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0. Introduction

To each real semisimple Jordan algebra, the Tits-Koecher-Kantor theory
associates a distinguished parabolic subgmup L N of a semisimple Lie
group G. The groupsP which arise in this manner are precisely those for
which N is abelian, andP is conjugate to its opposite.

Each non-operi-orbit @ on N* admits anL-equivariant measureu
which is unique up to scalar multiple. By Mackey theory, we obtain a natural
irreducible unitary representatiory of P, acting on the Hilbert space

Heo = L0, duw).
In this context, we wish to consider two problems:

1. Extendry to a unitary representation &.
2. Decompose the tensor produgts @ 7o @ e - - -

If the Jordan algebra is Euclidean (i.e. formally real) ti&&nP is the
Shilov boundary of a symmetric tube domain. In this case, the first problem
was solved in [S1], [S2], where it was shown that extends to a unitary
representation of a suitable covering group@f The second problem
was solved in [DS], where we established a correspondence between the
unitary representations @ occurring in the tensor product, and those of
a “dual” groupG’ acting on a certain reductive homogeneous space. This
correspondence agrees with theorrespondence in various classical cases,
and also gives a duality betwe&n and real forms of the Cayley projective
plane.

In this paper we start to consider these two problemsdor-Euclidean
Jordan algebras. The algebraic groundwork has already been accomplished
in [S3], however the analytical considerations are much more subtle, and
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here we only treat the case of the representatipe= 7, corresponding
to theminimal L-orbit O 1.

It turns out that in order for the first problem to have a positive solution,
one has to exclude certain Jordan algebras of rankhis is related to
the Howe-Vogan result on the non-existence of minimal representations for
certain orthogonal groups.

To each of the remaining Jordan algebras we attach a restricted root
systemX of rank n, wheren is the rank of the Jordan algebra. The root
multiplicities, d ande, of X play a decisive role in our considerations. For
the reader’'s convenience, we include a list of the corresponding gféups
and the multiplicities in the appendix.

For these groups, we show that extends to a spherical unitary rep-
resentation of5, and that the spherical vector is closely related toche
variable BesseK -function K, (z), where

d—e—-1
> .

The functionK, (z) can be characterized, up to a multiple, as the unique
solution of the modified Bessel equation

T =

2

Y+ - (14 5y =0

that decays (exponentially) as— oo; and, to us, one of the most delightful
aspects of the present consideration is the unexpected and uniform mannerin
which this classical differential equation emerges from the structure theory
of G.

More precisely, we establish the following result:

We identify N with its Lie algebran = Lie(N) via the exponential map.
We also fix an invariant bilinear form o, -) on g, which is a certain
multiple of the Killing form, normalized as in Definition 1.1 below. We use
this form to identifyN* with n = Lie(N). Fory in i, (—8y, y) is positive,
and we define

Iyl = V(=0y.y).

Theorem 0.1. ; extends to a unitary representation @fwith spherical
vector|y| " K- (|yD).

Sincer, is spherical, its Langlands parameter is its infinitesimal charac-
ter, and this can be determined via the (degenerate) principal series imbed-
ding described in Section 2 below. It is then straightforward to verify that
1 is the minimal representation &, with annihilator equal to the Joseph
ideal. (ForG = GL(n), the minimal representation is not unique.)

Thus our construction should be compared to other realizations of the
minimal representations in [Br], [T], [H] etc. Although our construction
is for a more restrictive class of groups, it does offer two advantages over



Explicit Hilbert spaces for certain unipotent representations Il 205

the other constructions. The first advantage is that our construction works
for a larger class of representations, and the second advantage is that it is
well-suited for tensor product computations.

Both of these features will be explored in detail in a subsequent paper.
In the present paper, we considefold tensor powers ofr;, wherek is
strictly smaller tham (rank of X), and show that the decomposition can be
understood in terms of certain reductive homogeneous spaces

Gk/Hk,1<k<n.

These spaces are defined in Section 3, and are listed in the appendix.
We consider also the corresponding Plancherel decomposition:

52

L2(Gy/Ho) = ﬁ MoK due) |

Gk

wheredu is the Plancherel measure, amdy) is the multiplicity function.
Then we have

Theorem 0.2. For 1 < k < n, there is a correspondend between@k
andG, such that

(%)
nﬁzﬁ;m@@wmmn

k

1. Preliminaries

The results of this section are all well-known. Details and proofs may be
found in [S1], [KS] and in the references therein (in particular, [BK] and

[Lo]).

1.1. Root multiplicities. Let G be a real simple Lie group and l&t be
a maximal compact subgroup corresponding to a Cartan involétidve
shall denote the Lie algebras@f K etc byg, ¢ etc. Their complexifications
will be denoted by lowercase fraktur letters with subsctipFix 6, and let
g = t + p be the associated Cartan decomposition.

