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0. Introduction

To each real semisimple Jordan algebra, the Tits-Koecher-Kantor theory
associates a distinguished parabolic subgroupP = L N of a semisimple Lie
groupG. The groupsP which arise in this manner are precisely those for
which N is abelian, andP is conjugate to its oppositeP.

Each non-openL-orbit O on N∗ admits anL-equivariant measuredµ
which is unique up to scalar multiple. By Mackey theory, we obtain a natural
irreducible unitary representationπO of P, acting on the Hilbert space

HO = L2(O,dµ).

In this context, we wish to consider two problems:

1. ExtendπO to a unitary representation ofG.
2. Decompose the tensor productsπO ⊗ πO′ ⊗ πO′′ ⊗ · · ·

If the Jordan algebra is Euclidean (i.e. formally real) thenG/P is the
Shilov boundary of a symmetric tube domain. In this case, the first problem
was solved in [S1], [S2], where it was shown thatπO extends to a unitary
representation of a suitable covering group ofG. The second problem
was solved in [DS], where we established a correspondence between the
unitary representations ofG occurring in the tensor product, and those of
a “dual” groupG′ acting on a certain reductive homogeneous space. This
correspondence agrees with theθ-correspondence in various classical cases,
and also gives a duality betweenE7 and real forms of the Cayley projective
plane.

In this paper we start to consider these two problems fornon-Euclidean
Jordan algebras. The algebraic groundwork has already been accomplished
in [S3], however the analytical considerations are much more subtle, and
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here we only treat the case of the representationπ1 = πO1 corresponding
to theminimal L-orbit O1.

It turns out that in order for the first problem to have a positive solution,
one has to exclude certain Jordan algebras of rank 2. This is related to
the Howe-Vogan result on the non-existence of minimal representations for
certain orthogonal groups.

To each of the remaining Jordan algebras we attach a restricted root
systemΣ of rank n, wheren is the rank of the Jordan algebra. The root
multiplicities, d ande, of Σ play a decisive role in our considerations. For
the reader’s convenience, we include a list of the corresponding groupsG
and the multiplicities in the appendix.

For these groups, we show thatπ1 extends to a spherical unitary rep-
resentation ofG, and that the spherical vector is closely related to theone
variable BesselK -function Kτ (z), where

τ = d− e− 1

2
.

The functionKτ (z) can be characterized, up to a multiple, as the unique
solution of the modified Bessel equation

ψ′′ + z−1ψ′ −
(

1+ τ
2

z2

)
ψ = 0

that decays (exponentially) asz→∞; and, to us, one of the most delightful
aspects of the present consideration is the unexpected and uniform manner in
which this classical differential equation emerges from the structure theory
of G.

More precisely, we establish the following result:
We identify N with its Lie algebran = Lie(N) via the exponential map.

We also fix an invariant bilinear form on〈·, ·〉 on g, which is a certain
multiple of the Killing form, normalized as in Definition 1.1 below. We use
this form to identifyN∗ with n = Lie(N). For y in n, 〈−θy, y〉 is positive,
and we define

|y| = √〈−θy, y〉.
Theorem 0.1. π1 extends to a unitary representation ofG with spherical
vector|y|−τKτ (|y|).

Sinceπ1 is spherical, its Langlands parameter is its infinitesimal charac-
ter, and this can be determined via the (degenerate) principal series imbed-
ding described in Section 2 below. It is then straightforward to verify that
π1 is the minimal representation ofG, with annihilator equal to the Joseph
ideal. (ForG = GL(n), the minimal representation is not unique.)

Thus our construction should be compared to other realizations of the
minimal representations in [Br], [T], [H] etc. Although our construction
is for a more restrictive class of groups, it does offer two advantages over
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the other constructions. The first advantage is that our construction works
for a larger class of representations, and the second advantage is that it is
well-suited for tensor product computations.

Both of these features will be explored in detail in a subsequent paper.
In the present paper, we considerk-fold tensor powers ofπ1, wherek is
strictly smaller thann (rank ofΣ), and show that the decomposition can be
understood in terms of certain reductive homogeneous spaces

Gk/Hk ,1< k< n.

These spaces are defined in Section 3, and are listed in the appendix.
We consider also the corresponding Plancherel decomposition:

L2(Gk/Hk) =
∫ ⊕

Ĝk

m(κ)κ dµ(κ) ,

wheredµ is the Plancherel measure, andm(κ) is the multiplicity function.
Then we have

Theorem 0.2. For 1 < k < n, there is a correspondenceθk betweenĜk
andĜ, such that

π⊗k
1 =

∫ ⊕
Ĝk

m(κ)θk (κ)dµ(κ).

1. Preliminaries

The results of this section are all well-known. Details and proofs may be
found in [S1], [KS] and in the references therein (in particular, [BK] and
[Lo]).

1.1. Root multiplicities. Let G be a real simple Lie group and letK be
a maximal compact subgroup corresponding to a Cartan involutionθ. We
shall denote the Lie algebras ofG, K etc byg, k etc. Their complexifications
will be denoted by lowercase fraktur letters with subscriptC . Fix θ, and let
g = k+ p be the associated Cartan decomposition.

The parabolic subgroupsP = L N obtained by the Tits-Kantor-Koecher
construction are those such thatN is abelian, andP is G-conjugate to its
opposite parabolic

P = θ(P) = L N.

In this caseN has a natural structure of a real Jordan algebra, which is
unique up to a choice of the identity element.

In (Lie-)algebraic terms, this means thatP is a maximal parabolic sub-
group corresponding to a simple (restricted) rootα which has coefficient 1
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in the highest root, and which is mapped to−α under the long element of
the Weyl group.

