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The Spectrum of Certain Invariant Differential 
Operators Associated to a Hermitian 

Symmetric Space* 

Siddhartha Sahi 

This paper is dedicated to Prof. Bertram Kostant 
with affection and admiration on the occasion 

of his sixty-fifth birthday 

Let G / K be an irreducible Hermitian symmetric space of rank n and let 
9 = t + p+ + p_ be the usual decomposition of 9 = Lie(G)c. Let us 
write P, V, and W = P ® V respectively, for the algebra of holomorphic 
polynomials, the algebra of constant coefficient holomorphic differential 
operators, and the "Weyl algebra" of polynomial coefficient holomorphic 
differential operators on 1'-, and regard all three as K -modules in the usual 
way. 

Let I = WK be the algebra of K-invariant differential operators on 
p_., and let A be the set {oX = (Ab" . ,An) E zn I Ai 2: ... 2: An 2: a}. 

Then, as we show in the next section, A naturally parametrizes both 
the irreducible K-submodules P).. of P, as well as a certain distinguished 
(vector space) basis {D.d of I. The problem we consider is to determine, 
for A, J.l E A, the scalar eigenvalue cl'(A) by which DI' acts on P>.. 

Our main result, proved in Section 1, is the following characterization 
of these eigenvalues. For A = (Ai,' .. ,An), let us write IAI for Ai + ... + An; 
and set Am = {A E A IIAI:::; m}. Also, put P = (Pl,···,Pn) where 
Pi = d( n - 2i + 1)/2 and d is as in the next section. 

Theorem 1. There is a polynomial PI' in n variables such that cl'(A) = 
PI'(A + p), for all A E A. Moreover, up to a scalar multiple, PI' is charac­
terized by the following properties: 

(a) PI' is symmetric and has degree at most 1J.l1. 
(b) PI' (J.l + p) is nonzero, while PI' (A + p) is zero for all other A E AII'I' 

(This result was conjectured by B. Kostant during a conversation with 
the author). 

* This research was partially supported by an NSF grant at Rutgers 
University. 
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To indicate the power of this result we give two applications. For each 
k = O,l,···,n, let us put v k = (1,.··,1,0,···,0) E A (with k l's), and 
write v = vn . 

The first of our applications is a simple proof of the Capelli identity of 
[KS] which is the formula for Pmv for m E Z+. 

Corollary 1. Pmv(x) equalsn~ln7=:~/(Xi-Pn-j), wherepn =d(-n+ 
1)/2. 

Proof. Pmv obviously satisfies part (a) of the theorem, while (b) follows 
by observing that A E Almvl implies An ::; m (with equality if and only if 
A = mv). • 

(We refer the reader to [KS] for the precise sense in which this formula 
generalizes the classical Capelli identity. Also see [Sl, S2, BK] for some of 
the representation theoretic applications of this formula). 

Our second application is an easy derivation of Wallach's formula 
[W] for Pvk. Let us define the symmetric polynomials a j and Tj of de­
gree j, in n variables, via the generating functions n~l(1 + tXi) 
Ej=o tjaj(xt, ... ,xn) and n~l(1 + tXi)-l = E~o tjTj(Xt, .. · ,xn ). 

Corollary 2. Pvk(x) equals E~=oTn-i(O, ... ,O,Pk+1"",Pn)ai(x), 

Proof. The proposed polynomial is the coefficient of t k in the power series 
expansion of n~=l (1 + tXi)/ n~=k+l (1 + tPi), and clearly satisfies part· (a) 
of the theorem. 

Now if A E Alvkl, A i- v k , then the last n - k coordinates of A are 
zero. For such A, if we put Xi = Ai + Pi, then the above power series be­
comes a polynomial in t (of degree less than k), which implies the vanishing 
requirements of part (b). • 

Except when n = 2, there does not seem to a nice closed formula for 
the general PI-'" However, in Section 2, we describe an inductive procedure 
for calculating these polynomials. 

The proofs are almost embarrassingly easy. 

