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INTRODUCTION 

The key result in this paper is a proof of a large class of identities, 
generalizing the Capelli identity [Cl. 

The Capelli identity is a centerpiece of 19th century invariant theory. It 
asserts the equality of two differential operators on the n2-dimensional 
space M(n, R) of n x n real matrices. Let E, denote the ijth elementary 
matrix, let xii denote the linear functions on M(n, R) dual to E,, and write 
3, for the partial differential operator a/ax,. Then this identity says 

det(rcU + (n - i) 6,) = det(xV) det(a,), 

where 6, is the Kronecker delta, and rcij is the vector field 

(0.1) 

(0.2) 

By the determinant of an n x n matrix (A,) of (possibly) noncommuting 
variables, we mean the expression 

C wb4 &,,,, , -4.(,,..; (0.3) 
w  E .s” 

and the left side of (0.1) is to be understood in this sense. 
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72 KOSTANT AND SAHI 

The vector field in (0.2) arises as follows. Let 7t be the action of GL(n, R) 
on the space of functions on M(n, R) given by 

n(g) f(x) =f(xg). (0.4) 

The corresponding action (also denoted by rc) of the Lie algebra 
g = M(n, R) of GL(n, R) is by differential operators, and if E, is as above, 
then we have 

The differential operator on the left side of (0.1) is the image of an 
element in the center of the enveloping algebra S(g). (One recognizes 
the entries n - i as a “p-shift”.) 

The identity is intriguing from a number of points of view. (It is called 
“mysterious” in the Atiyah-Bott-Patodi paper [ABP].) For example, we 
understand the right side of (0.1) in terms of the additive structure of 
M(n, R) (hence the use of constant coefficient vector fields), whereas the 
left side is understood in terms of the multiplicative structure of GL(n, R) 
(left-invariant vector fields). 

In [W], Hermann Weyl makes essential use of this identity in his 
approach to invariant theory. However, the classical proof of the identity 
is not very revealing. An alternative approach to the identity is described 
in [Ho], whedre the connection of the left side of (0.1) with the center of 
gl, is also made explicit. It is remarkable that, in some sense, Capelli was 
already aware of this connection! (See [B, p. 773.) 

The approach we take-and one which leads to our generalization-is to 
regard M(n, R) nor as a Lie algebra, but rather as a Jordan algebra 
(A 0 B = (AB + BA)/2)! The determinant is the norm, and the multiplicative 
action of GL(n, R) x GL(n, R) (left and right) is the action of the “norm- 
preserving” group [J]. 

We observe next that (0. 1) is equivalent to a holomorphic differential 
identity on the complex Jordan algebra M(n, C). This Jordan algebra has 
another real form, namely the Hermitian n x n matrices. This real form is 
a “formally real” Jordan algebra. After this observation, Jordan algebras 
serve merely as a background for this paper and we reconnect with the Lie 
theory associated with formally real Jordan algebras. In particular we 
consider the equivalence of categories between simple, formally real Jordan 
algebras on the one hand, and irreducible, symmetric tube domains on the 
other. This equivalence is due to [K], and is very highly developed in 
CKWI. 

Let us recall some elementary facts about the Jordan side of the above 
equivalence. Most of these may be found in Chapter XI of [BK]. A real 
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Jordan algebra is a finite-dimensional vector space u over R, with a multi- 
plication x 0 ~j satisfying x o y = J’ o x and (x2 o y) o x = x2 0 (y 0 x). The 
algebra is called formally real if x2 + Jj’ = 0 implies s = 4’ = 0. Simplicity is 
defined in an obvious way. Assume u is simple and formally real. Then u 
has an identity element e. Let {e,, . . . . e,l, be a maximal set of orthogonal 
idempotents giving the Peirce decomposition (see [BK, especially X1.51) 

e=e,+ .‘. +e,. (0.6) 

The cardinality n of this set is called the rank of the Jordan algebra. 
Any element x E u generates an associative algebra and in fact there exist 

$i~ Y’(u*) (i.e., polynomial functions of degree j), j= 1, . . . . n, such that .Y 
satisfies the identity 

x”+ c (-l)‘$j(.+‘l-‘=O. (0.7) 
/=I 

Let S = C Rei. In case x E S, so that 

s = C rjej, 

then 
n n 

An+ C (-i)‘$,(x)i”-I= n (L-r,). 
j=l /=I 

Let us write cp for the polynomial function $n E Y”(u*). Then q is called 
the norm of the Jordan algebra. Note that if x is given by (0.8) then 
q(x)=r, “‘r,. 