In this situation,M := K ∩ L is a symmetric subgroup ofK (this is
equivalentto the abelianness ofN), and we fix a maximal toral subalgebra
t in the orthogonal complement ofm in k.

The roots oftC in gC form a restricted root system of typeCn, where
n = dimR t is the (real) rank ofN as a Jordan algebra (this result is
essentially due to C. Moore). We fix a basis{γ1, γ2, . . . , γn} of t∗ such that

Σ(tC , gC ) = {±(γi ± γ j )/2,±γ j }.
The restricted root systemΣ = Σ(tC , kC ) is of type An−1,Cn or Dn,

and the first of these cases arises precisely whenN is a Euclidean Jordan
algebra. This case was studied in [S1], therefore we restrict our attention to
the last two cases.

The root multiplicities inΣ play a key role in our considerations. IfΣ
is Cn, there are two multiplicities, corresponding to the short and long roots,
which we denote byd ande, respectively. IfΣ is Dn, andn 6= 2, then there
is a single multiplicity, which we denote byd, so thatDn may be regarded
as a special case ofCn, with e= 0.

The root systemD2 is reducible (being isomorphic toA1 × A1) and
a priori there are two root multiplicities. In what follows, we explicitly
exclude the case when these multiplicities are different. This means that we
exclude from consideration the groups

G = O(p,q), N = Rp−1,q−1(p 6= q);
indeed, our main results are false for these groups. When the two multiplic-
ities coincide, we once again denote the common multiplicity byd.

The multiplicity of the short roots±(γi ± γ j )/2 in
∑
(tC , gC ) is equal

to 2d, and the multiplicity of the long roots±γi is e+ 1.
In the appendix we include a table listing the groups under consideration,

as well as the values ofd ande for each of these groups.

1.2. Cayley transform. We briefly review the notion of the Cayley trans-
form. LetC be the following element (of order 8) inSL2 (C)

C = 1√
2

(
1 i
i 1

)
.

The Cayley transform ofsl2(C) is the automorphism (of order 4) given
by

c= Ad C.

It transforms the “usual” basis ofsl2(C)

x =
(

0 1
0 0

)
, y=

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
,
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to the basis

X = 1

2

(−i 1
1 i

)
, Y = 1

2

(
i 1
1 −i

)
, H = i

(
0 −1
1 0

)
,

whereX = c(x) = C−1xC, etc. In turn,c can be expressed as

c= exp ad
πi

4
(x+ y) = exp ad

πi

4
(X+ Y).

The key property of the Cayley transform is that it takes the compact
torus (spanned byiH) to the split torus spanned byh (cf. [KW]).

We turn now to the Lie algebragC . By the Cartan-Helgason theorem
the root spacespγ j are one-dimensional, and so by the Jacobson-Morozov
theorem we get holomorphic homomorphisms

Φ j : sl2(C) −→ gC , j = 1, ...,n

such thatX j = Φ j (X) spanspγ j .
We fix such mapsΦ j , and denote the images ofx, X, y,Y,h, H by

xj , X j ,etc. Since the rootsγ j are strongly orthogonal, the triples{X j ,Yj , Hj }
commute with each other, and the Cayley transform ofg is defined to be the
automorphism

c= exp ad
πi

4

(∑
X j +

∑
Yj

)
=
∏

exp ad
πi

4
(X j + Yj ).

Thus we obtain anR-split toral subalgebraa defined by

a = c−1(i t) = Rh1⊕ · · · ⊕ Rhn.

The roots ofaC in gC are

Σ(aC , gC ) =
{±εi ± ε j ,±2ε j

}
whereεi = 1

2
γi ◦ c.

The short roots have multiplicity 2d and the long roots have multiplicity
e+ 1.

In facta ⊂ l, and we have

Σ(a, l) = {±(εi − ε j )
}
, Σ(a, n) = {εi + ε j ,2ε j

}
,

Σ(a, n) = {−εi − ε j ,−2ε j

}
Definition 1.1. The invariant form〈., .〉 ong is normalized by requiring

〈x1, y1〉 = 1.

For y ∈ n, we set|y| def= √−〈y, θy〉 , as in Introduction.



208 A. Dvorsky, S. Sahi

1.3. Orbits and measures.We now describe the orbits ofL in n ' N∗.
For k = 1, ...,n− 1, define

Ok = L · (y1+ y2+ . . .+ yk).

Then these, together with the trivial orbitO0, comprise the totality of the
singular (i.e., non-open)L-orbits inn.

We defineν ∈ a∗ as

ν = ε1+ ε2+ . . .+ εn.

Thenν extends to a character ofl , and we will writeeν for the corresponding
(spherical) character ofL.

Lemma 1.2. The orbitO1 carries a naturalL−equivariant measuredµ1,
which transforms by the charactere2dν, that is∫

O1

g(l · y)dµ1(y) = e2dν(l)
∫

O1

g(y)dµ1(y).

Proof. Let S1 be the stabilizer ofy1 in L. It suffices to show that the modular
function of S1 is the restriction, fromL to S1, of the charactere2dν. Passing
to the Lie algebras1, we need to show that

tr ads1 = 2dν|s1.