O. Preliminaries 

0.1 Hermitian symmetric spaces. Let us choose a Cartan subalge­
bra ~ of t and 9 and fix positive root systems such that E+(~, 9) = 
E+(~,t) u E(~,p+). Let {'Yl,''','Yn} be the Harish-Chandra strongly 
orthogonal noncompact roots, and let t be the subalgebra of ~ spanned 
by their coroots. 
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The weights of t in g form a root system of type en or Ben, and 
the (restricted) roots are {±(1'i ±1'j)/2,±1'i}, and possibly {±1'i/2}. The 
number d, referred to in the introduction, is the (common) multiplicity of 
the roots {±(1'i ± 1'j)/2}. 

(For these and other standard facts about Hermitian symmetric spaces 
see [HI]). 

As shown by Kostant-Joseph [J], and Schmid [Sc], the K-submodules 
of P occur with multiplicity 1, and their highest weights are of the form 
>'11'1 + ... + >'n1'n, where>. = (>'1,"', >'n) E A. For each such >., the 
corresponding submodule P>.. occurs in polynomials of degree 1>'1. 

Since V is isomorphic to P*, we have compatible decompositions P = 
(J)>"EAP>.. and V = (J)>"EAV>.., where V>.. ~ P!. For I-' E A, choose a basis 
{cpj} ofPJ.I. and let {dj } be the dual basis ofVw Then DJ.I. = L.j CPj ®dj is 
an invariant differential operator of order 11-'1, which is independent of this 
choice. Moreover, the operators {DJ.I. I I-' E A} form a (vector space) basis 
for I. By Schur's Lemma, each DJ.I. preserves the decomposition of P, and 
acts by a scalar cJ.l.(>') on each P>... 

This completes the explanation of the undefined terms in the introduc­
tion. 

0.2 Symmetric tube domains. The results of this section are due to 
Wallach [W]. 

It is well known that the Hermitian symmetric space G / K admits a 
realization as a generalized half plane (tube type domain) precisely when 
the root system E(t,g) is of type en (i.e. if there are no roots of the form 
±'Yi/2). 

Now suppose (g, t) is a Hermitian symmetric pair, not necessarily of 
tube type, and let 9 be the subalgebra generated by the root-spaces for 
{±(-Yi ± 1'j)/2, ±'Yi}. If we put t = 9 nt, and p± = 9 n I'±, then (g,t) is 
a Hermitian symmetric pair of tube type, and we have the decomposition 
9 = t + p+ + p_. 

(For example, if g = u(m, n) with m ~ n, then 9 = u(n, n». 
Let t be the subspace of p_ spanned by the root spaces for {-1'i/2}, 

then we have the dual decompositions p_ = p_ + t and p: = P: + t*. 

Consequently, we get P = P + t*P, where P is the polynomial algebra on 
p_. 

Now the t types of P are parametrized by the same set A as the t-types 
of P. Fix>. E A and let CP>.. be a highest weight vector in P>... 

Lemma A. CP>.. belongs to P, and thus is a highest weight vector in P>... 

Proof. Choose a basis of p_ consisting of t-weight vectors, and write CP>.. 
as a sum of monomials in the dual basis of p: = P: + t*. Then each of 
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these monomials must have weight>. and degree 1>.1. 
For 0: = ant + ... + an'Yn E t*, let us define the total weight of 0: to 

be at + ... + an. Then the basis vectors of p~ have total weight 1, while 
those of t* have total weight 1/2. So if a monomial of degree 1>'1 were to 
have one or more factors from t*, then its total weight would be less than 
1>'1 and, in particular, its t-weight could not be >.. _ 

We now show that the problem of computing the eigenvalues can be 
reduced to the tube case. Proceeding as in the introduction, we define, for 
the pair (0', i), the invariant differential operators Dp. and their eigenvalues 
cp. (>.). 

Lemma B. There is a nonzero scalar f\,p. such that c,..(>.) equals f\,,..c,..(>') 
for all >. E A. 

Proof. For /1- E A we have the dual decompositions 'P p. = :p p. + 'P~ and 

Vp. = i5p. + V~, where 'P~ C t*'P, and V~ C tV. From the definition of Dp. 
it follows easily that Dp. is a nonzero scalar multiple of Dp. + D~, where 

D~ E 'P~ ®V~. 
If <P>. is as above, then Dp.<p>. = Cp.(>')<p>. and D,..<p>. = Cp.(>')<p>.. By 

Lemma A, vector fields from t annihilate <P>.; thus D~<p>. = 0 and the lemma 
follows easily. 

