the following result:

We identify *N* with its Lie algebra $\mathfrak{n} = \operatorname{Lie}(N)$ via the exponential map. We also fix an invariant bilinear form on $\langle \cdot, \cdot \rangle$ on \mathfrak{g} , which is a certain multiple of the Killing form, normalized as in Definition 1.1 below. We use this form to identify N^* with $\overline{\mathfrak{n}} = \operatorname{Lie}(\overline{N})$. For y in $\overline{\mathfrak{n}}$, $\langle -\theta y, y \rangle$ is positive, and we define

$$|y| = \sqrt{\langle -\theta y, y \rangle}.$$

Theorem 0.1. π_1 extends to a unitary representation of *G* with spherical vector $|y|^{-\tau}K_{\tau}(|y|)$.

Since π_1 is spherical, its Langlands parameter is its infinitesimal character, and this can be determined via the (degenerate) principal series imbedding described in Section 2 below. It is then straightforward to verify that π_1 is the minimal representation of *G*, with annihilator equal to the Joseph ideal. (For G = GL(n), the minimal representation is not unique.)

Thus our construction should be compared to other realizations of the minimal representations in [Br], [T], [H] etc. Although our construction is for a more restrictive class of groups, it does offer two advantages over

the other constructions. The first advantage is that our construction works for a larger class of representations, and the second advantage is that it is well-suited for tensor product computations.

Both of these features will be explored in detail in a subsequent paper. In the present paper, we consider *k*-fold tensor powers of π_1 , where *k* is strictly smaller than *n* (rank of Σ), and show that the decomposition can be understood in terms of certain reductive homogeneous spaces

$$G_k/H_k$$
, $1 < k < n$.

These spaces are defined in Section 3, and are listed in the appendix.

We consider also the corresponding Plancherel decomposition:

$$L^2(G_k/H_k) = \int_{\widehat{G}_k}^{\oplus} m(\kappa)\kappa \, d\mu(\kappa) \, ,$$

where $d\mu$ is the Plancherel measure, and $m(\kappa)$ is the multiplicity function. Then we have

Theorem 0.2. For 1 < k < n, there is a correspondence θ_k between \widehat{G}_k and \widehat{G} , such that

$$\pi_1^{\otimes k} = \int_{\widehat{G}_k}^{\oplus} m(\kappa) \theta_k(\kappa) \, d\mu(\kappa).$$

1. Preliminaries

The results of this section are all well-known. Details and proofs may be found in [S1], [KS] and in the references therein (in particular, [BK] and [Lo]).

1.1. Root multiplicities. Let *G* be a real simple Lie group and let *K* be a maximal compact subgroup corresponding to a Cartan involution θ . We shall denote the Lie algebras of *G*, *K* etc by \mathfrak{g} , \mathfrak{k} etc. Their complexifications will be denoted by lowercase fraktur letters with subscript \mathbb{C} . Fix θ , and let $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ be the associated Cartan decomposition.

The parabolic subgroups P = LN obtained by the Tits-Kantor-Koecher construction are those such that N is abelian, and P is G-conjugate to its opposite parabolic

$$\overline{P} = \theta(P) = L\overline{N}.$$

In this case N has a natural structure of a real Jordan algebra, which is unique up to a choice of the identity element.

In (Lie-)algebraic terms, this means that P is a maximal parabolic subgroup corresponding to a simple (restricted) root α which has coefficient 1 in the highest root, and which is mapped to $-\alpha$ under the long element of the Weyl group.

In this situation, $M := K \cap L$ is a symmetric subgroup of K (this is *equivalent* to the abelianness of N), and we fix a maximal toral subalgebra t in the orthogonal complement of m in \mathfrak{k} .

The roots of $\mathfrak{t}_{\mathbb{C}}$ in $\mathfrak{g}_{\mathbb{C}}$ form a restricted root system of type C_n , where $n = \dim_{\mathbb{R}} \mathfrak{t}$ is the (real) rank of N as a Jordan algebra (this result is essentially due to C. Moore). We fix a basis $\{\gamma_1, \gamma_2, \ldots, \gamma_n\}$ of \mathfrak{t}^* such that

$$\Sigma(\mathfrak{t}_{\mathbb{C}},\mathfrak{g}_{\mathbb{C}}) = \{\pm(\gamma_i \pm \gamma_i)/2, \pm \gamma_i\}$$

The restricted root system $\Sigma = \Sigma(\mathfrak{t}_{\mathbb{C}}, \mathfrak{t}_{\mathbb{C}})$ is of type A_{n-1}, C_n or D_n , and the first of these cases arises precisely when N is a Euclidean Jordan algebra. This case was studied in [S1], therefore we restrict our attention to the last two cases.

The root multiplicities in Σ play a key role in our considerations. If Σ is C_n , there are two multiplicities, corresponding to the short and long roots, which we denote by d and e, respectively. If Σ is D_n , and $n \neq 2$, then there is a single multiplicity, which we denote by d, so that D_n may be regarded as a special case of C_n , with e = 0.

The root system D_2 is reducible (being isomorphic to $A_1 \times A_1$) and *a priori* there are two root multiplicities. In what follows, we explicitly exclude the case when these multiplicities are different. This means that we exclude from consideration the groups

$$G = O(p,q), N = \mathbb{R}^{p-1,q-1} (p \neq q);$$

indeed, our main results are false for these groups. When the two multiplicities *coincide*, we once again denote the common multiplicity by *d*.

The multiplicity of the short roots $\pm (\gamma_i \pm \gamma_j)/2$ in $\sum (\mathfrak{t}_{\mathbb{C}}, \mathfrak{g}_{\mathbb{C}})$ is equal to 2*d*, and the multiplicity of the long roots $\pm \gamma_i$ is e + 1.

In the appendix we include a table listing the groups under consideration, as well as the values of d and e for each of these groups.

1.2. Cayley transform. We briefly review the notion of the Cayley transform. Let *C* be the following element (of order 8) in $SL_2(\mathbb{C})$

$$C = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}.$$

The Cayley transform of $\mathfrak{sl}_2(\mathbb{C})$ is the automorphism (of order 4) given by

$$c = \operatorname{Ad} C$$

It transforms the "usual" basis of $\mathfrak{sl}_2(\mathbb{C})$

$$x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

to the basis

$$X = \frac{1}{2} \begin{pmatrix} -i & 1 \\ 1 & i \end{pmatrix}, \quad Y = \frac{1}{2} \begin{pmatrix} i & 1 \\ 1 & -i \end{pmatrix}, \quad H = i \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

where $X = c(x) = C^{-1}xC$, etc. In turn, *c* can be expressed as

$$c = \exp \operatorname{ad} \frac{\pi i}{4}(x+y) = \exp \operatorname{ad} \frac{\pi i}{4}(X+Y).$$

The key property of the Cayley transform is that it takes the compact torus (spanned by iH) to the split torus spanned by h (cf. [KW]).

