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Jordan algebras and degenerate principal series

By Siddhartha Sahi at New Brunswick*)

Introduction

Let G be a simple Lie group with Lie algebra g, and let K be the maximal compact
subgroup corresponding to a Cartan involution 8. Suppose G has a parabolic subgroup
P = LN such that (i) the nilradical N is abelian, and (ii) P is conjugate to P = 0(P).

The spherical (degenerate) P-principal series representations of G are obtained by
starting with a positive real character of L, extending trivially to P, and inducing up to G. For
such a representation, (i) implies that the K-types have multiplicity 1 and (ii) implies that
each irreducible constituent has an invariant Hermitian form.

In this paper we provide a rather detailed analysis of these representations. We
explicitly determine the K-types of their irreducible constituents and the signature of the
Hermitian form on each K-type.

A direct consequence of this is a determination of the unitarizable constituents of the
series. In particular, for each such group G, we obtain a finite set of “small” unitary
representations which includes the “minimal” representation. (See Theorems 4B and 5A.)

In the sequel to this paper we will prove that these representations have natural
realizations on appropriate L2-spaces of L-orbits in N. (Thereby extending the results of
[SS] and [S3].) A still later paper will finally reveal our ultimate objective which is to
obtain an extension of Howe’s theory of reductive dual pairs.

In the spirit of [HT], the present paper relies on elementary algebraic methods of the
kind pioneered by [B]. Our results extend and generalize those of [W], [G], [BSS], [S1],
[S2], [J1], [J2] and several others.

*) This work was supported by NSF grants at Princeton University and Rutgers University and carried out
in part while the author was visiting Université de Nancy.



2 Sahi, Jordan algebras

As outlined in [BSS], one can also compute the composition series using very general
results of Barbasch and Vogan on the coherent continuation representation. However, this
method will not yield sharp results on K-types and signatures, and without additional ideas,
it is likely to require considerable case-by-case calculations.

We now describe the present situation and our techniques in more detail.

Parabolic subgroups satisfying (i) and (ii) arise naturally in the context of Jordan
algebras. Indeed the nilradical of such a parabolic subgroup has a natural structure of a
simple real Jordan algebra, which is unique up to isotopy.

Conversely, given a simple real Jordan algebra N, following the ideas of Tits [T],
Kantor [Ka], and Koecher [Ko], one recovers L as the Lorentz group, i.e. the subgroup of
G L(N) which preserves the Jordan norm up to a scalar multiple. The semidirect product
P = LN is the Poincaré group, and G is the conformal group of rational transformations of

N, generated by P and the conformal inversion 1: x+ —x~ 1.

This means that some of our intermediate results (especially Lemma 1D) can be
proved, perhaps more naturally, by Jordan algebra methods. However, this approach
involves some basic results in the structure theory of non-Euclidean Jordan algebras for
which there does not seem to be a convenient reference. Rather than invent (or reinvent)
the necessary Jordan theory, we have provided Lie-theoretic proofs which, though clumsier,
require fewer prerequisites.

The key to our approach is to use the structure of finite-dimensional constituents to
study infinire-dimensional constituents. This was also the main idea in the proof of the
Capelli identity of [KS]. :

Here is the overall strategy: Let f+ p be the Cartan decomposition of g. We first
prove a nondegeneracy result (Lemma 1D) for the action of p on K-types. This enables us
to use the Capelli identity to obtain explicit formulas (Theorem 1) for the p-action, general-
izing those for the “creation™ and “‘annihilation” operators in [B].

Everything that we wish to know about the principal series follows from these simple
formulas. Indeed most of the subsequent effort is devoted to organizing this information in
a useful and succinct fashion.

The formula for the Hermitian form is obtained in Theorem 2. Theorem 3 A deter-
mines the points of reducibility, and Theorems 3B and 3C describe the constituents and
their K-types in terms of their “rank”. Lemma 4 establishes a sharp criterion for unitarity
and Theorems 4 A-4E and 5A-5C determine all the unitarizable constituents.

The unitary representations described in Theorems 4B and SA are of particular
interest since they are all “unipotent” (in the sense of [V 1]) and correspond to some of the
smallest nilpotent coadjoint orbits of the group G. We expect that these representations (and
their analogs over other fields) will have some interesting applications.



Sahi, Jordan algebras 3
0. Roots and weights

In this section we recall some basic facts about the situation described in the intro-
duction. We will denote the complexified Lie algebra of a group by the corresponding
lower-case gothic letter. Our primary source is [KS], to which we direct the reader for
proofs and further references to the literature.

As noted in [KS], parabolic subgroups satisfying (i) and (ii) can be determined rather
simply from the restricted root system of g. Every maximal parabolic corresponds to a simple
restricted root a. The condition (i) means that « has coefficient 1 in the highest root, and (ii)
means that a is conjugate to —a by the long element of the restricted Weyl group. (This
classification was first carried out by [KN]. See the appendix of the present paper for a
list.)

Let f be a maximal toral subalgebra in the orthogonal complement of [nf in £, and
write n for the dimension of t. Then it is known that X (t, g) is a root system of type C,, and
there are precisely three possibilities for the subsystem X (t, f), namely C,, D,, or 4, _,. (See
for example [L].)

The last case occurs precisely when G/ K is a symmetric tube domain. Since this case
was dealt with in [S2], in the rest of this paper we confine our attention to the first two
situations, referring to them as cases C and D respectively.

We now fix a positive root system in X (t, f) and choose a basis {y,, ..., 7,} of t* such
that the simple roots are {(y;, — ;4 ,)/2} together with y, or (y,_, + 7,)/2, in cases C and D,
respectively.