1. The combinatorial characterization 

We are now ready for the proof of Theorem 1. In view of Lemma B, we may 
assume that (g, t) is of tube type. The chief advantage of this assumption 
is the following: 

Consider the Harish-Chandra imbedding of G / K as a bounded domain 
in p_, and let 6 be its Shilov boundary. If G / K is of tube type then 6 is 
a symmetric space K / M for the action of K. 

Moreover, we can choose M such that if t = m + 5 is the corresponding 
Cartan decomposition of t, then t (see section 0) is a maximal Cartan 
subspace of 5. The roots of tin e are bi - 'Yj)/2, each with multiplicity d. 
Thus the half sum of positive roots is E Pi'Yi where Pi = d( n - 2i + 1) /2 
as in the introduction. 

Now holomorphic functions on p_ are determined by their restrictions 
to 6, and, conversely, real analytic functions on 6 can be uniquely ex­
tended to holomorphic functions in a neighborhood of 6. Thus if D is 
a holomorphic differential operator on p_, it has a unique restriction to 
6 which satisfies DI6fl6 = (Df)16 for all functions f holomorphic in a 
neighborhood of 6. 



Invariant Differential Opemtors 573 

Proof of Theorem 1. As noted above, we assume that G I K is of tube 
type. Since D,. E I, its restriction D,.16 is an invariant differential operator 
of order IILI on the symmetric space KIM. By Theorem II.5.1S of [H2], we 
conclude that C,.(A) = p,.(A + p) where p,. is a polynomial of degree IILI 
on t* which is invariant under the Weyl group of E(t, t). Since this Weyl 
group is simply the symmetric group acting on the basis {'Yl, ... , 'Yn}, we 
get part (a) of the theorem. 

The action of "differentiation" gives us a K -map from V ® P to P, 
where the image of V,. ®P>.. is contained in polynomials of degree IAI-IILI. 
Thus this image is zero if IAI < IILI; while if IAI = IILI, then the image is 
contained in e (the polynomials of degree zero), and thus we get a K­
invariant pairing between P>.. and V,.. It follows easily that in the latter 
ca.<;e the image is nonzero if and only if A = IL. 

Recalling the definition of D,., and applying these observations, we 
conclude that p,. satisfies part (b). It remains only to show that parts (a) 
and (b) characterize p,.. 

Let 8,,., be the space of symmetric polynomials (in n variables) of 
degree at most IILI. Then, with the notation as in the introduction, the 
map E akvk ~ n a~k gives a bijection between the set A,,., and a basis of 
8,,.,. Thus the dimension of 8,,., is the same as the cardinality N, say, of 
A,,.,. 

We claim that every polynomial in 8,,.,, in particular p,., is determined 
by its values on the set {A + P I A E A,,.,}. To see this we argue as follows: 

"Evaluation" at the points in this set gives a linear map Ev from 8,,., 
to eN. Applying this map to {p>.. I A E A,,.,}, we get an N x N matrix 
whose (A, A')-th entry is p>..(A' + p). If we arrange the rows and columns in 
order of increasing IAI, then (b) implies that the matrix is triangular, with 
nonzero diagonal entries. 

It follows easily that Ev is bijective, completing the proof of the theo-
rem. • 

2. The inductive formula 

We now describe an inductive procedure for calculating p,. which is valid in 
a more general combinatorial context. Let p = (PI.· .. , Pn) be an arbitrary 
decreasing sequence of real numbers (i. e. P need not correspond to a root 
system). 

Theorem 2. For each IL E A there is a polynomial P~ in n variables, 
unique up to a scalar multiple, which satisfies: 

(a) P~ is symmetric and has degree at most IILI. 
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(b) ~(It + p) is nonzero, while p~(A + p) is zero for all other A E AII'I' 

Once the existence of the {~} is established, the uniqueness follows 
from the bijectivity of the Ev map exactly as in the proof of Theorem 
1. However, since these polynomials are not related to invariant differen­
tial operators, we no longer have an a priori existence result. We shall 
provide an alternative argument which has the added advantage of being 
mostly constructive. We preface the proof with two simple lemmas and a 
definition. 