We turn now to the Lie algebra $\mathfrak{g}_{\mathbb{C}}.$ By the Cartan-Helgason theorem the root spaces \mathfrak{p}_{γ_i} are one-dimensional, and so by the Jacobson-Morozov theorem we get holomorphic homomorphisms

$$\Phi_j:\mathfrak{sl}_2(\mathbb{C})\longrightarrow\mathfrak{g}_{\mathbb{C}}, j=1,...,n$$

such that $X_j = \Phi_j(X)$ spans \mathfrak{p}_{γ_j} . We fix such maps Φ_j , and denote the images of x, X, y, Y, h, H by x_i, X_j , etc. Since the roots γ_i are strongly orthogonal, the triples $\{X_i, Y_i, H_i\}$ commute with each other, and the Cayley transform of g is defined to be the automorphism

$$c = \exp \operatorname{ad} \frac{\pi i}{4} \left(\sum X_j + \sum Y_j \right) = \prod \exp \operatorname{ad} \frac{\pi i}{4} (X_j + Y_j).$$

Thus we obtain an \mathbb{R} -split toral subalgebra \mathfrak{a} defined by

$$\mathfrak{a}=c^{-1}(i\mathfrak{t})=\mathbb{R}h_1\oplus\cdots\oplus\mathbb{R}h_n.$$

The roots of $\mathfrak{a}_{\mathbb{C}}$ in $\mathfrak{g}_{\mathbb{C}}$ are

$$\Sigma(\mathfrak{a}_{\mathbb{C}},\mathfrak{g}_{\mathbb{C}}) = \left\{ \pm \varepsilon_i \pm \varepsilon_j, \pm 2\varepsilon_j \right\}$$
 where $\varepsilon_i = \frac{1}{2}\gamma_i \circ c$.

The short roots have multiplicity 2d and the long roots have multiplicity e + 1.

In fact $\mathfrak{a} \subset \mathfrak{l}$, and we have

$$\Sigma(\mathfrak{a},\mathfrak{l}) = \left\{ \pm (\varepsilon_i - \varepsilon_j) \right\}, \ \Sigma(\mathfrak{a},\mathfrak{n}) = \left\{ \varepsilon_i + \varepsilon_j, 2\varepsilon_j \right\},$$

$$\Sigma(\mathfrak{a},\overline{\mathfrak{n}}) = \left\{-\varepsilon_i - \varepsilon_j, -2\varepsilon_j\right\}$$

Definition 1.1. *The invariant form* $\langle ., . \rangle$ *on* \mathfrak{g} *is normalized by requiring*

$$\langle x_1, y_1 \rangle = 1.$$

For $y \in \overline{\mathfrak{n}}$, we set $|y| \stackrel{\text{def}}{=} \sqrt{-\langle y, \theta y \rangle}$, as in Introduction.

1.3. Orbits and measures. We now describe the orbits of *L* in $\overline{\mathfrak{n}} \simeq N^*$. For k = 1, ..., n - 1, define

$$\mathcal{O}_k = L \cdot (y_1 + y_2 + \ldots + y_k).$$

Then these, together with the trivial orbit \mathcal{O}_0 , comprise the totality of the singular (i.e., non-open) *L*-orbits in $\overline{\mathfrak{n}}$.

We define $\nu \in \mathfrak{a}^*$ as

$$\nu = \varepsilon_1 + \varepsilon_2 + \ldots + \varepsilon_n.$$

Then ν extends to a character of l, and we will write e^{ν} for the corresponding (spherical) character of L.

Lemma 1.2. The orbit \mathcal{O}_1 carries a natural L-equivariant measure $d\mu_1$, which transforms by the character e^{2dv} , that is

$$\int_{\mathcal{O}_1} g(l \cdot y) d\mu_1(y) = e^{2d\nu}(l) \int_{\mathcal{O}_1} g(y) d\mu_1(y).$$

Proof. Let S_1 be the stabilizer of y_1 in L. It suffices to show that the modular function of S_1 is the restriction, from L to S_1 , of the character e^{2dv} . Passing to the Lie algebra \mathfrak{s}_1 , we need to show that

$$\operatorname{tr} \operatorname{ad}_{\mathfrak{s}_1} = 2d\nu|_{\mathfrak{s}_1}.$$

To see this, we remark that \mathfrak{s}_1 has codimension 1 inside a maximal parabolic subalgebra \mathfrak{q} of \mathfrak{l} , corresponding to the stabilizer of the line through y_1 . The space of characters of \mathfrak{q} is two-dimensional, and it follows that the space of characters of \mathfrak{s}_1 is one-dimensional. Hence any character of \mathfrak{s}_1 is determined by its restriction to $\mathfrak{a} \cap \mathfrak{s}_1 = \operatorname{Ker} \varepsilon_1$. The restriction of ν to \mathfrak{s}_1 is nontrivial, hence

$$\operatorname{tr} \operatorname{ad}_{\mathfrak{s}_1} = k \nu$$

for some constant *k*.

Obviously, tr $ad_{\mathfrak{l}} = 0$, and the only root spaces missing from \mathfrak{s}_1 are the root spaces $\mathfrak{l}_{\varepsilon_1-\varepsilon_j}$, $j \geq 2$ (each of these root spaces has dimension 2*d*). Hence, for $a \in \mathfrak{a}$

tr ad_{s₁}(a) =
$$-2d \sum_{j=2}^{n} (\varepsilon_1 - \varepsilon_j)(a),$$

and restricting this to Ker ε_1 , we obtain $2d\nu|_{\mathfrak{a}\cap\mathfrak{s}_1}$.

Example. Consider $G = O_{2n,2n}$ realized as the group of all $2n \times 2n$ real matrices preserving the split symmetric form $\begin{pmatrix} 0 & I_{2n} \\ I_{2n} & 0 \end{pmatrix}$. Then $P = LN = GL_{2n}(\mathbb{R}) \land \text{Skew}_{2n}(\mathbb{R})$. More precisely,

$$L = \left\{ \begin{pmatrix} A & 0 \\ 0 & A^{t^{-1}} \end{pmatrix} : A \in GL_{2n}(\mathbb{R}) \right\}$$

and

$$N = \left\{ \begin{pmatrix} I_{2n} & 0\\ B & I_{2n} \end{pmatrix} : B + B^t = 0 \right\}.$$

Then

$$\mathfrak{a} = \{ \operatorname{diag}(a_1, a_1, a_2, a_2, \dots, a_n, a_n, \\ -a_1, -a_1, -a_2, -a_2, \dots, -a_n, -a_n), a_i \in \mathbb{R} \}$$

is the toral subalgebra of \mathfrak{g} (and $\mathfrak{l})$ described in the preceding subsection. We can take

$$y_1 = \begin{pmatrix} 0_{2n} & B_1 \\ 0 & 0_{2n} \end{pmatrix}$$
, where $B_1 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

The Lie algebra \mathfrak{s}_1 of the stabilizer $S_1 = \operatorname{Stab}_L y_1$ can be written as

$$\mathfrak{s}_1 = \left\{ \begin{pmatrix} A & 0 \\ 0 & -A^t \end{pmatrix} : A = \begin{pmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{pmatrix}, A_{11} \in \mathfrak{sl}_2, A_{22} \in \mathfrak{gl}_{2n-2} \right\}$$

It is a codimension 1 subalgebra of the parabolic subalgebra q of \mathfrak{gl}_{2n} , where $q = (\mathfrak{gl}_2 + \mathfrak{gl}_{2n-2}) + \mathbb{R}^{2,2n-2}$.

Remark. In this example $\nu = \frac{1}{2}$ tr, d = 2 and $e^{2d\nu} = (det)^2$.

2. Minimal representation of G

If χ is a character of \mathfrak{l} , we write π_{χ} for the (unnormalized) induced representation $\operatorname{Ind}_{\overline{P}}^{G}(\chi)$. These representations were studied in [S3] in the "compact" picture, by algebraic methods. Among the results established there was the existence of a finite number of "small", unitarizable, spherical subrepresentations, which occur for the following values of χ

$$\chi_j = e^{-jd\nu}, \ j = 1, \dots, n-1.$$

In this paper we use analytical methods, and work primarily with the "non-compact" picture, which is the realization of π_{χ} on $C^{\infty}(N)$, via the Gelfand-Naimark decomposition

$$G \approx NP$$
.

In fact, using the exponential map we can identify \mathfrak{n} and N, and realize π_{χ} on $C^{\infty}(\mathfrak{n})$.