Jacobson [J] (also see [BK, 11.51) has associated two Lie algebras to u. 
For any x E u, let L(x) denote the operator of left multiplication by x. Let 
p = (L(x) 1 .Y~u) and let f = [p, p]. Then f is the Lie algebra of the 
“automorphism group” of II. Let 

g=f+p. (0.10) 

Then g is a reductive Lie algebra and (0.10) is the Cartan decomposition 
of g. 

Let G (resp. K) be the analytic subgroup of GL(u) corresponding to g 
(resp. f). Then G is the identity component of the “norm-preserving group” 
and K is a maximal compact subgroup. There is a character x: G -+ R + 
such that with respect to the natural action of G on Y”(u*), we have 
g . cp = x(g)cp. Furthermore, u has a K-invariant positive definite bilinear 
form ( , ). 

In fact one has 

K= {LEG 1 k.e=e), (0.11) 
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so that if C is the open set in u defined by 

C= G.e, (0.12) 

then C is a symmetric space, i.e., 

C = G/K. (0.13) 

One knows that any element in u is K-conjugate to an element of 
S= C Rej. This, together with the KA, K-decomposition of G, readily 
implies (see [BK]) 

PROPOSITION 1. For y E u, the following are equivalent: 

(a) YEC, 
(b) q(y) # 0 and y = x2, where x E II, 

(c) q(y) # 0 and y = xi xj’, where xj E u, 

(d) y = exp(x), where x E w, 

(e) y is K-conjugate to an element x E S, where in the notation of (0.8) 
all rj > 0. 

We note that (c) implies that C is a self-dual cone in u. 
If we identify u with its dual via ( , ), cp corresponds to a differential 

operator a(q) on u, and for each positive integer m, we may consider the 
“generalized Cayley operator” D, = cp”a(cp)“. Since C is open, we may 
regard D, as a differential operator on C. It is easy to check that D, is a 
G-invariant differential operator on C. 

Let G = NAK be the Iwasawa decomposition of G; then it follows that 
the submanifold A . e of C = G/K is transversal to each N-orbit. Identifying 
A . e with A, by virtue of the simple transitivity of the action, we see that 
the N-radial part (see [H2, 11.3.31, also (4.5) below) of D, is a differential 
operator on A. This corresponds, via the exponential map, to a polynomial 
function on a*, where a is the Lie algebra of A. This polynomial, after a 
standard p-shift, becomes a W-invariant polynomial pm, where W is the 
Weyl group of a in K (see [H2, Theorem 11.5.171). In our situation, W 
always turns out to be the symmetric group S,! Thus pm is a “symmetric” 
polynomial. 

Our main result, Theorem 1, is an explicit formula for pm. 
To show how this leads to differential identities, we need some results 

from [H3]. 
Let m be the centralizer of a in f and let t be a Cartan subalgebra of m. 

Write 

h=a+t. (0.14) 
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Then b is a maximally split Cartan subalgebra of g. Using the subscript c 
to denote complexification, we have that b, = a, + t, is a Cartan sub- 
algebra of gc. Dualizing, we have the decomposition 6,* = a,* + t,*; and 
identifying a* with the elements of a,* which are real valued on a, we have 
the restriction map res from polynomials on E),* to polynomials on a*. 

Let WC be the Weyl group of 6, in g, and write Z(a) and I(&) for 
W- and WC-invariant polynomials on a* and b,*, respectively. Choose a 
positive root system for t, in m,, and let p0 be half the sum of positive 
roots. For a polynomial f on b,* let us write Tf for the polynomial given 
by Tf(p)=f(p+p,), and write I,(&) for the image of Z(b,) under T. 

Then res maps Z,(b,) into Z(a), although the map need not be surjective 
if G is not a classical group. However, by the proof of Theorem 2.2 in 
[H3], res is always surjective at the level of the associated quotient fields. 
It follows that we can find nonzero polynomials qnz and qkl in Z(l),) such 
that 

(0.15) 

Write $ for the Harish-Chandra isomorphism (see [Hm]) from the 
center of the enveloping algebra of gc to the algebra of WC-invariant 
polynomials on b,*. Now every element 2, in the center, gives rise to a 
G-invariant holomorphic differential operator n”(Z) on u,. On the other 
hand, the differential operator D, also has a unique extension to a 
holomorphic differential operator Dz, on u,. 