Let ¢ = Y r;7; denote the half sum of positive roots in Z(t, f). The numbers r, were

listed in Table 1 in [KS], but since they are crucial in what follows, we relate them to the
root multiplicities in X (t, ).

Except for case D,, Z(t,T) is irreducible. Thus the short roots (y; £ 7,)/2 have a

common multiplicity d, and the long roots y; have a common multiplicity e. (e = 0 in case
D.) An easy calculation shows that 2r, = d(n — i) + e.

The case X (t,f) = D, arises precisely when G is the group O(p,q) (for p =g =3)
regarded as the conformal group of the quadratic form of signature (p —1,4— 1) on
RP*4~2 The parabolic P is the classical Poincaré group attached to this quadratic form.
With appropriate choices, the roots (y, + 7,)/2 and (y, — y,)/2 have multiplicities p — 2 and
q — 2 respectively, and it follows that r, = (p+q—4)/4, r, =(p—¢q)/4.

Putr = 2r, + 1 and let v be the positive character of L such that v*" is the determinant
of the adjoint action of L on n. (As pointed out in [KS], the differential of v is the Cayley
transform of (y, + --- +7,)/2; and r is closely related to the dual Coxeter number of g.)

For teR, let (n,, 1(¢)) denote the (normalized) induced representation Ind§(v') (by
right derivatives on the space of functions on G which are right K-finite and which trans-
form on the left by the character v'~" of P). By restriction to K we realize all the =, on
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V=L*(K/LNK)g tinie- In this picture, “multiplication” is a K-equivariant map from
V®V to V, and if X is in g, and u, v are in V, then we have

) Ty 4o (X)) (uv) = (n,(X)u)v+u(7t,,+,(X)v).

Since K/Ln K is a symmetric space, by the Cartan-Helgason theorem [He2], the X-
types of ¥ have multiplicity 1 and the set & of their highest weights consists of Y a;y;

12
where the a;’s are integers which satisfy a; = a;,,, and the additional conditions a, = 0

11

and a,_, = |a,] in cases C and D respectively.

Finally we recall Corollary 2.1 of [KS], which shows that for each nonnegative in-
teger k, I(2k + r) has an irreducible, spherical, finite dimensional subrepresentation F,
whose K-types have highest weights {) a;7,€ & :|a;| < k}. For F,, these weights are
;=71 +7y,+ -+ in case C, while in case D we also have p' =y, + - +y,_, — 7,.

This has the following easy, but important, consequence.

Lemma 0. If a weight Y a;y, in t* has some coefficient a; strictly larger than k, then
it is not a weight in F,. O

1. The action of p

For o € ¥ let us write V, for the corresponding K-type in V. We wish to understand
the K-types “which can be reached by one application of g to ¥,.”

Let m,(g) V, denote the linear span of vectors of the form #,(X)v for Xegand ve V,.
Since  stabilizes V,, it follows that X® v+ 7,(X)v is a K-equivariant projection from
POV, onto (n,(8)V.\V). -

Now the t-weights of p are { £;, (£7; £ ¥;)/2}, and so the possible K-types of m,(g) ¥,
are contained in the set {a,a + 9} N

Suppose now that o and o + y; are both in & Since y; is an extreme weight, p,_is one
dimensional and so p ® ¥, contains a unique submodule isomorphic to V, , ... Moreover, if
we fix a nonzero element X; in p,, then X; ® v, has a nonzero component in this submodule.

This means that if we choose highest weight vectors v, and v, ., in ¥, and V,, ,, then
there is a scalar c;(a, #) depending on i, «, and ¢, such that the K-orthogonal projection of
n(X)v, to V., is ¢;(a, v, 4, and V¥, occurs in m,(g) ¥, if and only if ¢;(a, £) + 0.

Similarly, if X;ep_,, is the complex conjugate of X;, then there is a scalar d;(a, t)
such that the projection of =,(X;)v to ¥, is di(, t)v,, and ¥, occurs in =,(g) ¥, ,, if and
only if d;(a, t) #0.

aty;

(The operators X; and X; are the obvious generalizations of the “creation” and “‘anni-
hilation™ operators studied by Bargmann in [B].)
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Since for X € g, 7,(X') depends affinely on ¢, it follows that ¢;(a, ¢) and d;(«, ¢) are affine
functions of ¢, i.e. of the form a + bz. The main result in this section is the following
explicit formula for these functions.

Theorem 1. Suppose o, o+ y; are in &, witho = Y. a;y;. Then c;(«, t) and d;(a, t) are
i
nonzero multiples of a,+r;+1/2—1t/2, and a;+ r,+ 1/2 + t/2 respectively.

(As mentioned earlier, we restrict ourselves to cases C and D. See [S2] for case A.)

It is nontrivial to show that c;(«, t) is not identically zero as a function of ¢! This we
do through a sequence of four lemmas.

Lemma 1A. Suppose a,a+7y; are in & If i £, then ¢, (« + u;, t + 2) is a nonzero
multiple of c¢;(a, t). In case D, if i <n then c¢;,(x + ', t + 2) is a nonzero multiple of c;(o, t).

Proof. Since j 2 i, u; + v, has i-th coefficient 2 and so by Lemma 0 it is not a weight
in F;. Consequently, n, ,,(X;)v,, = 0, and specializing formula (0), we get

nt+ 2(A/|) (vaupj) = (Tct(‘X,:) Ua)vuj N
We calculate the projection of both sides of this identity to ¥, , ., using the fact
that the product of two highest weight vectors in ¥V is a highest weight vector.