The parabolic subgroud® = L N obtained by the Tits-Kantor-Koecher
construction are those such thdtis abelian, and® is G-conjugate to its
opposite parabolic

P =6(P)=LN.

In this caseN has a natural structure of a real Jordan algebra, which is
unigue up to a choice of the identity element.

In (Lie-)algebraic terms, this means tHatis a maximal parabolic sub-
group corresponding to a simple (restricted) r@athich has coefficient 1
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in the highest root, and which is mapped-ta under the long element of
the Weyl group.

In this situation,M := K N L is a symmetric subgroup df (this is
equivalentto the abelianness &), and we fix a maximal toral subalgebra
t in the orthogonal complement ef in ¢.

The roots oftc in gc form a restricted root system of tyfg&,, where
n = dimr t is the (real) rank ofN as a Jordan algebra (this result is
essentially due to C. Moore). We fix a ba§js, v», ... , yn} of t* such that

X(te, go) = {£( £ y))/2, Ly}

The restricted root systed = X(tc, £c) is of type A,_1, C, or Dy,
and the first of these cases arises precisely wkiés a Euclidean Jordan
algebra. This case was studied in [S1], therefore we restrict our attention to
the last two cases.

The root multiplicities inX play a key role in our considerations. 3f
is Cy, there are two multiplicities, corresponding to the short and long roots,
which we denote by ande, respectively. If is D, andn £ 2, then there
is a single multiplicity, which we denote Iy, so thatD, may be regarded
as a special case @f,, withe= 0.

The root systenD, is reducible (being isomorphic t8; x A;) and
a priori there are two root multiplicities. In what follows, we explicitly
exclude the case when these multiplicities are different. This means that we
exclude from consideration the groups

G = 0O(p,g), N = RP"147Y(p £ q);

indeed, our main results are false for these groups. When the two multiplic-
ities coincide we once again denote the common multiplicitydy

The multiplicity of the short roots:(y; & yj)/2 in ) (tc, gc) is equal
to 2d, and the multiplicity of the long rootsy; is e + 1.

Inthe appendix we include a table listing the groups under consideration,
as well as the values ofande for each of these groups.

1.2. Cayley transform. We briefly review the notion of the Cayley trans-
form. Let C be the following element (of order 8) iBL, (C)

1 /1 i
-5l 1)
The Cayley transform ofl,(C) is the automorphism (of order 4) given
by
c=AdC.

It transforms the “usual” basis ef,(C)

(0 1 _ (0 0y ,_(1 O
X=\o 0o)'Y=\1 o) "=\l0o -1)
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to the basis

1/ 1 1/7i 1 (0 -1
X:§(1 i)’Y:§(1 —i)’H:'<1 o)’
whereX = c¢(x) = C~IxC, etc. In turn,c can be expressed as

Cc=exp ad%l(x—i- y) = exp ad%l(x +Y).

The key property of the Cayley transform is that it takes the compact
torus (spanned byH) to the split torus spanned y(cf. [KW]).

We turn now to the Lie algebrgc. By the Cartan-Helgason theorem
the root spacep,, are one-dimensional, and so by the Jacobson-Morozov
theorem we get holomorphic homomorphisms

CDJ' 1 5L(C) — gc, J =1..n

such thatX; = &;(X) spang,,

We fix such mapsp;, and denote the images &f X, y,Y,h, H by
Xj, Xj, etc. Since the rootg are strongly orthogonal, the tripl€X;, Y;, H;}
commute with each other, and the Cayley transform isfdefined to be the
automorphism

c=exp ad%i (Z X + ZYJ) =[]exp ad%i(xj +Y)).
Thus we obtain aiR-split toral subalgebra defined by
a=c ity =Rh; & --- @ Rh,.
The roots ofac in gc are
Y(ac, gc) = {:I:si + ¢y, :|:28j} whereg; = %y, oC.
The short roots have multiplicityd?and the long roots have multiplicity

e+ 1.
In facta C [, and we have

X(a, ) = {5 —ep}, S(a,n) = {& +¢j, 26},

Y(a,n) = {—Ei — g, —28,-}
Definition 1.1. The invariant formy., .) on g is hormalized by requiring

(X1, y1) = 1.

Fory € n, we set]y] dzeﬂ/— (y, 8y) , as in Introduction.
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1.3. Orbits and measures.We now describe the orbits a&f in n >~ N*.
Fork=1,...,n -1, define

Ok=L-(y1+Y2+...+ Y.

Then these, together with the trivial orlgit,, comprise the totality of the
singular (i.e., non-operl)-orbits inmn.
We definev € a* as

v=e&+e+...+¢n.

Thenv extends to a character bfand we will writee” for the corresponding
(spherical) character df.