To see this, we remark thats1 has codimension 1 inside a maximal
parabolic subalgebraq of l, corresponding to the stabilizer of the line
throughy1. The space of characters ofq is two-dimensional, and it follows
that the space of characters ofs1 is one-dimensional. Hence any character
of s1 is determined by its restriction toa∩ s1 = Kerε1. The restriction ofν
to s1 is nontrivial, hence

tr ads1 = kν

for some constantk.
Obviously,tr adl = 0, and the only root spaces missing froms1 are the

root spaceslε1−ε j , j ≥ 2 (each of these root spaces has dimension 2d).
Hence, fora ∈ a

tr ads1(a) = −2d
n∑

j=2

(ε1− ε j )(a),

and restricting this toKerε1, we obtain 2dν |a∩s1. ut
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Example.ConsiderG = O2n,2n realized as the group of all 2n × 2n real

matrices preserving the split symmetric form
(

0 I2n
I2n 0

)
. ThenP = L N =

GL2n(R)i Skew2n(R). More precisely,

L =
{(

A 0
0 At−1

)
: A ∈ GL2n(R)

}
and

N =
{(

I2n 0
B I2n

)
: B+ Bt = 0

}
.

Then

a = {diag(a1,a1,a2,a2, . . . ,an,an,

− a1,−a1,−a2,−a2, . . . ,−an,−an), ai ∈ R}
is the toral subalgebra ofg (and l) described in the preceding subsection.
We can take

y1 =
(

02n B1
0 02n

)
, whereB1 =

(
0 −1 0
1 0 0
0 0 0

)
.

The Lie algebras1 of the stabilizerS1 = StabL y1 can be written as

s1 =
{(

A 0
0 −At

)
: A =

(
A11 0
A21 A22

)
, A11 ∈ sl2, A22 ∈ gl2n−2

}
It is a codimension 1 subalgebra of the parabolic subalgebraq of gl2n, where
q = (gl2+ gl2n−2)+ R2,2n−2.

Remark.In this exampleν = 1
2 tr, d = 2 ande2dν = (det)2.

2. Minimal representation of G

If χ is a character ofl, we writeπχ for the (unnormalized) induced represen-
tationIndG

P
(χ). These representations were studied in [S3] in the “compact”

picture, by algebraic methods. Among the results established there was the
existence of a finite number of “small”, unitarizable, spherical subrepresen-
tations, which occur for the following values ofχ

χ j = e− jdν, j = 1, . . . ,n− 1.

In this paper we use analytical methods, and work primarily with the
“non-compact” picture, which is the realization ofπχ on C∞(N), via the
Gelfand-Naimark decomposition

G ≈ NP.
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In fact, using the exponential map we can identifyn andN, and realizeπχ
on C∞(n).

We will show that the unitarizable subrepresentation ofπχ1 admits a nat-
ural realization on the Hilbert spaceL2(O1,dµ). Since there is no obvious
action ofG on this space, we have to proceed in an indirect fashion. The
key is an explicit realization of the spherical vectorσχ1.

2.1. The Bessel function.We let d,e be the root multiplicities ofΣ(t, k)
as in previous section, and define

τG = τ = (d− e− 1)/2

as in the introduction.
Let Kτ be theK -Bessel function on(0,∞) satisfying

z2K ′′τ + zK′τ − (z2+ τ2)Kτ = 0. (1)

Putφτ(z) = Kτ (
√

z)(√
z
)τ , thenφτ satisfies the differential equation

Dφτ = 0,whereDφ = 4zφ′′ + 4(τ + 1)φ′ − φ. (2)

We lift φτ to anM-invariant functiongτ onO1, by defining

gτ (y) = φτ(−〈y, θy〉) = Kτ (|y|)
|y|τ . (3)

Remark. If d = e (as is the case forG = Sp2n(C) or Spn,n), thenτ = −1
2

and

gτ (y) = |y|1/2 K−1/2(|y|) = |y|1/2 exp(− |y|)
|y|1/2 = e−|y|.

If d = e+ 1 (this is true forGL2n(k), k = R, C orH), then

gτ (y) = K0(|y|).
Proposition 2.1. (1) gτ is a (square-integrable) function inL2(O1,dµ1).

(2) The measuregτdµ1 defines a tempered distribution onn.

Proof. (1) We define

O′ def= {y′ ∈ O1 :
∣∣y′∣∣ = 1}.

ThenO′ is compact; the map

O′ × (0,∞) 3 (y′, w) 7−→ wy′ ∈ O1

is a diffeomorphism, and the measuredµ1 can be decomposed as a product

dµ1(wy′) = dµ′(y′)dµ′′(w)
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We now determine the explicit form ofdµ′′(w).
Define h = ∑n

i=1 hi , then (adh)y = −2y for any y ∈ n. We take
y ∈ O1, z> 0, a= ln z and calculate

dµ1(zy) = dµ1

(
exp

(
− a

h

2

)
· y
)
= e−2dν(− ah

2 )dµ1(y)

= ednadµ1(y) = zdndµ1(y).

Therefore, forz> 0

dµ1(zy) = zdndµ1(y) (4)

and it follows thatdµ′′(zw) = zdndµ′′(w), and so, up to a scalar multiple,

dµ′′(w) = wdn−1dw,

wheredw is the Lebesgue measure.
We can now calculate∫

O1

|gτ (y)|2 dµ1(y) =
∫ ∞

0

∫
O′

Kτ (w)
2

w2τ
dµ′(y′)wdn−1dw

= c
∫ ∞

0

Kτ (w)
2

w2τ
wdn−1dw, (5)

wherec = µ′(O′) is a positive constant. The functionKτ (w) has a pole
of orderτ at 0 (or, in case ofτ = 0, a logarithmic singularity at 0), and
it decays exponentially asw → ∞ [W, 3.71.15]. Hencew−2τKτ (w)

2 has
a pole of order

4τ = 2(d− e− 1) ≤ 2d− 2< dn− 1

(recall that we requiren ≥ 2). Thus the integrand in (5) is non-singular and
decays exponentially asw→∞. Therefore, the integral (5) converges and
gτ (y) ∈ L2(O1,dµ1).