Let Z, = $ -l(qm) and Zk = $ -‘(qh). Then, as in Theorem 2.2 of [H3], 
we have 

D;,,n’(Z;) = n”(Z,). (0.16) 

As remarked in [H3], if G is classical, we can always choose qk (and 
hence Zk) to be a constant. 

The Capelli identity arises as a special case of (0.16), when we consider 
the cone of II x n positive definite Hermitian matrices, put m = 1, Zk = 1 
and make a particular choice for Z,. (See Section 5 for details.) 

The main ingredient in the proof of Theorem 1 is the Laplace transform 
on a self dual cone. This theory has its origins in the work of Siegel [Si], 
and is described in full generality in [Gil. We give a uniform derivation of 
some key aspects of the Laplace transform, making an explicit connection 
with Lie theory. The organization of this paper is as follows. 

In the first section we recall various results about symmetric spaces. 
Section 2 contains some preliminary algebraic calculations which we use, 
in Section 3, to derive the theory of the Laplace transform. In Section 4, we 
discuss the operators D, and calculate their N-radial parts. In Section 5 we 

M)7.‘87rl-6 
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specialize (0.16) to different tube domains and, among other things, deduce 
the Capelli identity.’ 

1. SYMMETRIC TUBE DOMAINS 

We now turn to the Lie-theoretic side of the equivalence of categories 
mentioned in the introduction. In what follows, all Lie algebras will be real 
(i.e., uncomplexified) unless explicitly stated otherwise. 

We start with a simple linear Lie group Gb. Let gb be the Lie algebra of 
Gb and let 

gb=fb+a+ttb (1.1) 

be an Iwasawa decomposition of gb, using the standard notation modulo 
the superscript b. (When we approach matters from this point of view, two 
symmetric spaces appear and we use the superscript b to denote the groups 
and algebras associated with the “bigger” of two spaces.) 

Let Kb be the subgroup of Gb corresponding to fb, so that Kb is a maxi- 
mal compact subgroup of Gb. Extend a to a Cartan subalgebra hb and, 
using the Killing form, regard a* as a subspace of (hb)*. Then one knows 
that rank(Kb)=rank(Gb) if and only if there exist 12 strongly orthogonal 
roots { yi , . . . . y,} of hb in gb such that each yi lies in a*. 

Assuming this to be the case, one has n commuting S-triples (hi, ej, fi}, 
where the hi form an orthogonal basis of a and-taking the yj to be 
positive with respect to nb-one has ej E nb. Note also that if 

h=ih,, n e= C ej, f=if, (1.2) 
J=I j=l j=l 

then {h, e, f } is also an S-triple. 
Now if Gb/Kb is a Hermitian symmetric space, then indeed rank(Kb) = 

rank(Gb), so that one does have the structure described above. The situa- 
tion is even nicer in the case that Gb/Kb is a tube domain. This case is 
characterized by the fact that the restricted root system d(gb, a) is of type 
G (see CW). 

This implies that we may choose a basis .si, . . . . E, for a* such that 

d(gb, a)= ( ftYj+Ej} U {+2&i} (1.3) 

’ We thank G. Shimura for bringing his paper [Sh] to our attention, which in turn 
suggested to us the possibility of using the Laplace transform for our purposes. The difference 
between our approaches is the following: while [Sh] studies the action of an arbitrary 
differential operator on special functions (cp”), we consider the action of d(q)” on arbitrary 
polynomials. 
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and we may arrange matters so that the root spaces for the roots 
{E,~E~ 1 i<j} and (2~~) are contained in nb. 

In fact the 2~~ have multiplicity one as restricted roots. (This follows 
from the Helgason-Cartan condition for a spherical representation- 
applied to the adjoint representation of gb.) Thus we may take yj = 2~~. 

Now any element x E a defines a parabolic subalgebra q,, as the span of 
the eigenvectors corresponding to the non-negative eigenvalues of ad(x). 
Let h be as in (1.2) and put q = q,,. 