Lemma 1.2. The orbit@; carries a naturalL —equivariant measure,
which transforms by the charactef®”, that is

gl - y)dua(y) = () [ g(y)dura(y).

01 01

Proof. Let S, be the stabilizer o, in L. It suffices to show that the modular
function of S; is the restriction, froni to S, of the characteg?®. Passing
to the Lie algebrai;, we need to show that

trad;, = 2dv|,,.

To see this, we remark that has codimension 1 inside a maximal
parabolic subalgebrg of [, corresponding to the stabilizer of the line
throughy;. The space of characters @fs two-dimensional, and it follows
that the space of characterssafis one-dimensional. Hence any character
of s, is determined by its restriction ton s; = Kere;. The restriction ob
to s1 is nontrivial, hence

trad,, = kv
for some constark.
Obviously,trad = 0, and the only root spaces missing fregrare the

root spaces, .;, ] > 2 (each of these root spaces has dimensitn 2
Hence, fora e a

trad, (@ = —2d ) (e1 —¢))(@),

j=2

and restricting this td&er 1, we obtain 2v |4, . O
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Example.ConsiderG = Og, 2, realized as the group of alh2x 2n real
matrices preserving the split symmetric fo(n?(z) Icz)”). ThenP =LN =
n

GLon(R) < Skewsn(R). More precisely,

A 0
(3 2) o]

_ I2n 0 . t _
v={(7 2)ere-o)

a= {dlaqala a, dg, A, ... , dn, An,
— a1, —ap, —a, —a, ..., —an, _an)7 g € R}

is the toral subalgebra gf (and[) described in the preceding subsection.
We can take

0 B 0O -1 O
ylz( (2)” 021>,Where81: 1 0 0]).
n 0O 0 O
The Lie algebra; of the stabilizerS, = Stal y; can be written as

A 0 A 0
51:{(0 _At):A:(Ai Azz),AnEﬁ[z,AzzEg[zn_z}

Itis a codimension 1 subalgebra of the parabolic subalggbfal,,, where
q = (gl + glan_p) + R*?"2,

Remarkln this example) = 2 tr, d = 2 ande’®” = (det?.

and

Then

2. Minimal representation of G

If x is a character df we writerr, for the (unnormalized) induced represen-
tation Ind%( x). These representations were studied in [S3] in the “compact”
picture, by algebraic methods. Among the results established there was the
existence of a finite number of “small”, unitarizable, spherical subrepresen-
tations, which occur for the following values gpf

xp=e j=1..,n-1

In this paper we use analytical methods, and work primarily with the
“non-compact” picture, which is the realization ®f on C*(N), via the
Gelfand-Naimark decomposition

G ~ NP.
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In fact, using the exponential map we can identifgnd N, and realizer,
onC®>(n).

We will show that the unitarizable subrepresentation gfadmits a nat-
ural realization on the Hilbert spat&(©4, du). Since there is no obvious
action of G on this space, we have to proceed in an indirect fashion. The
key is an explicit realization of the spherical vectgy.

2.1. The Bessel function.We letd, e be the root multiplicities o (t, £)
as in previous section, and define
ic=1=(d—-—e—1)/2

as in the introduction.
Let K, be theK-Bessel function ori0, co) satisfying

ZK! + zK. — (4 1%)K, = 0. 1)
Putg.(2) = L\/? theng, satisfies the differential equation
(v2)
D¢, = 0, whereD¢ = 4z¢" + 4( + 1)¢' — ¢. (2)
We lift ¢, to anM-invariant functiong, on @1, by defining
K.
G = 6.~y 03 = =20, ©)

RemarkIf d = e (as is the case fot = Spn(C) or Sp,n), thent = —%
and

exp(—|y)) _
6 () = IYIV2K_s,a(ly) = Jy+2 B _ o
ly[Y

If d =e+ 1 (this is true forG Ly, (k), k = R, C or H), then

9:(y) = Ko(lyD.

Proposition 2.1. (1) g. is a (square-integrable) function ib?(©1, duy).
(2) The measurg,du; defines a tempered distribution an