We will show that the unitarizable subrepresentation of π_{χ_1} admits a natural realization on the Hilbert space $L^2(\mathcal{O}_1, d\mu)$. Since there is no obvious action of G on this space, we have to proceed in an indirect fashion. The key is an explicit realization of the spherical vector σ_{χ_1} .

2.1. The Bessel function. We let *d*, *e* be the root multiplicities of $\Sigma(\mathfrak{t}, \mathfrak{k})$ as in previous section, and define

$$\tau_G = \tau = (d - e - 1)/2$$

as in the introduction.

Let K_{τ} be the K-Bessel function on $(0, \infty)$ satisfying

$$z^{2}K_{\tau}'' + zK_{\tau}' - (z^{2} + \tau^{2})K_{\tau} = 0.$$
⁽¹⁾

Put $\phi_{\tau}(z) = \frac{K_{\tau}(\sqrt{z})}{(\sqrt{z})^{\tau}}$, then ϕ_{τ} satisfies the differential equation

$$D\phi_{\tau} = 0$$
, where $D\phi = 4z\phi'' + 4(\tau + 1)\phi' - \phi$. (2)

We lift ϕ_{τ} to an *M*-invariant function g_{τ} on \mathcal{O}_1 , by defining

$$g_{\tau}(y) = \phi_{\tau}(-\langle y, \theta y \rangle) = \frac{K_{\tau}(|y|)}{|y|^{\tau}}.$$
(3)

Remark. If d = e (as is the case for $G = Sp_{2n}(\mathbb{C})$ or $Sp_{n,n}$), then $\tau = -\frac{1}{2}$ and

$$g_{\tau}(y) = |y|^{1/2} K_{-1/2}(|y|) = |y|^{1/2} \frac{\exp(-|y|)}{|y|^{1/2}} = e^{-|y|}.$$

If d = e + 1 (this is true for $GL_{2n}(\mathbf{k})$, $\mathbf{k} = \mathbb{R}$, \mathbb{C} or \mathbb{H}), then

$$g_{\tau}(y) = K_0(|y|).$$

Proposition 2.1. (1) g_{τ} is a (square-integrable) function in $L^2(\mathcal{O}_1, d\mu_1)$. (2) The measure $g_{\tau}d\mu_1$ defines a tempered distribution on $\overline{\mathfrak{n}}$.

Proof. (1) We define

$$\mathcal{O}' \stackrel{\text{def}}{=} \{ y' \in \mathcal{O}_1 : |y'| = 1 \}.$$

Then \mathcal{O}' is compact; the map

$$\mathcal{O}' \times (0, \infty) \ni (y', w) \longmapsto wy' \in \mathcal{O}_1$$

is a diffeomorphism, and the measure $d\mu_1$ can be decomposed as a product

$$d\mu_1(wy') = d\mu'(y')d\mu''(w)$$

We now determine the explicit form of $d\mu''(w)$.

Define $h = \sum_{i=1}^{n} h_i$, then $(\operatorname{ad} h)y = -2y$ for any $y \in \overline{\mathfrak{n}}$. We take $y \in \mathcal{O}_1, z > 0, a = \ln z$ and calculate

$$d\mu_1(zy) = d\mu_1\left(\exp\left(-a\frac{h}{2}\right) \cdot y\right) = e^{-2d\nu(-\frac{ah}{2})}d\mu_1(y)$$

= $e^{dna}d\mu_1(y) = z^{dn}d\mu_1(y).$

Therefore, for z > 0

$$d\mu_1(zy) = z^{dn} d\mu_1(y) \tag{4}$$

and it follows that $d\mu''(zw) = z^{dn}d\mu''(w)$, and so, up to a scalar multiple,

$$d\mu''(w) = w^{dn-1}dw,$$

where dw is the Lebesgue measure.

We can now calculate

$$\int_{\mathcal{O}_1} |g_{\tau}(y)|^2 d\mu_1(y) = \int_0^\infty \int_{\mathcal{O}'} \frac{K_{\tau}(w)^2}{w^{2\tau}} d\mu'(y') w^{dn-1} dw$$
$$= c \int_0^\infty \frac{K_{\tau}(w)^2}{w^{2\tau}} w^{dn-1} dw, \tag{5}$$

where $c = \mu'(\mathcal{O}')$ is a positive constant. The function $K_{\tau}(w)$ has a pole of order τ at 0 (or, in case of $\tau = 0$, a logarithmic singularity at 0), and it decays exponentially as $w \to \infty$ [W, 3.71.15]. Hence $w^{-2\tau}K_{\tau}(w)^2$ has a pole of order

$$4\tau = 2(d - e - 1) \le 2d - 2 < dn - 1$$

(recall that we require $n \ge 2$). Thus the integrand in (5) is non-singular and decays exponentially as $w \to \infty$. Therefore, the integral (5) converges and $g_{\tau}(y) \in L^2(\mathcal{O}_1, d\mu_1)$.

(2) From the calculation in (1), we see that $g_{\tau}(y) \in L^{1}_{loc}(\mathcal{O}_{1}, d\mu_{1})$ and has exponential decay at ∞ (i.e., as $|y| \to \infty$). This implies the result. \Box

We can now define the Fourier transform of g_{τ} ,

$$\Phi = \widehat{g_\tau d\mu_1}$$

as a (tempered) distribution on n. The key result is the following

Proposition 2.2. Φ is a multiple of the spherical vector σ_{χ_1} .

The proof of this proposition will be given over the next two subsections.

2.2. Characterization of spherical vectors. For $\phi : \mathfrak{n} \to \mathfrak{n}$, let $\xi(\phi)$ denote the corresponding vector field:

$$\xi(\phi) f(x) = \left. \frac{d}{dt} f(x + t\phi(x)) \right|_{t=0} \text{ for } f: \mathfrak{n} \to \mathbb{C}$$

Then we have the following formulas for the action of π_{χ} on $C^{\infty}(\mathfrak{n})$:

- for $x_0 \in \mathfrak{n}, \pi_{\chi}(x_0) = \xi(x_0),$
- for $h_0 \in l$, $\pi_{\chi}(h_0) = \chi(h_0) \xi([h_0, x])$,
- for $y_0 \in \overline{\mathfrak{n}}, \pi_{\chi}(y_0) = \chi[x, y_0] \frac{1}{2}\xi([h, x])$, where $h = [x, y_0]$.

We need a Lie algebra characterization of σ_{χ} :

Lemma 2.3. The space of $\pi_{\chi}(\mathfrak{k})$ -invariant distributions on \mathfrak{n} is 1-dimensional (and spanned by σ_{χ}).

Proof. It is well known (and easy to prove) that the only distributions on \mathbb{R}^n , which are annihilated by $\frac{\partial}{\partial x_i}$, i = 1, ..., n are the constants. More generally, we can replace \mathbb{R}^n by a manifold, and $\left\{\frac{\partial}{\partial x_i}\right\}$ by any set of vector fields which span the tangent space at each point of the manifold.

For $\chi = 0$, the formulas above show that $\pi_0(\mathfrak{g})$ acts by vector fields on $C^{\infty}(\mathfrak{n})$. Moreover, using the decomposition $G = K\overline{P}$, we see that $\pi_0(\mathfrak{k})$ is a spanning family of vector fields. Thus the result follows in this case.

For general χ , if *T* is a $\pi_{\chi}(\mathfrak{k})$ -invariant distribution, then $T/\sigma_{\chi} = T\sigma_{-\chi}$ is $\pi_0(\mathfrak{k})$ -invariant, and hence a constant.