On the left side we get a nonzero multiple of ¢;(@ + pj, £+ 2)v, 4y 4y

The behavior on the right is somewhat more subtle. First of all, by weight consider-
ations, m,(X;)v, is contained in the sum of the K-types V,,, for k < i. However, if k =,
then y; + y; — 7, has its i-th coefficient equal to 2 and so, by Lemma 0, it is not a weight
in ¥, . It follows that ¥, , ., does not occurin V,,, ®V, .

Thus the projection of the right side to ¥, , . ,,, may be accomplished by first pro-
Jecting m,(X;)v, to ¥, ., and then multiplying by v, . This implies that the right side is a
nonzero multiple of ¢;(a, £)v, 4, +,,- Comparing the two sides, we get the result for u;.

The argument for u’ in case D is similar, the key point being that if k i and i <n,
then u' + 9, — % is not a weightin V.. O

We now observe that since y; and y; are strongly orthogonal roots, X; and X; commute.
This leads to the following useful result.

Lemma 1B. Suppose i>j and a,a +y; and a +y; are all in &
If cj(a, 1), c;(a+;, 1), and c;(a, t) are nonzero, then ¢, (o + Y;, t) is nonzero.

Proof.. The projection of =,(X)) 7, (X)v, = 7, (X) =, (X))v, to V,,, ., is a scalar
multiple of v, ,,+,,, and we calculate this scalar in two different ways.
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On the left, ,(X;)v, is contained in the sum of V. for k < i. But from the weights
of p, one sees that n,(g) ¥, ,,, can contain V,,, ., only if k equals i or j. Thus the pro-
jection of the left side can be accomplished by projecting ,(X;)v, to ¥, ., @ ¥, ., , applying
m,(X}) and then projecting to ¥, ,,, ., . This shows that the scalar is a nonzero multiple of
c;(a, ) ¢;(a + y;, t) plus some multiple of ¢;(«, #) c; (@ + ¥, 1).

Now since j < i, the projection of n,(X;)v, to ¥, . ,, is zero. Thus a similar argument on
the right side of the identity shows that the scalar is a multiple of ¢;(«, £) c;(a + 3}, 2).

Comparing the two sides we conclude that c;(x+7y;,1)c;(a, t) is a multiple of
c;(@+y, ) ¢i(a, t), and the lemma follows. O

We now prove the nontriviality of ¢;(a, ¢) for some special values of a.

Lemma 1C. (a) c;(y;_,t) is not identically zero; and if k is a positive integer then in
case D, (b) c,(ky', t) is not identically zero.

Proof. Statement (a) follows from the K-structure of F,. For if ¢;(y;_,2 + r) were
0, then this would mean that ¥, could not occur in 7, ,(g)(¥,,_,). But then it would
follow that the subspace ) {¥, :0 <j <i—1} is g-stable, which would contradict the
irreducibility of F;.

Statement (b) follows similarly from the K-structure of F,. Indeed the only possible
K-types of n,,.,(9)V;, are V. and V, ... . By the irreducibility of F,, we get

c,kp',2k+r)£0. O

Let us remark that since c; (o, ¢) is of the form a + by, if it is nonzero for some ¢, then
it is nonzero for all but possibly one value of 1.

Lemma 1D. Ifaando+ v, are in &, then c;(a, t) is not identically zero as a function

of t.

Proof: For i = 1, the result follows trivially from the formula for ¢, (o, ¢) in Lemma
2.2 of [KS]. (Or directly from Lemma 3.4 of [V].) We now proceed by induction, assum-
ing the result for all indices less than i.

Suppose that for some fin & ¢;(B, ¢) is not identically zero. Then, for all j, c,(B + u;, t)
is not identically zero. For j = i this follows from Lemma 1 A, and for j < it is a conse-
quence of Lemma 1 B (together with the inductive hypothesis). Lemma 1A also shows that
in case D, if i < n then ¢;(f + ', t) is not identically zero.

Now if i is less than n, then the dominance of o and a + y; means « is equal to u;
plus a nonnegative integral combination of the y; (and possibly u’ in case D). Thus the
present lemma follows by repeatedly applying the results of the previous paragraph to part
(a) of Lemma 1C.
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If i is equal to n, then either @ equals u, _, plus a nonnegative integral combination of
the p; (but not u’); or else we are in case D, and a is of the form k' plus a combination of
U, through p, _, (butnot u,!). In the two cases, respectively using parts (a) and (b) of Lemma
1C, and arguing as before, we get the result. 0O

(We mention in passing that it is possible, and quite entertaining, to give a different
proof of Lemma 1D using explicit Jordan-theoretic expressions for the highest weight
vectors v,.)

Proof of the theorem. We recall from [KS] that for each positive integer m there is
a differential operator D,,, which intertwines /(m) and I(—m) in case D, and I(2m) and
I(—2m) in case C.

The main theorem (Capelli identity) in [KS] shows that if a = )" a;y, then D, v, is

n n
equal to [] (a;+r;) incase D, and to [] (@j+r—1/2)(a;+r;+1/2) in case C.
j=1 j=1
For definiteness, we treat case D — case C is similar. To establish the formula, we may
assume g; + r; is strictly positive for all j. If it is not, we can consider o plus a suitable
multiple of y,, and use Lemma 1 A!