Proof. (1) We define
0Ly ecor:|y|=1.
Then@©’ is compact; the map
O x (0,00) > (Y, w) —> wy € O
is a diffeomorphism, and the measule, can be decomposed as a product
dua(wy) = du'(y)du” (w)
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We now determine the explicit form off.” (w).
Defineh = Y, h;, then (adh)y = —2y for any y € n. We take
y € O1,z> 0,a=Inzand calculate

dui(zy) = dMl(eXp( - ag) : Y) — e 2D dus(y)
= e (y) = 2"dua(y).
Therefore, forz > 0
dus(zy = 2"dua(y) (4)
and it follows thatdu” (zw) = z9"du” (w), and so, up to a scalar multiple,
du” (w) = w"dw,

wheredw is the Lebesgue measure.
We can now calculate

w

00 2
=c / de”—ldw, (5)
0

er

o K.(w)?, , B
19:(V)1* dua(y) = / / OO 4wy et
01 0 o’

wherec = /(@) is a positive constant. The functidq, (w) has a pole
of ordert at O (or, in case ot = 0, a logarithmic singularity at 0), and
it decays exponentially as — oo [W, 3.71.15]. Hencev—?"K, (w)? has
a pole of order

dr=2d—-e—1) <2d-2<dn-1

(recall that we require > 2). Thus the integrand in (5) is non-singular and
decays exponentially as — oo. Therefore, the integral (5) converges and
g:(y) € L3201, du).

(2) From the calculation in (1), we see tgaty) € L{ (91, duq) and
has exponential decay ab (i.e., as|y| — oo). This implies the result. O

We can now define the Fourier transformgpf

¢ = g.dug
as a (tempered) distribution an The key result is the following
Proposition 2.2. ® is a multiple of the spherical vectet,,.

The proof of this proposition will be given over the next two subsections.
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2.2. Characterization of spherical vectors.For ¢ : n — n, let &(¢)
denote the corresponding vector field:

&) f(x) = E f(X + tp(X)) for f :n— C.
dt =0

Then we have the following formulas for the actionmof on C*(n):

e for xo € n, 7, (Xo) = £(X0),
e forhg € [, , (ho) = x(ho) — & ([ho, X]),
o for yo € W, 7, (Yo) = x[X, Yol — 3& ([, X]), whereh = [x, yo.

We need a Lie algebra characterizatioroof

Lemma 2.3. The space ofr, (¢)-invariant distributions om is 1-dimen-
sional (and spanned hy, ).

Proof. Itis well known (and easy to prove) that the only distribution$fn
which are annihilated bk%’ i =1, ..., nare the constants. More generally,

we can replac&" by a manifold, anc[ a%. } by any set of vector fields which

span the tangent space at each point of the manifold.

For x = 0, the formulas above show thag(g) acts by vector fields on
C*(n). Moreover, using the decompositi@ = K P, we see thatro(®) is
a spanning family of vector fields. Thus the result follows in this case.

For generaly, if T is am, (¢)-invariant distribution, thed/o, = To_,
is o (®)-invariant, and hence a constant. O
Proposition 2.4. Let T be anM-invariant distribution om such that

7, (y+6y)T =0 for somey #0inm,
thenT is a multiple of the spherical vecter, .
Proof. The M-invariance ofT implies that
T,(m)T =0

Sincem is a maximal subalgebra @&f m andy + 6y generatet as a Lie
algebra. Thus

T, (&)T =0,

and the result follows from the previous lemma. O
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2.3. TheK-invariance of the Bessel function. We now turn to the proof
of Proposition 2.2. To simplify notation, we will write instead ofr,,.
Since® is clearly M-invariant, by Proposition 2.4 it suffices to show

w(y1+0y)® =0

for y; € n. We will prove this through a sequence of lemmas.
It is convenient to introduce the following notation: df and g, are
functions on®¥4, we define

(01, 92) = | 9u(y) Q2(y)dua(y)

01

provided the integral converges.
If gis a function on®, andh € I, then the action ofi on g is given by

d
£ ag(eth Y)

h-a(y)
t=0

In the computation below, we shall work with the expressions of the type

d
(& ; gEe"- y)du(y))

t=0

To justify differentiation under the integral sign, we need to impose the
standard conditions og(e.g. [Ke, p.170]), as follows.

Define a class of functions c C*(¢,), given by the following condi-
tions: a smooth functiog belongs tat if

e ge LY0O4,duy) and
e for anyh e ['we can findc > 0 andG(y) € L1(®1, du1), such that

d
9€" Y| =6y

t=tp
forally € @ and|tp] < c.

Lemma 2.5. Suppose;, g, are smooth functions af,, suchthap;g, € 1.
Then

(h- 01, 92) + (91, h - @) = 2dv(h) (g1, B2). (6)

Proof. Using thel-equivariance otlu,, we obtain

91(€"Y) G (e"y) diy = Y™ [ gigodus.

01 01
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Under the assumptions of the lemma, we can differentiate this identity in
to get

/ h-(0:192) duy = 2dv(h) [ 0102 dues.
01

01

By the Leibnitz rule, the result follows. ]

More generally, ifg;, gz are functions om x @1, then(g,, g) is a func-
tion onn. In this notation, forg in L1(@4, du1), the Fourier transform of
gdu, is given by the formula

gdus = (€Y. g).
Lemma 2.6. Letg € L(®4, du1) be a smooth function ofi4, such that
e'*Yger.