Proposition 2.4. Let T be an M-invariant distribution on n such that

$$\pi_{\chi}(y + \theta y)T = 0$$
 for some $y \neq 0$ in $\overline{\mathfrak{n}}$

then T is a multiple of the spherical vector σ_{χ} .

Proof. The *M*-invariance of *T* implies that

$$\pi_{\chi}(\mathfrak{m})T = 0$$

Since m is a maximal subalgebra of \mathfrak{k} , m and $y + \theta y$ generate \mathfrak{k} as a Lie algebra. Thus

$$\pi_{\gamma}(\mathfrak{k})T = 0$$

and the result follows from the previous lemma.

2.3. The *K***-invariance of the Bessel function.** We now turn to the proof of Proposition 2.2. To simplify notation, we will write π instead of π_{χ_1} . Since Φ is clearly *M*-invariant, by Proposition 2.4 it suffices to show

$$\pi(y_1 + \theta y_1)\Phi = 0$$

for $y_1 \in \overline{\mathfrak{n}}$. We will prove this through a sequence of lemmas.

It is convenient to introduce the following notation: if g_1 and g_2 are functions on \mathcal{O}_1 , we define

$$(g_1, g_2) = \int_{\mathcal{O}_1} g_1(y) g_2(y) d\mu_1(y)$$

provided the integral converges.

If g is a function on \mathcal{O}_1 and $h \in \mathfrak{l}$, then the action of h on g is given by

$$h \cdot g(y) \stackrel{\text{def}}{=} \left. \frac{d}{dt} g(e^{th} \cdot y) \right|_{t=0}.$$

In the computation below, we shall work with the expressions of the type

$$\left. \left(\frac{d}{dt} \int_{\mathcal{O}_1} g(e^{th} \cdot y) d\mu(y) \right) \right|_{t=0}.$$

To justify differentiation under the integral sign, we need to impose the standard conditions on g (e.g. [Ke, p.170]), as follows.

Define a class of functions $\mathcal{I} \subset C^{\infty}(\mathcal{O}_1)$, given by the following conditions: a smooth function g belongs to \mathcal{I} if

- $g \in L^1(\mathcal{O}_1, d\mu_1)$ and
- for any $h \in l$ we can find c > 0 and $G(y) \in L^1(\mathcal{O}_1, d\mu_1)$, such that

$$\left| \frac{d}{dt} g(e^{th} \cdot y) \right|_{t=t_0} \le G(y)$$

for all $y \in \mathcal{O}_1$ and $|t_0| < c$.

Lemma 2.5. Suppose g_1, g_2 are smooth functions on \mathcal{O}_1 , such that $g_1g_2 \in \mathcal{I}$. Then

$$(h \cdot g_1, g_2) + (g_1, h \cdot g_2) = 2d\nu(h)(g_1, g_2).$$
(6)

Proof. Using the *L*-equivariance of $d\mu_1$, we obtain

$$\int_{\mathcal{O}_1} g_1(e^{th} y) g_2(e^{th} y) \, d\mu_1 = e^{2td\nu(h)} \int_{\mathcal{O}_1} g_1 g_2 \, d\mu_1.$$

Under the assumptions of the lemma, we can differentiate this identity in t, to get

$$\int_{\mathcal{O}_1} h \cdot (g_1 g_2) d\mu_1 = 2d\nu(h) \int_{\mathcal{O}_1} g_1 g_2 d\mu_1.$$

By the Leibnitz rule, the result follows.

More generally, if g_1 , g_2 are functions on $n \times O_1$, then (g_1, g_2) is a function on n. In this notation, for g in $L^1(O_1, d\mu_1)$, the Fourier transform of $gd\mu_1$ is given by the formula

$$\widehat{gd\mu_1} = (e^{-i\langle x,y\rangle},g).$$

Lemma 2.6. Let $g \in L^1(\mathcal{O}_1, d\mu_1)$ be a smooth function on \mathcal{O}_1 , such that

$$e^{-i\langle x,y\rangle}g\in\mathcal{I}.$$

Suppose $f = (e^{-i\langle x, y \rangle}, g)$, then

$$\pi(y_1)f = -\frac{1}{2}(e^{-i\langle x, y \rangle}, h \cdot g(y)), \text{ where } h = [x, y_1].$$

Proof. By the formula for the action of $\pi(y_1)$, we get

$$-2 (\pi(y_1)f + d\nu(h)f) = \xi ([h, x]) \cdot (e^{-i\langle x, y \rangle}, g)$$

$$= \frac{d}{dt} (e^{-i\langle x+t[h, x], y \rangle}, g)|_{t=0}$$

$$= \frac{d}{dt} (e^{-i\langle x, y-t[h, y] \rangle}, g)|_{t=0}$$

$$= -(h \cdot e^{-i\langle x, y \rangle}, g)$$

$$= (e^{-i\langle x, y \rangle}, h \cdot g) - 2d\nu(h)(e^{-i\langle x, y \rangle}, g).$$

where we have used the previous lemma, and the relation

$$\langle x + t[h, x], y \rangle = \langle x, y \rangle + t \langle [h, x], y \rangle = \langle x, y \rangle - t \langle x, [h, y] \rangle = \langle x, y - t[h, y] \rangle .$$

The result follows.

The pairing $-\langle \cdot, \theta \cdot \rangle$ gives a positive definite *M*-invariant inner product on \overline{n} , and we now obtain the following

Lemma 2.7. Suppose that $g(y) = \phi(-\langle y, \theta y \rangle)$ for some smooth ϕ on $(0, \infty)$, and $e^{-i\langle x, y \rangle}g \in \mathcal{I}$. Put $f(x) = (e^{-i\langle x, y \rangle}, g)$, as before. Then

$$\pi(y_1)f = \left(e^{-\iota\langle x, y\rangle}, \langle x, [[\theta y, y_1], y]\rangle \phi'(-\langle y, \theta y\rangle)\right).$$

Proof. Writing $h = [x, y_1]$ as in the previous lemma, we get

$$h \cdot g(y) = \frac{d}{dt} \phi \left(-\langle y + t[h, y], \theta(y + t[h, y]) \rangle \right)|_{t=0}$$

= $\frac{d}{dt} \phi \left(-\langle y, \theta y \rangle - 2t \langle \theta y, [h, y] \rangle + O(t^2) \right)|_{t=0}$
= $-2 \langle \theta y, [h, y] \rangle \phi' \left(-\langle y, \theta y \rangle \right).$

Since

$$\langle \theta y, [h, y] \rangle = \langle \theta y, [[x, y_1], y] \rangle = \langle x, [[\theta y, y_1], y] \rangle,$$

the result follows.

The key lemma is the following computation

Lemma 2.8. Let ϕ and f be as in the previous lemma, and suppose for $x \in \mathfrak{n}$

$$e^{-i\langle x,y\rangle}\phi(-\langle y,\theta y\rangle) \in \mathcal{I}, \ e^{-i\langle x,y\rangle}\phi'(-\langle y,\theta y\rangle) \in \mathcal{I}.$$
 (7)

Then we have

$$\pi(y_1 + \theta y_1) f(x) = \left(e^{-i\langle x, y \rangle}, i \langle \theta y_1, y \rangle (D\phi) \left(-\langle y, \theta y \rangle \right) \right), \tag{8}$$

where the differential operator D is given by the formula (2), i.e.

$$(D\phi) \left(-\langle y, \theta y \rangle\right) = 4 \left(-\langle y, \theta y \rangle\right) \phi'' + 2(d+1-e)\phi' - \phi.$$
(9)

Proof. Choose a basis l_j of l and define functions $c_j(y)$ by the formula $[\theta y, y_1] = \sum_j c_j(y)l_j$. Then by the previous lemma

$$\pi(y_1)f = \sum_j (e^{-i\langle x, y \rangle}, \langle x, [l_j, y] \rangle c_j \phi') = i \sum_j \frac{d}{dt} \left(e^{-i\langle x, y+t[l_j, y] \rangle}, c_j \phi' \right) \Big|_{t=0}$$
$$= i \sum_j (l_j \cdot e^{-i\langle x, y \rangle}, c_j \phi').$$

Differentiation in this calculation is justified, because $e^{-i\langle x, y \rangle} \phi'(-\langle y, \theta y \rangle) \in \mathcal{I}$. Applying (6) to the last expression, we can write

$$\pi(y_1)f = -i\sum_j \left(e^{-i\langle x, y\rangle}, -2d\nu(l_j)c_j\phi' + c_jl_j \cdot \phi' + \phi'l_j \cdot c_j\right).$$
(10)

We now calculate each term in this expression.