Consider the identity n_, (X;) D, v, = D, n, (X;)v, and project bothsidesto V, , , . After
cancelling the (nonzero) factors (a; + r;) for j + i, we get the equation

(a;+r)ci(a, —1) =ci(e, (@ +r,+1).
By Lemma 1D, ¢;(«, 1) and c¢;(o, — 1) are not both zero, and, in view of the above
equation, ¢;(«, ¢) cannot be a nonzero constant! Thus we may write c;(«, t) as a scalar times

a — t/2, and then the previous equation becomes (@ + 1/2){(a; + r,) = (a —1/2)(a; + r; + 1).
This gives a = @; + r; + 1/2 proving the first part of the theorem.

Next if ¢, ) denotes the L?(K)-inner product on ¥, then the representations n_, and
n, are Hermitian duals with respect to {,). This implies that

<n—t(A,i) va’ va+y,»> = <va’ 7z:t("‘—,i) Ua+y,-> .

From the first part of the theorem the left side is a multiple of a; + 7, +1/2 + t/2.
Considering the right side, we get the formula for d;(«, ¢). O

Remark. We can be a little more precise about the implied constants in the theorem.
Let us choose v, and v, ,, so that c;(a, t) equals (a;+r;+1/2 —t/2). The proof of the
theorem then shows that d;(a, £) = (a;+ 1, +1/2 4+ 1/2) <0, 1 ,,, Vg1 4,0/ (Vs> Vg)-

2. The Hermitian form

The conjugacy of P and P implies that 7(¢) has an invariant Hermitian form {, ),.
Since the K-types have multiplicity 1, on each K-type {, ), is a scalar multiple of {,). If «
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and a + vy, are in %, let g,(a, ¢) be the ratio of these scalars for the corresponding K-types.
In other words, put

qi(a9 t) = (<va+y,-’ va+y,->t/<va+y,~’ Vg4 yi>)/(<ua9 vaz>t/<vu’ Ua>) .

Theorem 1 easily implies that 7(¢) is irreducible for generic ¢. For such ¢, {, ), is non-
degenerate and unique up to a scalar multiple. Consequently g, («, ¢) is well-defined. A simple
argument (see Theorem 4.11(c) of [V]) shows that g¢;(«, ¢) is a rational function of ¢.

Theorem 2. For a = Zajyj, g, ty=(@,+r+1/24+¢/2)/(a,+r+1/2—1/2).
j

Proof. The invariant form satisfies {7;(X,)v,, V4, >, = V4 T, (X, 4 ,, >, ChoOs-
ing v,, v, ,, as in the remark following Theorem 1 we get the result. O

Now proceeding exactly as in [S2], we describe the Jantzen filtration of I(¢).

‘ Fix rand let s € R be variable. Then multiplying by a suitable power of (s — ¢), we may
hssume that ¢, ), is nonzero at ¢, and nondegenerate elsewhere in a small interval

(t—06,t4+9).

Definition. Let ¥ consist of those vectors v in ¥ for which (v, v, vanishes to order
at least k at s=1¢. Then V=V, 2V, 2 - 2V, 2 ‘- is called the Jantzen filtration of
I(1).

The usual definition of the Jantzen filtration is slightly more involved, but Lemma 2 of
[S2] shows that it is equivalent to the above for K-multiplicity 1. In particular the above
filtration is =, (g, K)-stable.

It can be easily seen that in the above setting, lim {,»,/(s — £)* gives an invariant

st
form on ¥, whose radical is precisely V,,,. The k-th Jantzen subquotient of I(t) is
O, = Vi/ Vi + . It consists of the K-types for which (, >, vanishes to order exactly k, and the
above formula gives a nondegenerate, invariant Hermitian form on Q,.

From Theorem 2 it is rather easy to calculate the Jantzen filtration of I(z). In fact
we can get a sharper result.
Corollary 2. The K-types o=, a;y; and o +v; belong to the same irreducible con-
i
stituent of 1(t) if and only if t is not equal to |2a,+ 2r; +1|.

Proof. Consider the two numbers a; + r;+1/2 + /2. If both numbers are nonzero
then by Theorem 1, V,,, S n,(g)V; and V, S n,(8)V, +,,-

If exactly one of the numbers is zero, then g;(a, s) has either a zero or a pole at s = ¢,
which means that o« and « + 7, lie in different Jantzen subquotients.
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Finally, suppose both numbers are zero. This forces a; + 1, + 1/2 = 0and ¢ = 0. By the
theorem, the first condition means that ¢;(«, ) = —1 as a function of ¢. However at
t = 0, the representation I(¢) is unitary. The negativity of ¢,(«, t) means that o and o +
must belong to different constituents. 0O

3. The irreducible constituents

We now determine the irreducible subquotients of 7(¢). Since I(t) and I(—t) have the
same constituents, in the rest of the paper we may, and do, assume that ¢ is nonnegative.

Definition. Suppose o and o + ; are in & with a = ) a;7;. The corresponding K-
types will be called linked in 7(z) if ¢+ |2a;+2r,+1]. Y

Lemma 3. Two K-types belong to the same irreducible constituent of I1(t) if and only if
they can be connected by a sequence of K-types in which successive pairs are linked.

Proof. The “if” part is clear by Corollary 2. Conversely, if two K-types belong to the
same component, then successive applications of =,(p) to the first K-type will eventually
yield the second K-type. Thus the two can be connected by a sequence in which each K-
type is contained in =,(g) applied to the previous K-type.

In particular, successive pairs in this sequence are of the form o, ¢ + y, or o + 7;, «,
and one of the two numbers a;,"+ r; + 1/2 + t/2 is nonzero. Now if the other number were
zero, then by Theorem 2 these two K-types would belong to different levels in the Jantzen
filtration. However since the filtration is g-stable the level can only decrease along the
sequence, and since the first and last term belong to the same constituent, the level must
actually be constant along the sequence. This shows that both numbers must be nonzero
and so the successive pairs must be linked. O

The lemma has several important consequences.