Shifting Lemma. Let r be any real number. Suppose Theorem 2 holds 
for some (p, It), then it holds for (p', It) where p' = (Pl + r, ... , Pn + r). 

Moreover,~' (Xl.'" ,xn) = ~(Xl - r,'" ,Xn - r). 

Proof. It is easy to see that v:: satisfies the conditions of theorem. • 

Factoring Lemma. Let m be any positive integer. Suppose Theorem 2 
holds for (p, It), then it holds for (p, It') where It' = (ltl + m, ... ,ltn + m). 

Moreover, p~,(x) = (n~=l n~':l(Xi - Pn - j + 1») ~(xl-m, .. · ,Xn -m). 

Proof. The proposed polynomial is easily seen to be symmetric and of 
degree 11t'1. It remains only to check the vanishing conditions of part (b) 

for>.' E AII"I' 
If the last coordinate of A' is less than m, then (x n - Pn - A~) is a factor 

of ~" and so the polynomial vanishes at x = >.' + p. On the other hand, 
if A~ ~ m, then>.' = A + (m,··· ,m), where A E AII'I; and the vanishing 
results follow by applying part (b) to ~ (A). • 

Definition. Suppose p is a symmetric polynomial in n - 1 variables, and 
k is a real number. We shall write Symmk(p) for the polynomial in n 
variables given by 

where the inner sum runs over all j-tuples 1 ::; it < ... < ij ::; n. 
It is easy to check that Symmk(p) is symmetric, has the same degree 

as p, and satisfies Symmk(p)(Xl + k,···, Xn-l + k, k) = P(Xl."" xn-d for 
all Xl.'" ,Xn-l. 

We are now ready to prove Theorem 2. 

Proof of Theorem 2. We proceed by induction on n. If n = 1 and p = r 
and It = m, then the polynomial is ~(x) = n;:o\x - r - j). We now 
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assume the result for (n - 1) variables and describe the construction in n 
variables. In view of the two lemmas, it suffices to construct ~ for n-tuples 
P and I-' whose last coordinates are zero. 

We shall construct, by induction on k, polynomials Pk which satisfy 
part (a) of the theorem, and also satisfy part (b) for those A in AlI'I whose 
last coordinate is at most k. The desired polynomial will then be PI where 
I is the greatest integer not exceeding II-'I/n. 

For k = 0, the polynomial Po is obtained by applying Symmo to the 
symmetric polynomial p«pl> ... ,pn-l» of degree 11-'1 in (n - 1) variables. The 

1-'1,. .. ,l-'n-l 
latter polynomial exists in view of the inductive hypothesis on the number 
of variables,and using the remarks following the definition of Symmk> it is 
easy to check that Po satisfies part (b) for A E AII'I with An = O. 

Now given Pk-l with k ~ I, if qk is any symmetric polynomial of degree 
II-'I-nk, then Pk = Pk-l - n~=l n~;:~(Xi - j)qk still satisfies (a) and (b) for 
A E AII'I with An ~ k - 1. We claim that there is a symmetric polynomial 
hk of degree 11-'1- nk in n -1 variables, such that if qk = Symmk(hk) then 
Pk also satisfies (b) for A E AII'I with An = k. 

Rewriting these requirements, we see that hk must satisfy 

n-l k 

= Pk-l(AI + PI."', An-l + Pn-l)/k! II II (Ai + Pi + j) 
i=1 j=1 

for all (AI. ... ,An-d E Aj;.I_nk' where the sets A-and A;;. are defined just 
as A and Am, but for (n - 1) variables. 

As remarked above, the inductive hypothesis implies the bijectivity of 
the Ev map in (n - 1) variables. Consequently, we can find a (unique) 
polynomial hk satisfying these requirements. This completes the proof of 
theorem. • 

Our argument is constructive, except for the definition of the hk which 
involves inverting the Ev map. However, even this is not too bad, since, as 
noted in the proof of Theorem 1, the matrix of this map is triangular with 
respect to a natural basis. 

Finally, observe that for each p, the polynomials {p~ I I-' E A} give 
a (vector space) basis for the space of symmetric polynomials in n vari­
ables. It would be interesting to express ~ in terms of other bases such as 
{na~k}. 
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