A. Dvorsky, S. Sahi

• First we have

$$\sum_{j} \nu(l_j) c_j \phi' = \nu([\theta y, y_1]) \phi'.$$

Since ν is a real character of \mathfrak{l} , it vanishes on $\mathfrak{l} \cap \mathfrak{k}$ and we have $\nu([\theta y, y_1]) = \nu([\theta y_1, y])$. Recall that \mathfrak{n} and $\overline{\mathfrak{n}}$ are irreducible \mathfrak{l} -modules. Therefore, $\nu([\theta y_1, y]) = k \langle \theta y_1, y \rangle$ for some constant $k \neq 0$, independent of *y*. Setting $y = y_1$, we get $\langle \theta y_1, y_1 \rangle = \langle -x_1, y_1 \rangle = -1$. Hence $k = -\nu([\theta y_1, y_1]) = \mathfrak{l}$, and therefore

$$-\sum_{j} 2d\nu(l_j)c_j\phi' = -2d \langle \theta y_1, y \rangle \phi'.$$
(11)

• Next we compute

$$\sum_{j} c_{j}l_{j} \cdot \phi' = [\theta y, y_{1}] \cdot \phi'$$
$$= \frac{d}{dt} \phi' \left(-\langle y + t[[\theta y, y_{1}], y], \theta(y + t[[\theta y, y_{1}], y]) \rangle \right) \Big|_{t=0}$$
$$= -2 \langle y, [[y, \theta y_{1}], \theta y] \rangle \phi'' \left(-\langle y, \theta y \rangle \right)$$

Since y is a \mathfrak{k} -conjugate to a root vector, there is a scalar k' independent of y such that $[[y, \theta y], y] = k' \langle y, \theta y \rangle y$. Setting $y = y_1$ we get $\langle y_1, \theta y_1 \rangle = -1$,

$$[[y_1, -x_1], y_1] = -2y_1$$

and k' = 2. Also $-\langle y, [[y, \theta y_1], \theta y] \rangle = \langle [y, \theta y], [y, \theta y_1] \rangle = \langle [[y, \theta y], y], \theta y_1 \rangle$. Hence

$$\sum_{j} c_{j} l_{j} \cdot \phi' = 4 \langle y, \theta y \rangle \langle \theta y_{1}, y \rangle \phi''.$$
(12)

• Next we note that $\sum_{j} l_j \cdot c_j$ is independent of the basis l_j , so we may assume that

$$\theta l_j = \pm l_j \text{ and } \langle l_j, -\theta l_k \rangle = \delta_{jk}.$$

Then $c_j(y) = \langle [\theta y, y_1], -\theta l_j \rangle$ and

$$\sum_{j} l_{j} \cdot c_{j} = \sum_{j} \left\langle [\theta[l_{j}, y], y_{1}], -\theta l_{j} \right\rangle$$
$$= \sum_{j} \left\langle y_{1}, [\theta[l_{j}, y], \theta l_{j}] \right\rangle = - \left\langle y_{1}, \Omega \theta y \right\rangle.$$

Here $\Omega = \sum_j \operatorname{ad}(\theta l_j)^2 = \Omega_{\mathfrak{l}} - 2\Omega_{\mathfrak{k} \cap \mathfrak{l}}$, where the Casimir elements are obtained by using dual bases with respect to \langle , \rangle .

To continue, we need the following lemma:

Lemma 2.9. Ω acts on \mathfrak{n} by the scalar k'' = 2 - 2e.

Proof. When e = 1 it's easy to see that the operator Ω acts by 0. Indeed, in this case \mathfrak{g} is a complex semisimple Lie algebra and for each basis element $l_j \in \mathfrak{k} \cap \mathfrak{l}$ there exists a basis element $l'_j = \sqrt{-1}l_j \in \mathfrak{p} \cap \mathfrak{l}$. Then $[l_j, [l_j, x]] + [l'_j, [l'_j, x]] = 0$ and k'' = 0.

When e = 0, \mathfrak{g} is split and simply laced, and \mathfrak{l} is the split real form of a complex reductive algebra $\mathfrak{l}_{\mathbb{C}}$. Take a root vector $x_{\lambda} \in \mathfrak{g}_{\lambda}$, where λ is any positive root in \mathfrak{n} . For any positive root α of $\mathfrak{l}_{\mathbb{C}}$ we fix $e_{\alpha} \in \mathfrak{l}_{\alpha}$ and set $l_{\alpha} = e_{\alpha} + \theta e_{\alpha} \in \mathfrak{k} \cap \mathfrak{l}$ and $l'_{\alpha} = e_{\alpha} - \theta e_{\alpha} \in \mathfrak{p} \cap \mathfrak{l}$. Then the collection of all l_{α} , l'_{α} together with the orthonormal basis of a Cartan subalgebra \mathfrak{f} of \mathfrak{l} forms a basis of \mathfrak{l} . Observe that

$$[l_{\alpha}, [l_{\alpha}, x_{\lambda}]] + [l'_{\alpha}, [l'_{\alpha}, x_{\lambda}]] = [e_{\alpha}, [e_{\alpha}, x_{\lambda}]] + [e_{-\alpha}, [e_{-\alpha}, x_{\lambda}]] = 0,$$

since $x_{\lambda} \in \mathfrak{g}_{\lambda}$ and neither $\lambda + 2\alpha$ nor $\lambda - 2\alpha$ is a root of the simply laced algebra $\mathfrak{g}_{\mathbb{C}}$.

We choose a basis $\{u_i\}$ of \mathfrak{f} , and denote the elements of the dual (with respect to \langle , \rangle) basis by \widetilde{u}_i . Then

$$\Omega x_{\lambda} = \sum_{i} [u_{i}, [\widetilde{u}_{i}, x_{\lambda}]] = \langle \lambda, \lambda \rangle \, x_{\lambda} = 2x_{\lambda}.$$

In the remaining two cases $\mathfrak{k} \cap \mathfrak{l}$ acts on \mathfrak{n} irreducibly, therefore Ω automatically acts by a scalar and it suffices to compute $\sum_{j} [l_j, [l_j, x_1]]$. For e = 3 we have $G = GL_{2n}(\mathbb{H}), L = GL_n(\mathbb{H}) \times GL_n(\mathbb{H})$ and $\mathfrak{n} = \mathbb{H}^{n \times n}$. The computation for this group is similar to the case of $G = GL_{2n}(\mathbb{R})$. We reduce the calculation to the summation over the diagonal subalgebra of \mathfrak{l} and obtain

$$\Omega x_{\lambda} = \langle \lambda, \lambda \rangle x_{\lambda} + 3 \left(\sqrt{-1}\lambda, \sqrt{-1}\lambda \right) x_{\lambda} = -4x_{\lambda}$$

Finally, for e = 2 ($G = Sp_{n,n}$), a direct evaluation of $\sum_{j} [l_j, [l_j, x_1]]$ gives k'' = -2.