Theorem 3A. The representation I1(t) is reducible if and only if one of the following
two conditions holds:

(a) r,+1/2—1t/2 is a nonpositive integer for some i.
(b) We are in case D, and one of r,+ 1/2+¢t/2,r,+1/2—1t/2 is an integer.

Proof. If neither condition holds, then g, 4+ r; + 1/2 + ¢/2 can never be zero for any
a=Y a;7; in & The irreducibility of I(¢) is now immediate from the lemma.
j

Conversely, suppose (a) holdsand that r, + 1/2 — ¢/2 is a nonpositive integer —a;, say.
Now if « is any K-type with i-th coefficient g;, then o and « + y; belong to different con-
stituents of 7(¢). The argument for (b) is similar. O

Recalling the formulas for 7, in terms of the root multiplicities, we observe two things.
First, since r, — r;, , = d is a positive integer, it is enough to check condition (a) fori = n — 1
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and i = n. Secondly, if X(t,f) = D, then r, = 0 from which it follows rather easily that
condition (b) is a special case of (a) and may be dropped altogether!

Indeed we may restate the theorem as follows:
Theorem 3 A bis. (a) Suppose X (t,%) = D,. Then I(¢) is reducible if and only if t lies
in{fe+1,e+3,e+5,...}u{e+d+1,e+d+ 3,e+d+5,...}.(Of course if d is even, the

second set is contained in the first.)

(b) Suppose Z(t,t) = D, and g = o(p, q). Then I(¢) is reducible if and only if one of
the following three holds:

(i) p and q have different parities and t — 1/2 is an integer.
(i) (p— q)/2 is an integer and t is an integer with the opposite parity.
(iii) p and q are both odd and t — (p + q — 4)/2 is an odd positive integer.

Proof. Part (a) follows from the remarks above and the formulas r, = e/2 and
r,_,=e/2+d/2.

For part (b), Theorem 3 A shows that we have reducibility if (1)
(pr+q—4)/4+1/2—1/2

is a nonpositive integer, or if (2) one of (p — ¢q)/4 + 1/2 + /2 is an integer. Condition (2)
leads to (i) and (ii), while (1) is a special case of (2) unless p and q are both odd, in which case
we get (iil). O

We now describe the K-types of the irreducible constituents in terms of a notion of
“rank”. (The analog for case A is Definition 3 of [S2].)

Definition. If a =) a;y; is a K-type of I(1), let I be the smallest index, if any, for

J
which g, +r;+1/2 —t/2 is a nonpositive integer (i.e. less than or equal to zero).

In case C, if there exists such an index /, we define the rank of « to be / — 1, other-
wise we say that o has rank n.

In case D, if / is strictly less than # we define the rank to be / — 1. Otherwise, consider
the two numbers a, +r,+1/2 —t/2 and a, +r,+1/2 + t/2. If neither is an integer we
define the rank to be n. If both are integers, then the rank is n~, n — 1, n* accordingly as
both, one, or neither, of these is nonpositive. If only one is an integer we define the rank
of a to be n™ if this integer is nonpositive, and to be n™* if it is positive.

(The last sentence of the definition is applicable only to O(p, g) when p and g have
different parities.)

Here is the raison d’étre of this complicated definition.
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Theorem 3B. Two K-types belong to the same irreducible subquotient of I(t) if and only
if they have the same rank.

Proof. By Lemma 3, it suffices to show that a = Zajyj and a + ¥, are linked if and
only if they have the same rank.

First consider case C. Since a;, r; and ¢ are all nonnegative it follows that
(@ +r+1/241/2)
is positive for all i. Thus « and a + y; are linked unless a;, +r,+1/2 —1/2 =0.

By the definition of rank, it is easy to see that « and o + y; have the same rank, unless
the rank of ¢ is i—1 and @, +r,+1/2—1¢/2=0.

Finally note that if « has rank / — 1 (with / < n + 1), then (a; + r, + 1/2 — ¢/2) cannot
be zero unless i = /. For if i </then (g; + r,+ 1/2 — t/2) is not a nonpositive integer, while
if i>[lthen (a;+r,+1/2 — t/2) is strictly smaller than the nonpositive integer

(@ +r+1/2—1/2).

This completes the proof for case C.

Case D is a bit more involved — chiefly because a, + r, + 1/2 + /2 can be negative in
this case.

First of all, suppose a has rank / — 1 with / strictly less than n. If i £ n — 1, then the
above arguments work. For i=n, o and a«+ v, have the same rank, and as before
a,+r,+1—1/2 %0, but we also need to check that a, + r, + 1/2 + ¢/2 is nonzero. But if it
were, then combining this with ¢, +r,+1/2 —¢/2 < 0, we would get

(@+a)+(n+r)+1=0.

However by the dominance of a and g, @, + a, and r, + r, are both nonnegative, which gives
a contradiction.

Now suppose the rank of ais n — 1, n*, n~ or n. Once again if i £ n — 1 then arguing
as in case C we see that a, a + 7; are linked and have the same rank. If i = n, then a + y, is
linked to o unless one of a, + r, +1/2 —¢t/2and a, + r, +1/2 + t/2 is zero, and in this case
it is easy to see that the two K-types will have different ranks. The converse is equally
straightforward, and this completes the proof of the theorem. O

In view of the above theorem, we define the rank of an irreducible constituent of 7(r)
to be the rank of any one of its K-types. (In the sequel we will relate this definition to that
of [Ho].)