Supposef = (e7'*%Y) g), then

n(y)f = —%(e‘”x*y), h - g(y)), whereh = [x, y1].

Proof. By the formula for the action af(y;), we get

—2((y) f +dv(h) f) =& ([h, x]) - (e'*Y, g)

d .

— a (efl(x+t[h,x],y)’ g)
d .

=5 (efl<x,yft[h,y]>, g)

— (h . e—i(X-,y)’ g)

= (™Y h.g) — 2dv(h)(e™*Y g).

‘t:O

o

where we have used the previous lemma, and the relation

(x+th,x],y) = (X, y) + t{[h, x], y)
= <X7 y) ! <X7 [h7 y]) = <X7 y— t[h7 y]) .

The result follows. O

The pairing— (-, 6-) gives a positive definitd-invariant inner product
onn, and we now obtain the following

Lemma 2.7. Suppose thag(y) = ¢ (— (y, 8y)) for some smootlp on

(0, 00), ande ' *Y)g e I. Put f(x) = (e '*¥), g), as before. Then

w(yn) f = (7Y, (x, [0y, yal, YI) ¢' (— (y, 6y))) .
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Proof. Writing h = [x, y1] as in the previous lemma, we get

d
h-gy) = p ¢ (= (y+t[h, yl,0(y +t[h, yD)li—o

d
=5 ¢ (= (y. 0y) — 2t {9y, [h, y]) + O(t)) | _,
= —2(0y, [h, yI) &' (— (Y, 8Yy)).
Since

0y, [h, yI) = 8y, [[x, y1l, YI) = (X, [[8Y, Y11, Y1),

the result follows. O

The key lemma is the following computation

Lemma 2.8. Let ¢ and f be as in the previous lemma, and suppose for
Xen

e Vg (—(y,0y) € T, eV (—(y,0y)) e I. )

Then we have

m(ys+0yD) f() = (7Y i (By1, y) (Dg) (—(y.0y)).  (8)

where the differential operatob is given by the formulé2), i.e.

(D§) (—(y.0y) =4(—(y.0y)¢" +2(d+1—-¢ —¢.  (9)

Proof. Choose a basis of [ and define functiong;(y) by the formula
[0y, 1l = _; ¢j(Vlj. Then by the previous lemma

O 1 = S0 ) =1 3 (7000 )|
_|Z(I 1Y) ¢ ).

Differentiation in this calculation is justified, becaws&>*Y ¢/ (y, Oy)) € .
Applying (6) to the last expression, we can write

=0

n(yl)f_—lz o _2dv(lj)ci¢’ + ¢l - ¢ + 1 -cj) . (10)

We now calculate each term in this expression.
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e First we have
Y vlljei¢’ = v((6y, yihe'.
j

Since v is a real character of, it vanishes onl N ¢ and we have
v([0Y, y1]) = v([0y1, Y]). Recall that andn are irreducible-modules.
Therefore,v([0y1, Y]) = k{0y1, y) for some constark # 0, indepen-
dent ofy. Settingy = y;, we get(fys, y1) = (—X1, Y1) = —1. Hence
k = —v([0y1, V1]) = 1, and therefore

— " 2dv(lj)ci¢’ = —2d (Oy1, V) ¢ (11)
i
e Next we compute
Yol ¢ =10y, yal- ¢

J
d
= ¢ (= {y+ 10y, 11, Y1, 6(y + 16y, yal. YDD |,

= — 2(y, [[y, 0y1l. 6y]) ¢" (— (Y, Oy))

Sincey is at-conjugate to a root vector, there is a scddamdepen-
dent ofy such that[[y, 6y], y] = K (y, 8y) y . Settingy = y; we get
(yl’ 9yl> - _1!

[(lyr, —X1l, y1l = —2y1

andk’ = 2. Also— (y, [[y., 8y, 6y]) = (Ly. 0y, [y. Oy1]) = ([Ly. Oy1, Y1,
0y1). Hence

S il ¢ = 4y.0%) 0y, ) 9. (12)
j
e Next we note than lj - ¢j is independent of the badis so we may
assume that
elj = ZHJ' and (lj, —9|k> = 8jk-
Thenc;(y) = ([0y. y1], —6l;) and
Yili-c =X {10M, yl yal, =)
= 3, {ya. 1611}, Y1, 6131) = — {y1. Q0y).

HereQ = Zj ad(elj)2 = Qr — 2Q¢n1, Where the Casimir elements are
obtained by using dual bases with respedt,t.
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To continue, we need the following lemma:
Lemma 2.9. Q acts onn by the scalak” = 2 — 2e.