Therefore, we get

$$\sum_{j} \phi' l_j \cdot c_j = -2(1-e) \langle \theta y_1, y \rangle \phi'.$$
(13)

• Finally, we have

$$\pi(\theta y_1) f = \frac{d}{dt} \left(e^{-i\langle x + t\theta y_1, y \rangle}, \phi \right) \Big|_{t=0} = -i \left(e^{-i\langle x, y \rangle}, \langle \theta y_1, y \rangle \phi \right).$$
(14)

Putting the formulas (11)–(14) together, we deduce the lemma.

A. Dvorsky, S. Sahi

Proof of Proposition 2.2. Recall that we study $\phi_{\tau}(z) = \frac{K_{\tau}(\sqrt{z})}{(\sqrt{z})^{\tau}}$, its lift

 g_{τ} to the radial function on \mathcal{O}_1 ,

$$g_{\tau}(\mathbf{y}) = \phi_{\tau}(-\langle \mathbf{y}, \theta \mathbf{y} \rangle) = \frac{K_{\tau}(|\mathbf{y}|)}{|\mathbf{y}|^{\tau}}$$

and its Fourier transform $\Phi(x) = (e^{-i\langle x, y \rangle}, g_{\tau})$. By Proposition 2.4 it suffices to check that $\pi(y_1 + \theta y_1)\Phi = 0$. This identity would follow immediately from Lemma 2.8, because $D\phi_{\tau} = 0$ by formula (2) and then the desired result follows from (8).

To complete the proof we have to verify the assumptions (7). In Subsection 2.1 we proved that $g_{\tau} \in L^1(\mathcal{O}_1, d\mu_1)$. It is easy to verify (using the standard facts about the derivatives of K_{τ} from [W]), that the lifts to \mathcal{O}_1 of the functions $\phi'_{\tau}(z)$ and $\phi''_{\tau}(z)$ (we denote them by $g'_{\tau}(y)$ and $g''_{\tau}(y)$) both belong to $L^1(\mathcal{O}_1, d\mu_1)$. Observe also that $\phi_\tau(z), \phi'_\tau(z), \phi''_\tau(z)$ are all monotone on $(0, \infty)$.

Moreover, since all these functions tend to zero exponentially as $|y| \rightarrow \infty$, the functions $A(y)g_{\tau}(y)$, $A(y)g'_{\tau}(y)$, $A(y)g''_{\tau}(y)$ all belong to $L^{1}(\mathcal{O}_{1}, d\mu_{1})$, for any A(y) bounded in the neighbourhood of y = 0 and growing (at most) polynomially with respect to |y| as $|y| \to \infty$.

Fix $h \in I$, $x \in n$ and choose c > 0 sufficiently small, such that for all $y \in \mathcal{O}_1$ and |t| < c

$$\left|\left\langle e^{th} \cdot y, \theta(e^{th} \cdot y)\right\rangle\right| \ge \frac{\left|\left\langle y, \theta y\right\rangle\right|}{2}$$

We can then estimate the derivative:

$$\left| \frac{d}{dt} \left(e^{-i \langle x, e^{th} \cdot y \rangle} \phi_{\tau} \left(- \langle e^{th} y, \theta e^{th} y \rangle \right) \right) \right|$$

$$\leq \left| A_1(y) \phi_{\tau} \left(|y|^2 / 2 \right) \right| + \left| A_2(y) \phi_{\tau}' \left(|y|^2 / 2 \right) \right|,$$

for all $y \in \mathcal{O}_1$ and |t| < c, where $A_1(y), A_2(y)$ are some functions of polynomial growth. From the discussion above, the right-hand side of this inequality is an L^1 -function on \mathcal{O}_1 , hence $e^{-i\langle x, y \rangle}g_{\tau} \in \mathcal{I}$. Proceeding in the same manner, we deduce that $e^{-i\langle x, y \rangle}g'_{\tau} \in \mathcal{I}$.

2.4. Proof of Theorem 0.1. Denote by J the space of the induced representation $\pi_1 = \text{Ind}_{\overline{P}}^G(e^{-dv})$. By the Gelfand-Naimark decomposition and the exp map, **J** can be viewed as a subspace of $C^{\infty}(\mathfrak{n})$. Then for $l \in L$ and $\eta \in \mathbf{J}$ we have

$$\pi_1(l)\eta(x) = e^{-d\nu}(l)\eta(l^{-1} \cdot x).$$

It was proved in [S3] that the (\mathfrak{g}, K) -module **J** has a unitarizable spherical (\mathfrak{g}, K) -submodule *V*, which we also regard as a subspace of $C^{\infty}(\mathfrak{n})$.

Remark. It is possible to give a direct description of the elements of the "abstract" Hilbert space \mathcal{H} , where \mathcal{H} is the Hilbert space closure of V with respect to the (\mathfrak{g}, K) -invariant norm on V. For that purpose we use the "compact" realization of π_1 on $C^{\infty}(K/M)$ from [S3]. It was shown that π_1 is a representation of ladder type, with all its K-types { $\alpha_m \mid m \in \mathbb{N}$ } lying on a single line, α_1 being a one-dimensional K-type. The restriction \langle , \rangle_m of a π_1 -invariant Hermitian form to any K-type α_m is a multiple of the $L^2(K)$ -inner product on V, and from the explicit formulas in [S3] it follows that

$$q_m \stackrel{\text{def}}{=} \frac{\langle , \rangle_m}{\langle , \rangle_1} = O(m^C)$$

for some constant C > 1, which can be expressed in terms of parameters d, e and n. Thus we can identify \mathcal{H} with the Hilbert space $L^2(\mathbb{N}, \{q_m\})$, where the constant q_m gives the weight of the point $m \in \mathbb{N}$. That is, any element of \mathcal{H} can be viewed as an M-equivariant function on K, such that its sequence of Fourier coefficients belongs to $L^2(\mathbb{N}, \{q_m\})$. In particular $L^2(\mathbb{N}, \{q_m\}) \subset l^2(\mathbb{N})$, and the elements of \mathcal{H} all lie in $L^2(K)$.

We write **H** for the space of those tempered distributions on n which are Fourier transforms of $\psi d\mu_1$ for some $\psi \in L^2(\mathcal{O}_1, d\mu_1)$. If η is the Fourier transform of a distribution of the form $\psi d\mu_1$, i.e.,

$$\eta(x) = \int_{\mathcal{O}_1} e^{-i\langle x, y \rangle} \psi(y) d\mu_1(y) = \left(e^{-i\langle x, y \rangle}, \psi(y) \right),$$

then

$$\begin{aligned} \pi_1(l)\eta(x) &= e^{-d\nu}(l)\eta(l^{-1} \cdot x) = \int_{\mathcal{O}_1} e^{-i\langle l^{-1} \cdot x, y \rangle} \psi(y) e^{-d\nu}(l) d\mu_1(y) \\ &= \int_{\mathcal{O}_1} e^{-i\langle l^{-1}x, l^{-1}y \rangle} \psi(l^{-1} \cdot y) e^{-d\nu}(l) d\mu_1(l^{-1} \cdot y) \\ &= (e^{-i\langle x, y \rangle}, e^{d\nu}(l) \psi(l^{-1} \cdot y)). \end{aligned}$$

It follows from the calculation above that *P* acts *unitarily* on **H** (it is convenient to identify this action with its realization on $L^2(\mathcal{O}_1, d\mu_1)$ via the Fourier transform). We denote this unitary representation of *P* by π' . Observe that (π', \mathbf{H}) is an irreducible representation of *P*.

According to Proposition 2.1, $\Phi(x) = (e^{-i\langle x, y \rangle}, |y|^{-\tau} K_{\tau}(|y|))$ belongs to **H**.