Our description of the irreducible constituents of /(¢) is completed by the following
theorem.
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Theorem 3C. Incase C, I(t) always has a constituent of rank n. It has a constituent of
rank | < n—1if and only if r,,, +1/2 —t/2 is a nonpositive integer.

In case D, I(t) has a constituent of rank | S n—2 if and only if r,, , +1/2—1t/2 is a
nonpositive integer. There is a constituent of rank n—1 if and only if r,+1/2+t/2 and
r,+1/2—1t/2 are both integers and t = 0; there is a rank n constituent if and only if neither
is an integer; and there are constituents of rank n* if and only if at least one of these two
numbers is an integer.

Proof. This follows immediately from the definition of rank, and the fact that, except
for a, in case D, all the a;’s are positive integers. O

4. The unitary subquotients

As before, we assume that ¢ is nonnegative.

Lemma 4, An irreducible constituent U of 1(t) is unitarizable if and only if for each
K-type a =Y a;y; of U, and for each i such that «+v; is in &, we have the inequality
t=<|2a;+2r,+1|.

Proof. On each K-type of the constituent, the invariant form is a multiple of the
standard (Z?(K)) form. Evidently the representation is unitarizable if and only if all of
these multiples have the same sign. By Lemma 3 it suffices to check this for pairs of linked
K-types. Then Theorem 2 implies that a constituent is nonunitary if and only if we can find
a K-type a and an index 7 such that a + v, is in &, and

a;+r+1/2—t/2 and a;+r+1/24+1/2

are both nonzero and have different signs. This clearly implies the present lemma. O

The lemma has a “picturesque” reformulation which we state as a corollary.

Corollary 4. An irreducible constituent of 1(t) is nonunitary if and only if it has a
pair of K-types o and a+7y; which belong to different constituents in some I(s) for
0ss<t.

Proof. As observed in the proof of the lemma above, a constituent is nonunitary if
and only if it has a pair of K-types a and « + 7, such that the functions (q; +r; +1/2 + 5/2)
and (a; + r; + 1/2 — 5/2) have opposite signs at s = ¢. But this can happen if and only if
one of the functions vanishes for some 0 £ s < ¢, which implies the result. O

The corollary immediately implies that there is no complementary series beyond the
first reducibility point. In other words, if ¢, is the smallest value of ¢ for which the re-

presentation I(¢) is reducible, then

Theorem 4A. I(t) is both irreducible and unitary if and only if t <t,. O
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(Theorem 3 A bis shows that if 2 (t,f) + D,, then 1, = e + 1 while if Z(t,f) = D, and
g = o(p, q) then ¢, equals (a) 0 if (p — ¢)/2 is an odd integer, (b) 1 if (p — g)/2 is an even
integer, and (c) 1/2 if (p — ¢)/2 is not an integer.)

The remaining results depend on the nature of the numbers ;, so some case-by-case
discussion is inevitable. For the rest of this section we specifically exclude the case D,.

Next we consider submodules of “small” rank.

Theorem 4B. Assume Z (1, %) is not of type D,. Then I1(t) has a unitarizable constituent
of rank i—1<n, if and only if t =2r, + 1.

Moreover, for t = 2r;+ 1, this constituent is actually a submodule and its K-types are
{a=Yayla=a,, =" =a,=0}
j

Proof. By Theorem 3C, the rank i — 1 constituents occur for ¢ = 2r, + 1 + 2m where
m is a nonnegative integer. (In case D, for i = n, we need to use the fact that r, = 0.)

First suppose that m =0, so that r=2r,4+1, and let U,_, be the subspace of V'
spanned by the given K-types. If a is in U, _, all the K-types of =,(g)(¥,) are also in U, _,,
with the possible exceptions of a + y;, and of « — y, in case D if i = n.

However, ¢;(o, 2r;+ 1) =a;,+r,+1/2—t/2=04+r+1/2—(2r,+1)/2=0. So by
Theorem 1, « + y; does not occur in 7, , ;(g) ¥,. Also in case D, a similar calculation using
Theorem 1 and the fact that r, = 0 shows that « — y, does not occur in 7, (g) V.

This shows that in all cases, U, _, is a submodule of 7(2r; + 1). It is easy to check that
all its K-types have rank i — 1, thus by Theorem 3B, U, _, is irreducible, and is precisely
the rank i — 1 constituent. By the lemma above, the unitarity follows from the trivial in-
equality 2r, +1 <|2a;+2r;+ 1| for j < i

Finally, if m is positive, let « = m(y; + - + ;). Then it is easy to check that « and
a+y;bothhaverank i —1inI(2r,+1+2m). But2r,+14+2m>2r,+1=|2a;+2r,+1|.
So by the lemma, the constituent is nonunitary. O

The unitary constituents in the above theorem are the most interesting constituents of
I(¢). They are all unipotent in the sense of [V1], and for rank 1, we get the “minimal”
representations considered in [V], for example.

We now consider the large constituents in case C.

Theorem 4C. Assume X (t,%) is of type C,. If I(t) is reducible, then it has a uni-
tarizable constituent of rank n if and only if t — 2r, —1 is a nonnegative even integer.

Proof. First of all if ¢ — 2r, — 1 is a nonnegative even integer, then 7(¢) is reducible.
Moreover, if & = Y a;y, is a K-type then a,+r, +1/2 — /2 is an integer, which must be
j

2 Journal fiir Mathematik. Band 462
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positive if « has rank n. Thus for any i, a;+r,+ 1/2—¢t/2 =2 a,+ r,+ 1/ —t/2 > 0, which
tmplies the unitarity of the rank » constituent.