Proof. Whene = 1 it's easy to see that the operateracts by 0. Indeed,
in this caseg is a complex semisimple Lie algebra and for each basis
element; € £N [ there exists a basis eleméht= +/—1l; € pN 1. Then
[, 15, x11 + [15, 15, x]I = 0 andk” = 0.
Whene = 0, g is split and simply laced, andis the split real form
of a complex reductive algebifa. Take a root vectox; € g,, wherex is
any positive root im. For any positive root of [c we fix e, € [, and set
l, =e,+0e, € tnlandl), = e, —0e, € pNI. Then the collection of all,,
I, together with the orthonormal basis of a Cartan subalggbfd forms
a basis of. Observe that

[Iav [IOI’ X)\.]] + [I(/)[’ [I&’ X)L]] = [eOl’ [eOlv X)\]] + [efolv [e,a, X)\]] = O!

sincex;, € g, and neithei. + 2« nor A — 2« is a root of the simply laced

algebragc.
We choose a basigl;} of f, and denote the elements of the dual (with
respect tq , )) basis byu;. Then

Q6 =Y Ui, [T, %11 = (1, A) X = 2%;.

In the remaining two casesN [ acts onn irreducibly, thereforeQ
automatically acts by a scalar and it suffices to com@;@ i [y, x11]. For
e = 3 we haveG = GL,o,(H), L = GL,(H) x GL,(H) andn = H"™",
The computation for this group is similar to the cas&soE G Ly, (R). We
reduce the calculation to the summation over the diagonal subalgebra of
and obtain

QX = (A, A) X, + 3<«/—1k, «/—1k> X, = —4X;..

Finally, fore = 2 (G = Sp,.n), a direct evaluation OEJ-[I,-, [, X111
givesk” = —2. O

Therefore, we get

Y ¢ =-201-9) By, V¢ (13)
j
e Finally, we have

d
Oy f = dat (

Putting the formulas (11)—(14) together, we deduce the lemma. O

iy )| o= (7Y (oyr, y) ¢) . (14)
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Proof of Proposition 2.2.Recall that we study,(2) = K(:;:/)? , its lift
z
g, to the radial function or® 4,
K.
G (Y) = 6o (— (Y. By)) = %y')

and its Fourier transfornb (x) = ('™, g,). By Proposition 2.4 it suffices
to check thatr(y, + 0y,)® = 0. This identity would follow immediately
from Lemma 2.8, because¢, = 0 by formula (2) and then the desired
result follows from (8).

To complete the proof we have to verify the assumptions (7). In Sub-
section 2.1 we proved that € L'(O91,duy). It is easy to verify (using
the standard facts about the derivativeskoffrom [W]), that the lifts to
1 of the functionsy.. (z) and¢?(z) (we denote them by. (y) and g (y))
both belong toL1(91, du1). Observe also that, (2), ¢.(2), ¢! (2) are all
monotone o0, co).

Moreover, since all these functions tend to zero exponentiallyjas oo,
the functionsA(y)g. (y), A(Y)g.(y), A(y)g,(y) all belong toL*(91, dus),
for any A(y) bounded in the neighbourhood pt= 0 and growing (at most)
polynomially with respect tdy| as|y| — oo.

Fixh e [, x € nand choose& > 0 sufficiently small, such that for all
ye @,and|t] <c

.0
|(eth -y, e(eth ) y))| > |(YZY>|.

We can then estimate the derivative:
d/ ./ an
‘a (&7 g, (e, Het“y)))‘

< [Auy)b: (1V2 /2)| + [ A(W)d. (Y12 /2)

forall y € @, and|t| < ¢, where A;(y), Ax(y) are some functions of
polynomial growth. From the discussion above, the right-hand side of this
inequality is anL*-function on®4, hencee ' *Y)g, € I.

Proceeding in the same manner, we deduceghétY'g. € 1. O

’

2.4. Proof of Theorem 0.1. Denote byJ the space of the induced repre-
sentationr; = Ind%(e‘d”). By the Gelfand-Naimark decomposition and
the exp map,) can be viewed as a subspacedsf(n). Then forl € L and

n € Jwe have

T = e PDnd =t - x).
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It was proved in [S3] that thgg, K)-moduleJd has a unitarizable spherical
(g, K)-submoduleV, which we also regard as a subspac€df(n).

Remark. It is possible to give a direct description of the elements of the
“abstract” Hilbert space#¢, where # is the Hilbert space closure of
with respect to thég, K)-invariant norm orV/. For that purpose we use the
“compact” realization ofr; on C*°(K/M) from [S3]. It was shown that,

is a representation of ladder type, with all Kstypes{omn | m € N} lying

on a single lineg, being a one-dimensiond -type. The restrictior{ , ),

of a my-invariant Hermitian form to anK-type «ap, is a multiple of the
L2(K)-inner product oV, and from the explicit formulas in [S3] it follows
that

def<a>m C
n = =0
q ) (m~)

for some constan€ > 1, which can be expressed in terms of parameters
d, e andn. Thus we can identify# with the Hilbert space.? (N, {qn}),
where the constart,, gives the weight of the poinh € N. That is, any
element of# can be viewed as all-equivariant function orK, such that

its sequence of Fourier coefficients belongd (N, {gm}). In particular

L2 (N, {gm}) C I2(N), and the elements a# all lie in L?(K).