Theorem 2.10. *V* is a dense subspace of **H**, and the restriction of the norm is (\mathfrak{g}, K) -invariant.

Proof. Let $C^{\infty}(K)_V$ be the subspace of $C^{\infty}(K)$, consisting of those smooth functions on K, whose K-isotypic components belong to V. Since V is a submodule of $\mathbf{J}, C^{\infty}(K)_V$ is obviously G-invariant.

Denote by $\mathcal{C}(G)$ the convolution algebra of smooth L^1 functions on G = PK, and consider

$$\mathbf{W} = \pi_1(\mathcal{C}(G))\Phi \subset C^\infty(K)_V$$

So all elements of **W** are continuous functions on *K*, hence continuous on *G*, and therefore are determined by their restrictions to *N*. Moreover, $\mathbf{W} = \pi_1(\mathcal{C}(PK))\Phi$ and *K* fixes Φ , therefore

$$\mathbf{W} = \pi_1(\mathcal{C}(P))\Phi = \pi'(\mathcal{C}(P))\Phi.$$

This shows that **W** is a $\pi'(P)$ -invariant subspace of **H**, and from the irreducibility of π' we conclude that **W** is dense in **H**.

We can now put two $\pi_1(P)$ -invariant norms on **W** – one from **H** and another from *V*, as follows. If $f = \sum c_m v_m$, with v_m in the *K*-isotypic component with highest weight α_m (occurring in *V*) and $||v_m||_{L^2(K)} = 1$, then

$$\|f\|_{V}^{2} = \sum |c_{m}|^{2} q_{m}.$$
 (15)

Since f is smooth, it follows that $|c_m|$ decays rapidly, so the series in (15) converges, thus giving a $\pi_1(P)$ -invariant norm on **W**.

Then it follows from [P] (cf. [S1, p.417]), that we can find a (dense) $\mathcal{C}(P)$ -invariant subspace $\mathbf{W}' \subset \mathbf{W}$, such that these two forms are proportional on \mathbf{W}' . Considering the closure of \mathbf{W}' we obtain an isometric *P*-invariant imbedding of **H** into \mathcal{H} .

Then **W** is:

(1) a G-invariant subspace of the irreducible module \mathcal{H} , hence dense in \mathcal{H} ;

(2) a dense subspace of the Hilbert space **H**.

It follows that $\mathbf{H} = \mathcal{H}$.

This concludes the proof of Theorem 0.1.

3. Tensor powers of π_1

3.1. Restrictions to *P*. In the previous section we constructed a unitary representation π_1 of *G* acting on the Hilbert space $L^2(\mathcal{O}_1, d\mu_1)$, where \mathcal{O}_1 is the minimal *L*-orbit in a non-Euclidean Jordan algebra *N*. Define the *k*-th tensor power representation

$$\Pi_k = \pi_1^{\otimes k} (2 \le k < n).$$

As we shall show, the techniques developed in [DS] allow us to establish a duality between the spectrum of this tensor power and the spectrum of

a certain homogeneous space. We omit the proofs of the several propositions below, because the proofs of the corresponding statements from [DS] can be used without any substantial modification.

Observe that the orbit \mathcal{O}_k is dense in $\underbrace{\mathcal{O}_1 + \mathcal{O}_1 + \ldots + \mathcal{O}_1}_{k \text{ times}}$. The repre-

sentation Π_k acts on $[L^2(\mathcal{O}_1, d\mu_1)]^{\otimes k} \simeq L^2(\mathcal{O}'_k, d\mu')$, where $\mathcal{O}'_k = \mathcal{O}_1^{\times k}$ and $d\mu'$ is the product measure on \mathcal{O}'_k . We fix a generic representative $\xi' = (\xi_1, \xi_2, \ldots, \xi_k) \in \mathcal{O}'_k$, such that

$$\xi = \xi_1 + \xi_2 + \ldots + \xi_k \in \mathcal{O}_k.$$

Denote by S'_k and S_k the isotropy subgroups of ξ' and ξ , respectively, with respect to the action of *L* on \mathcal{O}'_k and \mathcal{O}_k . Observe that the Lie algebras \mathfrak{s}'_k and \mathfrak{s}_k of S'_k and S_k , respectively, can be written as

$$\begin{aligned} \mathfrak{s}'_k &= (\mathfrak{h}_k + \mathfrak{l}_k) + \mathfrak{u}_k \\ \mathfrak{s}_k &= (\mathfrak{g}_k + \mathfrak{l}_k) + \mathfrak{u}_k. \end{aligned}$$

Here \mathfrak{l}_k , \mathfrak{g}_k and \mathfrak{h}_k are reductive, $\mathfrak{h}_k \subset \mathfrak{g}_k$ and \mathfrak{u}_k is a nilpotent radical common for both \mathfrak{s}'_k and \mathfrak{s}_k . Let G_k and H_k be the corresponding Lie groups.

Example. Take $G = O_{2n,2n}$ and k < n. Then $\xi_i = E_{2i-1,2i} - E_{2i,2i-1}$ $(1 \le i \le k), \xi = \sum_{i=1}^k \xi_i$ and

$$\mathfrak{s}_k = \left(\mathfrak{sp}_{2k}(\mathbb{R}) + \mathfrak{gl}_{2(n-k)}(\mathbb{R})\right) + \mathbb{R}^{2k,2(n-k)}.$$

Then $G_k = Sp_{2k}(\mathbb{R})$ and it's easy to check that $H_k = SL_2(\mathbb{R})^k$.

The following Lemma can be verified by direct calculation (cf. [DS, Lemma 2.1]).

Lemma 3.1. Let χ_{ξ} be the character of N corresponding to $\xi \in N^*$. Then

$$\Pi_k|_P = \operatorname{Ind}_{S'_k N}^P (1 \otimes \chi_{\xi}) = \operatorname{Ind}_{S_k N}^P \left(\left(\operatorname{Ind}_{S'_k}^{S_k} 1 \right) \otimes \chi_{\xi} \right) \quad (L^2 \text{-induction}).$$

Let $\gamma' = \text{Ind}_{H_k}^{G_k}$ 1 be the quasiregular representation of G_k on $L^2(G_k/H_k)$; then it can be decomposed using the Plancerel measure $d\mu$ for the reductive homogeneous space $X_k = G_k/H_k$ and the corresponding multiplicity function $m : \hat{G}_k \to \{0, 1, 2, ...\}$, i.e.,

$$\gamma' \simeq \int_{\widehat{G}_k}^{\oplus} m(\kappa) \kappa \, d\mu(\kappa).$$

Each irreducible representation κ of G_k can be extended to an irreducible representation κ^{\vee} of S_k , and the decomposition of the Lemma above can be

rewritten as

$$\Pi_{k}|_{P} = \int_{\widehat{G}_{k}}^{\oplus} m(\kappa)\Theta(\kappa) \, d\mu(\kappa), \qquad (16)$$

where $\Theta(\kappa) = \operatorname{Ind}_{S_k N}^P(\kappa^{\vee} \otimes \chi_{\xi}).$

Moreover, by Mackey theory all representations $\Theta(\kappa)$ are unitary irreducible representations of *P*, and $\Theta(\kappa') \simeq \Theta(\kappa'')$ if and only if $\kappa' \simeq \kappa''$.

3.2. Low-rank theory. In [DS] we extended the theory of low-rank representations ([Li]) to the conformal groups of euclidean Jordan algebras. Inspection of the argument in [DS] shows that the analogous theory can be developed in exactly the same manner for the conformal groups of *non-euclidean* Jordan algebras.