(2) From the calculation in (1), we see thatgτ (y) ∈ L1
loc(O1,dµ1) and

has exponential decay at∞ (i.e., as|y| → ∞). This implies the result. ut

We can now define the Fourier transform ofgτ ,

Φ = ĝτdµ1

as a (tempered) distribution onn. The key result is the following

Proposition 2.2. Φ is a multiple of the spherical vectorσχ1.

The proof of this proposition will be given over the next two subsections.
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2.2. Characterization of spherical vectors. For φ : n → n, let ξ(φ)
denote the corresponding vector field:

ξ(φ) f(x) = d

dt
f(x+ tφ(x))

∣∣∣∣
t=0

for f : n→ C.

Then we have the following formulas for the action ofπχ on C∞(n):

• for x0 ∈ n, πχ(x0) = ξ(x0),
• for h0 ∈ l, πχ(h0) = χ(h0)− ξ ([h0, x]),
• for y0 ∈ n, πχ(y0) = χ[x, y0] − 1

2ξ ([h, x]), whereh = [x, y0].
We need a Lie algebra characterization ofσχ :

Lemma 2.3. The space ofπχ(k)-invariant distributions onn is 1–dimen-
sional (and spanned byσχ).

Proof. It is well known (and easy to prove) that the only distributions onRn,
which are annihilated by∂

∂xi
, i = 1, ...,n are the constants. More generally,

we can replaceRn by a manifold, and
{
∂
∂xi

}
by any set of vector fields which

span the tangent space at each point of the manifold.
Forχ = 0, the formulas above show thatπ0(g) acts by vector fields on

C∞(n). Moreover, using the decompositionG = K P, we see thatπ0(k) is
a spanning family of vector fields. Thus the result follows in this case.

For generalχ, if T is aπχ(k)-invariant distribution, thenT/σχ = Tσ−χ
is π0(k)-invariant, and hence a constant. ut
Proposition 2.4. Let T be anM-invariant distribution onn such that

πχ(y+ θy)T = 0 for somey 6= 0 in n,

thenT is a multiple of the spherical vectorσχ .

Proof. The M-invariance ofT implies that

πχ(m)T = 0

Sincem is a maximal subalgebra ofk, m and y+ θy generatek as a Lie
algebra. Thus

πχ(k)T = 0,

and the result follows from the previous lemma. ut
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2.3. TheK -invariance of the Bessel function. We now turn to the proof
of Proposition 2.2. To simplify notation, we will writeπ instead ofπχ1.
SinceΦ is clearlyM-invariant, by Proposition 2.4 it suffices to show

π(y1+ θy1)Φ = 0

for y1 ∈ n. We will prove this through a sequence of lemmas.
It is convenient to introduce the following notation: ifg1 and g2 are

functions onO1, we define

(g1, g2) =
∫

O1

g1(y) g2(y)dµ1(y)

provided the integral converges.
If g is a function onO1 andh ∈ l, then the action ofh on g is given by

h · g(y) def= d

dt
g(eth · y)

∣∣∣∣
t=0

.

In the computation below, we shall work with the expressions of the type(
d

dt

∫
O1

g(eth · y)dµ(y)
)∣∣∣∣

t=0

.

To justify differentiation under the integral sign, we need to impose the
standard conditions ong (e.g. [Ke, p.170]), as follows.

Define a class of functions4 ⊂ C∞(O1), given by the following condi-
tions: a smooth functiong belongs to4 if

• g ∈ L1(O1,dµ1) and
• for anyh ∈ l we can findc> 0 andG(y) ∈ L1(O1,dµ1), such that∣∣∣∣∣ d

dt
g(eth · y)

∣∣∣∣
t=t0

∣∣∣∣∣ ≤ G(y)

for all y ∈ O1 and|t0| < c.

Lemma 2.5. Supposeg1, g2 are smooth functions onO1, such thatg1g2 ∈ 4 .
Then

(h · g1, g2)+ (g1,h · g2) = 2dν(h)(g1, g2). (6)

Proof. Using theL-equivariance ofdµ1, we obtain∫
O1

g1(e
thy)g2(e

thy)dµ1 = e2tdν(h)
∫

O1

g1g2 dµ1.
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Under the assumptions of the lemma, we can differentiate this identity int,
to get ∫

O1

h · (g1g2)dµ1 = 2dν(h)
∫

O1

g1g2 dµ1.

By the Leibnitz rule, the result follows. ut
More generally, ifg1, g2 are functions onn×O1, then(g1, g2) is a func-

tion onn. In this notation, forg in L1(O1,dµ1), the Fourier transform of
gdµ1 is given by the formula

ĝdµ1 = (e−i〈x,y〉, g).

Lemma 2.6. Let g ∈ L1(O1,dµ1) be a smooth function onO1, such that

e−i〈x,y〉g ∈ 4 .

Supposef = (e−i〈x,y〉, g), then

π(y1) f = −1

2
(e−i〈x,y〉,h · g(y)), whereh = [x, y1].

Proof. By the formula for the action ofπ(y1), we get

−2(π(y1) f + dν(h) f ) = ξ ([h, x]) · (e−i〈x,y〉, g)

= d

dt

(
e−i〈x+t[h,x],y〉, g

)∣∣
t=0

= d

dt

(
e−i〈x,y−t[h,y]〉, g

)∣∣
t=0

= − (h · e−i〈x,y〉, g
)

= (e−i〈x,y〉,h · g)− 2dν(h)(e−i〈x,y〉, g).

where we have used the previous lemma, and the relation

〈x + t[h, x], y〉 = 〈x, y〉 + t 〈[h, x], y〉
= 〈x, y〉 − t 〈x, [h, y]〉 = 〈x, y− t[h, y]〉 .