We writeH for the space of those tempered distributionsiavhich are
Fourier transforms ofydu4 for someyr € L2(04, duq). If n is the Fourier
transform of a distribution of the fornidu,, i.e.,

[N

D) = f@ e N y(y)duay) = (€79, (y).
then

i) =e Tl x) = f e T y(ye ® (hdua(y)

01
= [ ey e i y)
01

= ('Y eyt y).

It follows from the calculation above tha@® actsunitarily on H (it is
convenient to identify this action with its realization &f(©4, du1) via
the Fourier transform).We denote this unitary representatioR bf/ =’
Observe tha{z’, H) is an irreducible representation Bf

According to Proposition 2.1p(x) = (e7'*Y, |y|7" K.(]y])) belongs
toH.

Theorem 2.10. V is a dense subspaceldf and the restriction of the norm
is (g, K)-invariant.
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Proof. Let C*(K)y be the subspace @*°(K), consisting of those smooth
functions onK, whoseK-isotypic components belong td. SinceV is
a submodule of, C*(K)y is obviouslyG-invariant.

Denote byC(G) the convolution algebra of smooth! functions on
G = PK, and consider

W = 11(C(G))® C C¥(K)y.

So all elements ofV are continuous functions oK, hence continuous
on G, and therefore are determined by their restriction®NtadVioreover,
W = 71(C(PK))® andK fixes ®, therefore

W = m1(C(P)® = 7'(C(P)) .

This shows thaW is an’(P)-invariant subspace dfl, and from the irre-
ducibility of 7’ we conclude thatV is dense irH.

We can now put twor,(P)-invariant norms onN — one fromH and
another fromV, as follows. If f = )  cpnvm, with vy, in the K-isotypic
component with highest weiglay, (occurring inV) and |lvyll 2k, = 1,
then

15 = 1cml® G, (15)

Sincef is smooth, it follows thaicy,| decays rapidly, so the series in (15)
converges, thus giving = (P)-invariant norm on\/.

Thenitfollows from [P] (cf. [S1, p.417]), that we canfind a (den8¢p)-
invariant subspac®/’ c W, such that these two forms are proportional
on W', Considering the closure &%’ we obtain an isometri®-invariant
imbedding ofH into 7.

ThenW is:

(1) aG-invariant subspace of the irreducible modute hence dense
in #;

(2) adense subspace of the Hilbert spHce

It follows thatH = #¢. O

This concludes the proof of Theorem 0.1.

3. Tensor powers ofr,

3.1. Restrictions toP. In the previous section we constructed a unitary
representationr; of G acting on the Hilbert space?(©+, du1), where®

is the minimalL-orbit in a non-Euclidean Jordan algeiMaDefine thek-th
tensor power representation

Iy = ni@k(Z <k <n).

As we shall show, the techniques developed in [DS] allow us to establish
a duality between the spectrum of this tensor power and the spectrum of
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a certain homogeneous space. We omit the proofs of the several propositions
below, because the proofs of the corresponding statements from [DS] can
be used without any substantial modification.

Observe that the orbidy is dense iV, + @1+ ...+ O1. The repre-

k times
sentationITy acts on[L?(01, dul)]®k ~ L@}, du'), where®; = 0¥
anddu’ is the product measure @ . We fix a generic representative
& = (&, &, ...,&) € O, such that

E=&4+&E+ ... +E €O

Denote byS, and & the isotropy subgroups &f andg, respectively,
with respect to the action df on @, and©y. Observe that the Lie algebras
s, andsy of § and S, respectively, can be written as

s = (b + ) + uk
sk = (gk + k) + u.

Herely, gk andhy are reductivelj, C gk anduy is a nilpotent radical common
for boths, andsy. Let Gy and Hi be the corresponding Lie groups.

Example. Take G = Ognon @andk < n. Then& = Ej_12 — Ezizia
(1<i=<k,&=Yl,&and
sk = (5pak(R) + gly_to (R)) + R*ZOH,

ThenGy = Spx(R) and it's easy to check thad, = SLy(R)X.
The following Lemma can be verified by direct calculation (cf. [DS,
Lemma 2.1]).