For any unitary representation η of G, we decompose its restriction $\eta|_N$ into a direct integral of unitary characters, where the decomposition is determined by a projection-valued measure on $\widehat{N} = N^*$. If this measure is supported on a single *non-open* L-orbit \mathcal{O}_m , $1 \leq m < n$ we call η a *low-rank representation*, and write rank $\eta = m$. Proceeding by induction on m, as in [Li], [DS, Sect 3], we can prove the following

Theorem 3.2. Let η be a low-rank representation of G. Write $\mathcal{A}(\eta, P)$ for the von Neumann algebra generated by $\{\eta(x) | x \in P\}$ and $\mathcal{A}(\eta, G)$ for the von Neumann algebra generated by $\{\eta(x) | x \in G\}$. Then $\mathcal{A}(\eta, G) = \mathcal{A}(\eta, P)$.

Proof of Theorem 0.2. Now consider the restriction of Π_k to *N*. Its restriction to *P* is given by the direct integral decomposition (16), and we can further restrict it to *N*. The rank of the induced representation $\Theta(\kappa) = \operatorname{Ind}_{S_kN}^P(\kappa^{\vee} \otimes \chi_{\xi})$ is *k* (the *N*-spectrum is supported on the *L*-orbit of ξ , i.e. \mathcal{O}_k). Therefore Π_k can be decomposed over the irreducible representations of *G* of rank *k*.

It follows from the theorem above that any two non-isomorphic representations from the spectrum of Π_k restrict to non-isomorphic irreducible representations of *P*. Hence the representation Π_k can be decomposed as

$$\Pi_{k} = \int_{\widehat{G}_{k}}^{\oplus} m(\kappa)\theta(\kappa) \, d\mu(\kappa), \tag{17}$$

where for almost every κ the unitary irreducible representation $\theta(\kappa)$ is obtained as the *unique* irreducible representation of *G* determined by the condition $\theta(\kappa)|_P = \Theta(\kappa)$.

Therefore, the map $\kappa \to \theta(\kappa)$ gives a (measurable) bijection between the spectrum of $\Pi_k = \pi^{\otimes k}$ and the unitary representations of G_k occurring in the quasiregular representation on $L^2(G_k/H_k)$.

Example. Take $G = E_{7(7)}$. It is the conformal group of the split exceptional real Jordan algebra N of dimension 27. Consider the tensor square of the

minimal representation π_1 of G (k = 2). Then $L = \mathbb{R}^* \times E_{6(6)}$, S'_2 is the stabilizer of y_1 and y_2 and S_2 is the stabilizer of $y_1 + y_2 \in \mathcal{O}_2$. One can see that in this case $\mathfrak{g}_2 = \operatorname{Stab}_{\mathfrak{so}(5,5)}(y_1 + y_2) = \mathfrak{so}(4, 5)$ and $\mathfrak{h}_2 = \operatorname{Stab}_{\mathfrak{so}(5,5)}(y_1) \cap \operatorname{Stab}_{\mathfrak{so}(5,5)}(y_2) = \mathfrak{so}(4, 4)$ (cf. [A, 16.7]). Hence the decomposition (17) establishes a duality between the representations of $E_{7(7)}$ occurring in $\Pi_2 = \pi_1 \otimes \pi_1$ and the unitary representations of Spin(4, 5) occurring in L^2 (Spin(4, 5)/Spin(4, 4)). The homogeneous space Spin(4, 5)/Spin(4, 4) is a (pseudo-riemannian) symmetric space of rank 1, and it is known to be multiplicity free. Therefore, $\pi_1 \otimes \pi_1$ has simple spectrum.

Similarly, for $G = E_7(\mathbb{C})$ we obtain a duality between $E_7(\mathbb{C})$ and the symmetric space $SO_9(\mathbb{C})/SO_8(\mathbb{C})$.

G	K/M	d	е	G_k/H_k for $2 \le k < n$
$GL_{2n}(\mathbb{R})$	$O_{2n}/(O_n \times O_n)$	1	0	$GL_k(\mathbb{R})/[GL_1(\mathbb{R})]^k$
$O_{2n,2n}$	$(O_{2n} \times O_{2n})/O_{2n}$	2	0	$Sp_{2k}(\mathbb{R})/[SL_2(\mathbb{R})]^k$
$E_{7(7)}$	SU_8/Sp_4	4	0	Spin(4,5)/Spin(4,4)
$O_{p+2, p+2}$	$[O_{p+2}]^2 / [O_1 \times O_{p+1}^2]$	р	0	
$Sp_n(\mathbb{C})$	Sp_n/U_n	1	1	$O_k(\mathbb{C})/[O_1(\mathbb{C})]^k$
$GL_{2n}(\mathbb{C})$	$U_{2n}/(U_n \times U_n)$	2	1	$GL_k(\mathbb{C})/[GL_1(\mathbb{C})]^k$
$O_{4n}(\mathbb{C})$	O_{4n}/U_{2n}	4	1	$Sp_{2k}(\mathbb{C})/[SL_2(\mathbb{C})]^k$
$E_7(\mathbb{C})$	$E_7/(E_6 \times U_1)$	8	1	$SO_9(\mathbb{C})/SO_8(\mathbb{C})$
$O_{p+4}(\mathbb{C})$	$O_{p+4}/(O_{p+2} \times U_1)$	р	1	
$Sp_{n,n}$	$(Sp_n \times Sp_n)/Sp_n$	2	2	$O_k^*/[O_1^*]^k$
$GL_{2n}(\mathbb{H})$	$Sp_{2n}/(Sp_n \times Sp_n)$	4	3	$GL_k(\mathbb{H})/[GL_1(\mathbb{H})]^k$

A. Groups associated to non-Euclidean Jordan algebras

References

- [A] Adams, J.F., Lectures on exceptional Lie groups, University of Chicago Press, Chicago 1996
- [BK] Braun, H. and Koecher, M., Jordan-Algebren, Springer, Berlin New York 1966
- [Br] Brylinski, R., Geometric Quantization of Real Minimal Nilpotent Orbits, preprint (math.SG/9811033)
- [DS] Dvorsky, A. and Sahi, S., Tensor products of singular representations and an extension of the θ -correspondence, Selecta Math. **4** (1998), 11–29
- [H] Huang, J.-S., Minimal representations, shared orbits and dual pair correspondences, Internat. Math. Res. Notices 1995, 309–323
- [Ke] Kestelman, H., Modern theories of integration, Clarendon Press, Oxford 1937

- [KS] Kostant, B. and Sahi, S., Jordan algebras and Capelli identities, Invent. Math. 112 (1993), 657–664
- [KW] Koranyi, A. and Wolf, J., Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math. 81 (1965), 265–288
- [Li] Li, J.-S., Singular unitary representations of classical groups, Invent. Math. 97 (1989), 237–255
- [Lo] Loos, O., Bounded symmetric domains and Jordan pairs, Mathematical Lectures, University of California, Irvine 1977
- [P] Poguntke, D., Unitary representations of Lie groups and operators of finite rank, Ann. of Math. (2) 140 (1994), 503–556
- [S1] Sahi, S., Explicit Hilbert spaces for certain unipotent representations, Invent. Math. 110 (1992), 409–418
- [S2] Sahi, S., Unitary representations on the Shilov boundary of a symmetric tube domain, Contemp. Math. v. 145 (1993), 275–286
- [S3] Sahi, S., Jordan algebras and degenerate principal series, J. reine angew. Math. 462 (1995), 1–18
- [T] Torasso, P., Méthode des orbites de Kirillov-Duflo et représentations minimales des groupes simples sur un corps local de caractéristique nulle, Duke Math. J. 90 (1997), 261–377
- [W] Watson, G., A treatise on the theory of Bessel functions, University Press, Cambridge 1922