The result follows. ut
The pairing−〈·, θ·〉 gives a positive definiteM-invariant inner product

onn, and we now obtain the following

Lemma 2.7. Suppose thatg(y) = φ (−〈y, θy〉) for some smoothφ on
(0,∞), ande−i〈x,y〉g ∈ 4 . Put f(x) = (e−i〈x,y〉, g), as before. Then

π(y1) f = (e−i〈x,y〉, 〈x, [[θy, y1], y]〉φ′ (−〈y, θy〉)) .



Explicit Hilbert spaces for certain unipotent representations II 215

Proof. Writing h = [x, y1] as in the previous lemma, we get

h · g(y) = d

dt
φ (−〈y+ t[h, y], θ(y+ t[h, y])〉)|t=0

= d

dt
φ
(−〈y, θy〉 − 2t 〈θy, [h, y]〉 + O(t2)

)∣∣
t=0

= −2〈θy, [h, y]〉φ′ (−〈y, θy〉) .

Since

〈θy, [h, y]〉 = 〈θy, [[x, y1], y]〉 = 〈x, [[θy, y1], y]〉 ,
the result follows. ut

The key lemma is the following computation

Lemma 2.8. Let φ and f be as in the previous lemma, and suppose for
x ∈ n

e−i〈x,y〉φ (−〈y, θy〉) ∈ 4 , e−i〈x,y〉φ′ (−〈y, θy〉) ∈ 4 . (7)

Then we have

π(y1+ θy1) f(x) = (e−i〈x,y〉, i 〈θy1, y〉 (Dφ) (−〈y, θy〉)) , (8)

where the differential operatorD is given by the formula(2), i.e.

(Dφ) (−〈y, θy〉) = 4(−〈y, θy〉) φ′′ + 2(d+ 1− e)φ′ − φ. (9)

Proof. Choose a basisl j of l and define functionscj (y) by the formula
[θy, y1] =∑ j cj (y)l j . Then by the previous lemma

π(y1) f =
∑

j

(e−i〈x,y〉,
〈
x, [l j , y]〉 cjφ

′) = i
∑

j

d

dt

(
e−i〈x,y+t[l j ,y]〉, cjφ

′
)∣∣∣

t=0

= i
∑

j

(l j · e−i〈x,y〉, cjφ
′).

Differentiation in this calculation is justified, becausee−i〈x,y〉φ′(−〈y, θy〉)∈4 .
Applying (6) to the last expression, we can write

π(y1) f = −i
∑

j

(
e−i〈x,y〉,−2dν(l j )cjφ

′ + cj l j · φ′ + φ′l j · cj
)

. (10)

We now calculate each term in this expression.
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• First we have ∑
j

ν(l j )cjφ
′ = ν([θy, y1])φ′.

Since ν is a real character ofl, it vanishes onl ∩ k and we have
ν([θy, y1]) = ν([θy1, y]). Recall thatn andn are irreduciblel-modules.
Therefore,ν([θy1, y]) = k 〈θy1, y〉 for some constantk 6= 0, indepen-
dent of y. Settingy = y1, we get〈θy1, y1〉 = 〈−x1, y1〉 = −1. Hence
k = −ν([θy1, y1]) = 1, and therefore

−
∑

j

2dν(l j )cjφ
′ = −2d 〈θy1, y〉φ′. (11)

• Next we compute∑
j

cj l j · φ′ = [θy, y1] · φ′

= d

dt
φ′ (−〈y+ t[[θy, y1], y], θ(y+ t[[θy, y1], y])〉)∣∣t=0

= − 2〈y, [[y, θy1], θy]〉φ′′ (−〈y, θy〉)
Sincey is a k-conjugate to a root vector, there is a scalark′ indepen-
dent of y such that[[y, θy], y] = k′ 〈y, θy〉 y . Settingy = y1 we get
〈y1, θy1〉 = −1,

[[y1,−x1], y1] = −2y1

andk′ = 2.Also−〈y, [[y, θy1], θy]〉 = 〈[y, θy], [y, θy1]〉 =
〈[[y, θy], y],

θy1
〉
. Hence ∑

j

cj l j · φ′ = 4〈y, θy〉 〈θy1, y〉φ′′. (12)

• Next we note that
∑

j l j · cj is independent of the basisl j , so we may
assume that

θl j = ±l j and
〈
l j ,−θlk

〉 = δ jk.

Thencj (y) =
〈[θy, y1],−θl j

〉
and∑

j l j · cj = ∑ j

〈[θ[l j , y], y1],−θl j
〉

= ∑ j

〈
y1, [θ[l j , y], θl j ]

〉 = −〈y1,Ωθy〉 .
HereΩ =∑ j ad(θl j )

2 = Ωl − 2Ωk∩l , where the Casimir elements are
obtained by using dual bases with respect to〈 , 〉.
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To continue, we need the following lemma:

Lemma 2.9. Ω acts onn by the scalark′′ = 2− 2e.

Proof. Whene= 1 it’s easy to see that the operatorΩ acts by 0. Indeed,
in this caseg is a complex semisimple Lie algebra and for each basis
elementl j ∈ k ∩ l there exists a basis elementl ′j =

√−1l j ∈ p ∩ l . Then
[l j , [l j , x]] + [l ′j , [l ′j , x]] = 0 andk′′ = 0.