Now if d is even, I(¢) is reducible for precisely the above set of values of ¢ and so there
is nothing more to prove. If 4 is odd, I(¢) is also reducible if t — 2r,_, — 1 is a nonnega-
tive even integer, say 2m. However if we put « = m(y, + - + y,_,) then « has rank », but
t>2r,+1=2a,+ 2r,+1, so by the lemma, the constituent is nonunitary. O

Next we deal with constituents of rank n* and »~ in case D.

Theorem 4D. Assume X (t,%) is of type D,, with n % 2. Then 1(t) has irreducible con-
stituents of type n* and n™ if and only if t is an odd integer. These constituents are uni-
tarizable, and are quotients of 1(t).

Proof. Thefirst assertion follows from Theorem 3C together with the fact that r, = 0.
So let us suppose ¢ is an odd integer.

Nowif a = )" a;y;isa K-type of rank n*, then a, + r, + 1/2 — t/2 is an integer, which
j
must be positive. It follows that a; + r, + 1/2 + ¢/2 is positive for all i, which in turn implies

the unitarity of the constituent.

Similarly, if « has rank #~, then a, +r, + 1/2 + t/2 are integers, which must be non-
positive. For i less thann, a; = |a,| andso a; +r;+1/2— /2> —(a,+1,+1/2+1/2)20
and once again the unitarity follows by the lemma.

Finally from Theorem 1 it is easy to see that the set of K-types for which
a,+r,+1/2—-1/2

is a nonpositive integer is g-stable, and the corresponding quotient is precisely the rank n*
constituent. The argument for the rank »n~ constituent is similar. 0O

Finally we deal with the rank » constituents in case D.

Theorem 4E. Assume X (1,1) is of type D,, with n % 2. Then if 1(t) is reducible, it has
a constituent of type n if and only if d is odd and t — 2r, _, — 1 is a nonnegative even integer.
This constituent is a nonunitary quotient.

Proof. I(¢) has a constituent of rank nif 1/2 +¢/2 and 1/2 — ¢/2 are not integers.
If I(¢) is also reducible, then some r,+1/2 —¢/2 must be a negative integer. Since
r,—r,_; = d[2, the first statement follows easily.

Suppose now that t = 2m + 2r,_, + 1, then the nonunitarity follows by calculating
gn(2, 1) for ¢ = (m+1)(y, + - +7,-1)-

Finally, it is easy to see that the set of K-types of rank strictly less than n form a
submodule, whose quotient is the rank » constituent. 0O
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S. The D, case

In this section we deal with case where X (t,f) = D,. This root system arises for the
group G = O(p,q) with p = g = 3 and the parabolic P = LN, where

L=0(p-1,g—1)xGL,(R) and N=RP- 14"t

The principal series attached to this parabolic has been studied in [HT] and in the references
mentioned therein, so the results of this section are certainly not new. We include them
merely for the sake of completeness.

As before we assume that ¢ is nonnegative. Theorem 3 C describes the constituents of
I(t) and we now determine which of these are unitary. First of all, the rank 0 constituents
are finite dimensional, and among these only the trivial representation, which occurs for
t=2r,+1=(p+g—2)/2, is unitary.

For rank 1 constituents we have the following anomalous situation.
Theorem SA. [I(¢) has a rank 1 unitary representation if and only if p = g mod (4),

(r—q (r—9
4 4 |

and t = 1. In this case its K-types are {aly1 — y,la; 2

Proof. By Theorem 3C, I(¢) has arank 1 constituentif and onlyif r, + 1/2 + ¢/2 are
both integers and ¢4 0. Since r, = (p — q)/4, this means either (a) (p —¢)/2 is an even
integer and ¢ is an odd integer, or (b) (p — ¢)/2 is an odd integer and ¢ is a positive even
integer.

Arguing as in the proof of Theorem 4B, using Corollary 4 one sees that all of these
constituents are nonunitary except perhaps for ¢ = 1 in case (a), and ¢ = 2 in case (b). The
first is easily checked to be unitary and has the K-types described above. To see that the
second is nonunitary, puta = (p — q)/4 — 1/2, then the K-type ay, — ay, hasrank 1in /(2),
but the inequality of Lemma 4 fails for i=2. O

(One may similarly study the “nonspherical’”’ principal series whose K-types have
highest weights a, y, +a,y, where a; and a, are half integers with a, =2|a,|. If
p — q = 2mod (4), then for ¢ = 1 there is a unitary constituent of rank 1 in the nonspherical
principal series, whose K-types are those with a, = (p — ¢q)/4. However if p and ¢ have
different parities then there are no rank 1 constituents in either series. (See Theorem 2.13

in [V]))

We consider next the unitarizable constituents of rank 2* and 2~, which occur when
one of the numbers (p — q)/4 +1/2 4+ t/2 is an integer. (See Theorem 3C.)

Theorem 5B. If (p — q)/2 is an integer then 1(t) has constituents of rank 2* and 2~
when t is an integer with the same parity as 1 + (p — q) /2. These are always unitarizable and
are quotients of I(t).
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If (p — q)/2 is not an integer, then there are constituents of rank 2% and 2~ when
t—1/2 is an integer. For t = 1/2 both constituents are unitarizable, while for t > 1/2 the
rank 2% (resp. 27) constituent is unitarizable if and only if (p —q)/4+ 1/2 —1t/2 (resp.
(p—q)/4+1/2+1t/2) is an integer.

