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LOGARITHMIC CONVEXITY OF PERRON-FROBENIUS
EIGENVECTORS OF POSITIVE MATRICES

SIDDHARTHA SAHI

(Communicated by Louis J. Ratliff, Jr.)

Abstract. Let C(S) be the cone of Perron-Frobenius eigenvectors of stochas-

tic matrices that dominate a fixed substochastic matrix S . For each 0 < a < 1 ,

it is shown that if u and v are in C(S) then so is w , where w, = u^vx~a .

The basic result of Perron-Frobenius theory [S] is that if a matrix has strictly

positive entries, then its maximal eigenvalue is unique, positive, occurs with

multiplicity 1, and has a (coordinatewise) positive eigenvector.

Subsequent literature on positive matrices contains many results (e.g., [C, F,

K]) that deal with convexity properties of the dominant eigenvalue as a function

of matrix entries. Similar results for the corresponding eigenvectors are obtained

in [DN, EJN] but only for the effects of varying a single row of the matrix.

Little seems to be known about the behavior of these eigenvectors under a more

general perturbation of the matrix.

In this paper we prove a different kind of convexity property for Perron-

Frobenius eigenvectors that was motivated by economic considerations in [SY]

but that, by virtue of its unexpected and elementary nature, seems to warrant a

wider mathematical audience.

For convenience, we formulate the result in terms of stochastic matrices—a

positive matrix is called stochastic (substochastic) if its column sums are equal

to (less than) 1.
For a fixed substochastic matrix S , consider the cone C(S) of all (positive)

Perron-Frobenius eigenvectors of the various stochastic matrices that (entry-

wise) dominate S. Thus C(S) = {v > 0 | 3 stochastic A > S such that Av =

v}.

Now C(S) need not be a convex subset of R". However, we shall show that

it has the following remarkable property that may be termed logarithmic, or

geometric, convexity.

Theorem, Fix 0 < a < 1, and put B = 1 - a. If u - (ux, u2, ... , u„) and

v — (vx, v2, ... , v„) are in C(S)  then so is w — (wx ,w2, ... , w„)  where

Wj = U'jVj .
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The principal difficulty in proving this theorem is the indirect nature of the

definition of C(5). The following lemma "eliminates the quantifier" in that

definition.

Lemma. A positive vector v belongs to C(S) if and only if Sv <v.

Proof. If v is in C(S), choose A > S such that v = Av . Then clearly

Sv < Av = v .
Conversely, suppose v > 0 with Sv < v, and put 8 = v - Sv. Also,

let Sj be the j th column sum of S, and put e,- = 1 - Sj.   Clearly,  0 <
exvx H-h s„vn = Sx H-h d„ = A, say. Now let A be the matrix whose ijth

entry is a,7 = s,; + j<J/£/. It is easily checked that A is stochastic, dominates

S, and satisfies Av = v .   □

TVoo/" of Theorem. In view of the lemma, we may assume that Su < u and

Sv < v , and we have to show that Sw < w . Using the Holder inequality, we

get

(Sw)i = Y,S'JWJ = Y,S>JU<JVJ  = ^2(siJuj)a(siJvj)f

j j j

< E s'juj   [ E suvj ) < (uda(vi)fi = Wi. □
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