Whene = 0, g is split and simply laced, andl is the split real form
of a complex reductive algebralC . Take a root vectorxλ ∈ gλ, whereλ is
any positive root inn. For any positive rootα of lC we fix eα ∈ lα and set
lα = eα+ θeα ∈ k∩ l andl ′α = eα− θeα ∈ p∩ l. Then the collection of alllα,
l ′α together with the orthonormal basis of a Cartan subalgebraf of l forms
a basis ofl. Observe that

[lα, [lα, xλ]] + [l ′α, [l ′α, xλ]] = [eα, [eα, xλ]] + [e−α, [e−α, xλ]] = 0,

sincexλ ∈ gλ and neitherλ + 2α nor λ − 2α is a root of the simply laced
algebragC .

We choose a basis{ui } of f, and denote the elements of the dual (with
respect to〈 , 〉) basis bỹui . Then

Ωxλ =
∑

i

[ui , [̃ui , xλ]] = 〈λ, λ〉 xλ = 2xλ.

In the remaining two casesk ∩ l acts onn irreducibly, thereforeΩ
automatically acts by a scalar and it suffices to compute

∑
j [l j , [l j , x1]]. For

e = 3 we haveG = GL2n(H), L = GLn(H) × GLn(H) andn = Hn×n.
The computation for this group is similar to the case ofG = GL2n(R). We
reduce the calculation to the summation over the diagonal subalgebra ofl

and obtain

Ωxλ = 〈λ, λ〉 xλ + 3
〈√−1λ,

√−1λ
〉
xλ = −4xλ.

Finally, for e = 2 (G = Spn,n), a direct evaluation of
∑

j [l j , [l j , x1]]
givesk′′ = −2. ut
Therefore, we get∑

j

φ′l j · cj = −2(1− e) 〈θy1, y〉φ′. (13)

• Finally, we have

π(θy1) f = d

dt

(
e−i〈x+tθy1,y〉, φ

)∣∣
t=0 = −i

(
e−i〈x,y〉, 〈θy1, y〉φ) . (14)

Putting the formulas (11)–(14) together, we deduce the lemma. ut



218 A. Dvorsky, S. Sahi

Proof of Proposition 2.2.Recall that we studyφτ(z) = Kτ (
√

z)(√
z
)τ , its lift

gτ to the radial function onO1,

gτ (y) = φτ(−〈y, θy〉) = Kτ (|y|)
|y|τ

and its Fourier transformΦ(x) = (e−i〈x,y〉, gτ ). By Proposition 2.4 it suffices
to check thatπ(y1 + θy1)Φ = 0. This identity would follow immediately
from Lemma 2.8, becauseDφτ = 0 by formula (2) and then the desired
result follows from (8).

To complete the proof we have to verify the assumptions (7). In Sub-
section 2.1 we proved thatgτ ∈ L1(O1,dµ1). It is easy to verify (using
the standard facts about the derivatives ofKτ from [W]), that the lifts to
O1 of the functionsφ′τ (z) andφ′′τ (z) (we denote them byg′τ (y) andg′′τ (y))
both belong toL1(O1,dµ1). Observe also thatφτ(z), φ′τ (z), φ′′τ (z) are all
monotone on(0,∞).

Moreover, since all these functions tend to zero exponentially as|y|→∞,
the functionsA(y)gτ (y), A(y)g′τ (y), A(y)g′′τ (y) all belong toL1(O1,dµ1),
for any A(y) bounded in the neighbourhood ofy= 0 and growing (at most)
polynomially with respect to|y| as|y| → ∞.

Fix h ∈ l , x ∈ n and choosec > 0 sufficiently small, such that for all
y ∈ O1 and|t| < c ∣∣〈eth · y, θ(eth · y)〉∣∣ ≥ |〈y, θy〉|

2
.

We can then estimate the derivative:∣∣∣∣ d

dt

(
e−i〈x,eth·y〉φτ

(− 〈ethy, θethy
〉))∣∣∣∣

≤ ∣∣A1(y)φτ
(|y|2 /2)∣∣+ ∣∣A2(y)φ

′
τ

(|y|2 /2)∣∣ ,

for all y ∈ O1 and |t| < c, where A1(y), A2(y) are some functions of
polynomial growth. From the discussion above, the right-hand side of this
inequality is anL1-function onO1, hencee−i〈x,y〉gτ ∈ 4 .

Proceeding in the same manner, we deduce thate−i〈x,y〉g′τ ∈ 4 . ut

2.4. Proof of Theorem 0.1. Denote byJ the space of the induced repre-
sentationπ1 = IndG

P
(e−dν). By the Gelfand-Naimark decomposition and

the exp map,J can be viewed as a subspace ofC∞(n). Then forl ∈ L and
η ∈ J we have

π1(l)η(x) = e−dν(l)η(l−1 · x).
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It was proved in [S3] that the(g, K)-moduleJ has a unitarizable spherical
(g, K)-submoduleV, which we also regard as a subspace ofC∞(n).

Remark. It is possible to give a direct description of the elements of the
“abstract” Hilbert spaceH , whereH is the Hilbert space closure ofV
with respect to the(g, K)-invariant norm onV. For that purpose we use the
“compact” realization ofπ1 on C∞(K/M) from [S3]. It was shown thatπ1
is a representation of ladder type, with all itsK -types{αm | m ∈ N} lying
on a single line,α1 being a one-dimensionalK -type. The restriction〈 , 〉m
of a π1-invariant Hermitian form to anyK -type αm is a multiple of the
L2(K)-inner product onV, and from the explicit formulas in [S3] it follows
that

qm
def= 〈 , 〉m〈 , 〉1 = O(mC)

for some constantC > 1, which can be expressed in terms of parameters
d, e andn. Thus we can identifyH with the Hilbert spaceL2 (N, {qm}),
where the constantqm gives the weight of the pointm ∈ N. That is, any
element ofH can be viewed as anM-equivariant function onK , such that
its sequence of Fourier coefficients belongs toL2 (N, {qm}). In particular
L2 (N, {qm}) ⊂ l2(N), and the elements ofH all lie in L2(K).