Lemma 3.1. Let x; be the character oN corresponding t& € N*. Then

Mp = IndE \(1® x) = IndE, (( ndg 1) ® Xs) (L2-induction).
O

Lety’ = Indﬁ: 1 be the quasiregular representatio®fon L?(Gy/ Hy);
then it can be decomposed using the Plancerel meagufer the reduc-
tive homogeneous spacé = Gi/Hx and the corresponding multiplicity
functionm: Gy — {0,1,2,...},i.e.,

®
V/Z/A M)k du (k).

Gk

Each irreducible representatianof Gy can be extended to an irreducible
representatior ¥ of S, and the decomposition of the Lemma above can be
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rewritten as

&)
Mlp = fé MO () d (i), (16)

k

where® (k) = Indg \ (k¥ ® xe).
Moreover, by Mackey theory all representatidic) are unitary irre-
ducible representations & and®(x’) ~ @(x") if and only if k" ~ «”.

3.2. Low-rank theory. In [DS] we extended the theory of low-rank rep-
resentations ([Li]) to the conformal groups of euclidean Jordan algebras.
Inspection of the argument in [DS] shows that the analogous theory can
be developed in exactly the same manner for the conformal groupsnef
euclideanJordan algebras.

For any unitary representation of G, we decompose its restriction
n|n into a direct integral of unitary characters, where the decomposition is
determined by a projection-valued measureNoa= N*. If this measure is
supported on a singleon-openL-orbit O, 1 < m < n we callp alow-
rank representationand writerankn = m. Proceeding by induction am,
as in [Li], [DS, Sect 3], we can prove the following

Theorem 3.2. Let be a low-rank representation &. Write A(n, P) for
the von Neumann algebra generated {yx)| x € P} and 4 (n, G) for
the von Neumann algebra generated {lgyx)| x € G}. ThenA(n, G) =
A1, P). O

Proof of Theorem 0.2.Now consider the restriction dfl; to N. Its re-
striction to P is given by the direct integral decomposition (16), and
we can further restrict it td\N. The rank of the induced representation
Ok) = Indg’k,\,(/cv ® xe) isk (the N—spectrum is supported on the-orbit
of &, i.e. Oy). Thereforelly can be decomposed over the irreducible repre-
sentations ofs of rankk.

It follows from the theorem above that any two non-isomorphic repre-
sentations from the spectrum Oy restrict to non-isomorphic irreducible
representations d?. Hence the representatidiy can be decomposed as

52
= [ M6 duco), (17)
k

where for almost everyx the unitary irreducible representatidiix) is
obtained as theniqueirreducible representation @ determined by the
conditionf(x)|p = O (k).

Therefore, the map — 6(x) gives a (measurable) bijection between
the spectrum ofI, = 7®* and the unitary representations®§ occurring
in the quasiregular representation lofi G/ Hy). O

Example.TakeG = Ey,. Itis the conformal group of the split exceptional
real Jordan algebr8l of dimension 27. Consider the tensor square of the
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minimal representationr; of G (k = 2). ThenL = R* x Egg), S, i
the stabilizer ofy; and y, and S, is the stabilizer ofy; + vy, € O,.
One can see that in this cagg = Stab,ss (Y1 + Y2) = s0(4,5) and
hy = StaQo(as)(yl) N Stat}o(as)(yz) = s0(4,4) (Cf [A, 167]) Hence
the decomposition (17) establishes a duality between the representations
of Ezx) occurring inIl, = m; ® 71 and the unitary representations of
Spin(4, 5) occurring inL? (Spin(4, 5)/Spin(4, 4)) . The homogeneous space
Spin(4, 5)/Spin(4, 4) is a (pseudo-riemannian) symmetric space of rank 1,
and it is known to be multiplicity free. Thereforer; ® 7, has simple
spectrum.

Similarly, for G = E7(C) we obtain a duality betweeB;(C) and the
symmetric spac&Qy(C)/SG(C).

A. Groups associated to non-Euclidean Jordan algebras

| G [Kk/M | d]e| Gi/Hfor2<k<n|
GLon(R) | Ozn/(On x On) 1|0 | GL«(R)/[GL1(R)]¥
OZn,Zn (O x OZn)/OZn 210 SpZK(R)/[SLZ(R)]k
= SWs/Sp 4 | 0 | Spin(4, 5)/Spin(4, 4)
Opi2.pt2 | [Ops2l?/[O1 x 0,23+1] p|0
S(©) | Sp/Un 1| 1] O(©)/[0(O)]
GLon(C) | Uzn/(Un x Up) 2 | 1| GL(O)/IGLy(O)
Oun(C) | Oun/Uzn 4| 1] Sp(©)/[SL(O)
E7(C) E7/(Ee x Uy) 8 1] SG(C)/SG(C)
Op+4(C) | Opta/(Opi2 x Uy) p|1
Shn (Sm x Sp)/Spy 2| 2] O/I05
GLon(H) | Spn/(Sph x Sph) 4 | 3 | GLk(H)/[GLy(H)
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