Proof. If (p— ¢)/2 is an integer, the proof proceeds exactly as in Theorem 4D.

If (p — ¢)/2 is not an integer, then from part (b) of Theorem 3 A we see thatt, = 1/2 s
the first point of reducibility. 7(1/2) has two constituents of rank 2* and 2~, which are
unitarizable by Corollary 4.

Now constituents of rank 2% occur if and only if one of the two numbers
p—q/d4+1/2—1¢t/2 and (p—q@)/4+1/2+1/2

is an integer. Since their sum is 1 + (p — ¢g)/2, they cannot both be integers. We now con-
sider the case where (p —¢)/4+1/2 —¢/2 is an integer.

If a,y, + a,7, is a K-type of rank 27, then a, + (p —q)/4+1/2 — t/2 is a positive
integer. This implies that all four of the numbers a; + r;+1/2 + ¢/2 are positive, and by
Lemma 4 the rank 2* constituent is unitary.

We now show that for ¢+ 1/2, the constituent of rank 2~ is nonunitary. Put
—a,=14+[(p—q)/4+1/2—1¢/2], and put @, =|a,|+ 1. Then the K-type a;y, + a,7,
has rank 27, and a, + (p —q)/4 +1/2 — t/2 equals —1, which is negative. On the other
hand, by the third paragraph of the proof, a, + (p — ¢q)/4 + 1/2 + ¢/2 is a half-integer.
Being larger than —1, it is either —1/2, which corresponds to ¢ = 1/2, or else it is positive,
in which case the nonunitarity follows from Lemma 4.

The proof is similar when (p —¢)/4 +1/2+¢/2 is an integer. O

Finally we consider the rank 2 constituents. In view of Theorem 4 A, we may assume
that I(¢) is reducible.

Theorem 5C. If I(t) is reducible then it has a rank 2 constituent if and only if p and q
are both odd and t — (p + q) /4 is a nonnegative even integer. This representation is a non-
unitary quotient.

Proof. If I(?) is reducible with a rank 2 constituent, then by Theorem 3C,
r,+1/2+1/2

must both be nonintegers, while r, + 1/2 — ¢/2 must be a nonpositive integer. The first
statement follows easily from this.

The second statement is proved exactly as in Theorem 4E. 0O
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Appendix

The parabolic subgroups of simple real groups which satisfy conditions (i) and (ii) of
the introduction are given in Table 1 in [KS], together with the symmetric space K/ (LN K),
and its root system X = X'(t,f). The table also lists the numbers r, but without explain-
ing how they were calculated.

If K'/ (L~ K) is the noncompact dual of K/(L n K), then X is precisely the restricted
root system of K', and the root multiplicities ¢ and d may be read off from standard tables
such as those in [He1].

Except for the D, case discussed earlier, the numbers r, can be determined by the
formula r, = d(n —i)/2 + e/2 in cases C and D, while in case A one has the analogous
formula 7, = d(n — 2i+ 1) /4. (Here n = dim (1) is the rank of N as a Jordan algebra.)

For the convenience of the reader, we paraphrase here the salient features of the table
for cases C and D, describing the group G the parabollc P = LN and the Jordan algebra
structure on N. (See [S2] for case A.)

Case D: (e =0)

(@) G=SL(2n,R), L=S(GL(n,R)*x GL(n,R)) and N is the algebra of n x n real
matrices. In this case the rank is n and d =1, so that r, = (n — i)/ 2.

(b) G = 0(p, q), with p = ¢ = 3. This is the D, case which was discussed in the pre-
vious section.

(¢) G=0Q2n,2n), L =GL(2n,R) and N is the algebra of 2x# X 2n real skew sym-
metric matrices. The rank is » and d = 2, so that r, = (n — i).

(d) G =E,(7), L= E(6) x R* and N is the split 27-dimensional exceptional Jordan
algebra. The rank is 3 and d = 4, so that r, =2(3 — i).

Case C (complex): (e =1)

(@) G=SL(2n,C), L=S(GL(n,C)x GL(n,C))and N is the algebra of n x n com-
plex matrices. The rank is n and d = 2, so that r,= (n— i) +1/2.

() G=0(p,C), p=5, L=0(p—2,C)xC* and N is C?~ 2 The rank is 2 and
d=p—4,sothat r, = (p—3)/2 while r, =1/2.

() G=Spn,C), L=GL(#n,C) and N is the algebra of nx n complex symmetric
matrices. The rank is n and d =1, so that r, = (n —i)/2 +1/2.

(d G=0(@4n,C), L=GL(2n,C) and N is the algebra of 2n X 2n complex skew
symmetric matrices. The rank is n and d =4, so that r, =2(n —i) +1/2.

() G=E,(C), L= E4C)xC* and N is the complex exceptional Jordan algebra.
The rank is 3 and d =8, so that r, =43 — 1) +1/2.
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Case C (non complex): (e > 1)

(@ G=SL(2nH), L=(GL(n,H)x GL(n,H)) and N is the algebra of nxn
quaternionic matrices. The rank is n, d =4, and e = 3, so that r, =2(n — i) + 3/2.

b) G=0(p,N)withp =4, L =0(p—1)xR*, and N is the Jordan division algebra
R?~!. In this case the rank is 1, e = p—2 and d = 0, so that r, = (p — 2)/2.

(¢) G= Sp(n,n), L=GL({n,H) and N is the algebra of those n X n quaternionic
matrices which are symmetric when regarded as complex 2n x 2»n matrices. The rank is
nd=2 and e=2,sothat ,=n-—i+1.
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