We writeH for the space of those tempered distributions onn which are
Fourier transforms ofψdµ1 for someψ ∈ L2(O1,dµ1). If η is the Fourier
transform of a distribution of the formψdµ1, i.e.,

η(x) =
∫

O1

e−i〈x,y〉ψ(y)dµ1(y) =
(
e−i〈x,y〉, ψ(y)

)
,

then

π1(l)η(x) = e−dν(l)η(l−1 · x) =
∫

O1

e−i〈l−1·x,y〉ψ(y)e−dν(l)dµ1(y)

=
∫

O1

e−i〈l−1x,l−1y〉ψ(l−1 · y)e−dν(l)dµ1(l
−1 · y)

= (e−i〈x,y〉,edν(l)ψ(l−1 · y)).
It follows from the calculation above thatP acts unitarily on H (it is
convenient to identify this action with its realization onL2(O1,dµ1) via
the Fourier transform).We denote this unitary representation ofP by π ′.
Observe that(π ′,H) is an irreducible representation ofP.

According to Proposition 2.1,Φ(x) = (e−i〈x,y〉, |y|−τ Kτ (|y|)) belongs
to H.

Theorem 2.10. V is a dense subspace ofH, and the restriction of the norm
is (g, K)-invariant.
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Proof. Let C∞(K)V be the subspace ofC∞(K), consisting of those smooth
functions onK , whoseK -isotypic components belong toV. SinceV is
a submodule ofJ, C∞(K)V is obviouslyG-invariant.

Denote byC(G) the convolution algebra of smoothL1 functions on
G = PK, and consider

W = π1(C(G))Φ ⊂ C∞(K)V .

So all elements ofW are continuous functions onK , hence continuous
on G, and therefore are determined by their restrictions toN. Moreover,
W = π1(C(PK))Φ andK fixesΦ, therefore

W = π1(C(P))Φ = π ′(C(P))Φ.

This shows thatW is aπ ′(P)-invariant subspace ofH, and from the irre-
ducibility of π ′ we conclude thatW is dense inH.

We can now put twoπ1(P)-invariant norms onW – one fromH and
another fromV, as follows. If f = ∑

cmvm, with vm in the K -isotypic
component with highest weightαm (occurring inV) and‖vm‖L2(K) = 1,
then

‖ f ‖2
V =

∑
|cm|2 qm. (15)

Since f is smooth, it follows that|cm| decays rapidly, so the series in (15)
converges, thus giving aπ1(P)-invariant norm onW.

Then it follows from [P] (cf. [S1, p.417]), that we can find a (dense)C (P)-
invariant subspaceW′ ⊂ W, such that these two forms are proportional
on W′. Considering the closure ofW′ we obtain an isometricP-invariant
imbedding ofH into H .

ThenW is:
(1) a G-invariant subspace of the irreducible moduleH , hence dense

in H ;
(2) a dense subspace of the Hilbert spaceH.
It follows thatH = H . ut
This concludes the proof of Theorem 0.1.

3. Tensor powers ofπ1

3.1. Restrictions to P. In the previous section we constructed a unitary
representationπ1 of G acting on the Hilbert spaceL2(O1,dµ1), whereO1
is the minimalL-orbit in a non-Euclidean Jordan algebraN. Define thek-th
tensor power representation

Πk = π⊗k
1 (2≤ k < n).

As we shall show, the techniques developed in [DS] allow us to establish
a duality between the spectrum of this tensor power and the spectrum of
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a certain homogeneous space. We omit the proofs of the several propositions
below, because the proofs of the corresponding statements from [DS] can
be used without any substantial modification.

Observe that the orbitOk is dense inO1+O1+ . . .+O1︸ ︷︷ ︸
k times

. The repre-

sentationΠk acts on
[
L2(O1,dµ1)

]⊗k ' L2(O′k,dµ′), whereO′k = O×k
1

and dµ′ is the product measure onO′k . We fix a generic representative
ξ ′ = (ξ1, ξ2, . . . , ξk) ∈ O′k , such that

ξ = ξ1+ ξ2+ . . .+ ξk ∈ Ok.

Denote byS′k and Sk the isotropy subgroups ofξ ′ andξ, respectively,
with respect to the action ofL onO′k andOk. Observe that the Lie algebras
s′k andsk of S′k andSk, respectively, can be written as

s
′
k = (hk + lk)+ uk

sk = (gk + lk)+ uk.

Herelk, gk andhk are reductive,hk ⊂ gk anduk is a nilpotent radical common
for boths′k andsk. Let Gk andHk be the corresponding Lie groups.

Example. Take G = O2n,2n and k < n. Then ξi = E2i−1,2i − E2i,2i−1

(1≤ i ≤ k), ξ =∑k
i=1 ξi and

sk =
(
sp2k(R)+ gl2(n−k)(R)

)+ R2k,2(n−k).

ThenGk = Sp2k(R) and it’s easy to check thatHk = SL2(R)k.

The following Lemma can be verified by direct calculation (cf. [DS,
Lemma 2.1]).

Lemma 3.1. Letχξ be the character ofN corresponding toξ ∈ N∗. Then

Πk|P = IndP
S′kN(1⊗ χξ) = IndP

SkN

((
IndSk

S′k
1
)⊗ χξ) (L2-induction).

ut
Letγ ′ = IndGk

Hk
1 be the quasiregular representation ofGk onL2(Gk/Hk);

then it can be decomposed using the Plancerel measuredµ for the reduc-
tive homogeneous spaceXk = Gk/Hk and the corresponding multiplicity
functionm : Ĝk→ {0,1,2, . . . }, i.e.,

γ ′ '
∫ ⊕

Ĝk

m(κ)κ dµ(κ).

Each irreducible representationκ of Gk can be extended to an irreducible
representationκ∨ of Sk, and the decomposition of the Lemma above can be
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rewritten as

Πk|P =
∫ ⊕

Ĝk

m(κ)Θ(κ)dµ(κ), (16)

whereΘ(κ) = IndP
SkN(κ

∨ ⊗ χξ).
Moreover, by Mackey theory all representationsΘ(κ) are unitary irre-

ducible representations ofP, andΘ(κ′) ' Θ(κ
′′
) if and only if κ′ ' κ′′.

3.2. Low-rank theory. In [DS] we extended the theory of low-rank rep-
resentations ([Li]) to the conformal groups of euclidean Jordan algebras.
Inspection of the argument in [DS] shows that the analogous theory can
be developed in exactly the same manner for the conformal groups ofnon-
euclideanJordan algebras.

For any unitary representationη of G, we decompose its restriction
η|N into a direct integral of unitary characters, where the decomposition is
determined by a projection-valued measure onN̂ = N∗. If this measure is
supported on a singlenon-openL-orbit Om, 1 ≤ m < n we callη a low-
rank representation, and writerankη = m. Proceeding by induction onm,
as in [Li], [DS, Sect 3], we can prove the following

Theorem 3.2. Let η be a low-rank representation ofG. Write A(η, P) for
the von Neumann algebra generated by{η(x)| x ∈ P} and A(η,G) for
the von Neumann algebra generated by{η(x)| x ∈ G}. ThenA(η,G) =
A(η, P). ut
Proof of Theorem 0.2.Now consider the restriction ofΠk to N. Its re-
striction to P is given by the direct integral decomposition (16), and
we can further restrict it toN. The rank of the induced representation
Θ(κ) = IndP

SkN(κ
∨ ⊗χξ) is k (the N–spectrum is supported on theL−orbit

of ξ, i.e.Ok). ThereforeΠk can be decomposed over the irreducible repre-
sentations ofG of rankk.

It follows from the theorem above that any two non-isomorphic repre-
sentations from the spectrum ofΠk restrict to non-isomorphic irreducible
representations ofP. Hence the representationΠk can be decomposed as

Πk =
∫ ⊕

Ĝk

m(κ)θ(κ)dµ(κ), (17)

where for almost everyκ the unitary irreducible representationθ(κ) is
obtained as theunique irreducible representation ofG determined by the
conditionθ(κ)|P = Θ(κ).

Therefore, the mapκ → θ(κ) gives a (measurable) bijection between
the spectrum ofΠk = π⊗k and the unitary representations ofGk occurring
in the quasiregular representation onL2(Gk/Hk). ut
Example.TakeG = E7(7). It is the conformal group of the split exceptional
real Jordan algebraN of dimension 27. Consider the tensor square of the



Explicit Hilbert spaces for certain unipotent representations II 223

minimal representationπ1 of G (k = 2). Then L = R∗ × E6(6), S′2 is
the stabilizer of y1 and y2 and S2 is the stabilizer ofy1 + y2 ∈ O2.
One can see that in this caseg2 = Stabs0(5,5)(y1 + y2) = so(4,5) and
h2 = Stabs0(5,5)(y1) ∩ Stabs0(5,5)(y2) = so(4,4) (cf. [A, 16.7]). Hence
the decomposition (17) establishes a duality between the representations
of E7(7) occurring inΠ2 = π1 ⊗ π1 and the unitary representations of
Spin(4,5)occurring inL2 (Spin(4,5)/Spin(4,4)) . The homogeneous space
Spin(4,5)/Spin(4,4) is a (pseudo-riemannian) symmetric space of rank 1,
and it is known to be multiplicity free. Therefore,π1 ⊗ π1 has simple
spectrum.

Similarly, for G = E7(C) we obtain a duality betweenE7(C) and the
symmetric spaceSO9(C)/SO8(C).

A. Groups associated to non-Euclidean Jordan algebras

G K/M d e Gk/Hk for 2≤ k < n

GL2n(R) O2n/(On × On) 1 0 GLk(R)/[GL1(R)]k
O2n,2n (O2n × O2n)/O2n 2 0 Sp2k(R)/[SL2(R)]k
E7(7) SU8/Sp4 4 0 Spin(4,5)/Spin(4,4)

Op+2,p+2 [Op+2]2/[O1× O2
p+1] p 0

Spn(C) Spn/Un 1 1 Ok(C)/[O1(C)]k
GL2n(C) U2n/(Un ×Un) 2 1 GLk(C)/[GL1(C)]k
O4n(C) O4n/U2n 4 1 Sp2k(C)/[SL2(C)]k
E7(C) E7/(E6×U1) 8 1 SO9(C)/SO8(C)
Op+4(C) Op+4/(Op+2×U1) p 1

Spn,n (Spn × Spn)/Spn 2 2 O∗k/[O∗1]k
GL2n(H) Sp2n/(Spn × Spn) 4 3 GLk(H)/[GL1(H)]k
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