To describe q, and also for later use, it is convenient to introduce some 
notation at this stage. Let us write nY for the (~~-~/)-root space with i<j; 
and write ud and ui for the root spaces corresponding to &i + cj and 2~~, 
respectively. Let us also write ii,, ii,, and iiii for the root spaces corre- 
sponding to the negatives of these roots. 

Put 
n=@ n+ u= @ u,j 

‘<I i. J (1.4) 
Ii= @ ii,, ii = @ ii,,. 

f < .I i. 1 

Also let 1 be the centralizer of a in gb, and write g = ii + I + n. 
Then q =g+u is the Levi decomposition of q. It easy to see that u is 

abelian and that each e, (see (1.2)) belongs to u, and hence e E u. Let 6’ be 
the Cartan involution of gb with respect to fb; then we may assume that 
Bej= -J;, so that e-fg fb. In fact e-f then spans the one-dimensional 
center of fb. 

Regarding u as a g-module, let 

f= (XEg (.u.e=Oj. 11.51 

Then it is immediate that f = g n fb, and that 

g=i+a+n (1.6) 

is an Iwasawa decomposition of g. 
Now g is O-stable and 0 1 g is the Cartan involution of g with respect to 

f. Let 
g=f+p (1.7) 

be the corresponding Cartan decomposition. Then by (1.5), one has a 
f-module isomorphism 

x++ [x, e] : p + u. (1.8) 

The point is that u inherits the structure of a formally real simple Jordan 
algebra by defining 

CT elo CY, el = C-Cv, ell, (1.9) 

the multiplication being commutative by virtue of (1.5). 
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If we identify g and f with their images in End(u), then we have arrived 
at the structure defined in the introduction and set up the equivalence of 
categories. One notes that e is the identity of u and that e = C ej (see (1.2)) 
is the Peirce decomposition (see (0.6)) of e. As in the introduction, one 
has that C = G . e is an open cone in u, and is isomorphic to G/K as a 
G-homogeneous space. 

Define an inner product ( , ) on u by 

(1.10) 

where B is the Killing form on gb. This gives a positive definite K-invariant 
inner product on u, and C is self-dual in u with respect to ( , ). 

For g E G and XE g, let us write 

g’=@(g)-’ and x’= -f?(X). 

Then (1.10) implies that, for all x and y in u, we have 

(1.11) 

(XT g. v) = k’ . XT Y) and (x,X.y)=(X’.x, y). (1.12) 

(It is interesting to note that under the action of G, u is a spherical 
module with the unusual property that the orbit of the spherical vector is 
open. Furthermore, under restriction to K, the orthogonal complement of 
the spherical vector is irreducible.) 

Now we wish to consider the action rr of G on 9 = g(u), the algebra of 
(real) polynomial functions on u. G acts on 9’ by 

747) f(x) =f(g-’ .-xl. (1.13) 

First of all we recall that if I’, is a complex vector space with an 
irreducible, finite-dimensional, spherical, holomorphic representation of a 
reductive group G, then there is a real form I’ of V, which is G-stable and, 
of course, irreducible. Furthermore V has a highest weight vector, which 
spans the one-dimensional space of MN-fixed vectors in V, where MAN is 
the Langlands decomposition of a minimal parabolic subgroup of G. Thus 
in dealing with spherical representations of G we may restrict ourselves to 
real vector spaces. Of course, similar remarks apply to lowest weight 
vectors in V. 

Returning to our situation, let us write m for the centralizer of a in I, and 
t for a Cartan subalgebra of m. Then 

Ij=a+t (1.14) 

is a Cartan subalgebra for g and its complexitication, h,, is one for gc, 



GENERALIZING THE CAPELLI IDENTITY 79 

Choose a positive root system C+(g,, h,) compatible with d+(g, a). 
Now recalling the basis (y, = 28,) of a* consisting of strongly orthogonal 
roots, let us write 

y-e, + ‘.. +E,. (1.15) 

Then the vj are dominant with respect to C+, and it is easy to see (see 
[KR] for example) that each -2v, is the lowest weight of an irreducible 
representation of G. In fact, one has 

THEOREM 0. Any) irreducible representation qf G in (r, 3’) is spherical. 
Consider the a (or I),) submodule .f = PM’ of lowest weight vector. Then 

for each j there exists a polynomial 9, E .f of degree j, unique up to scalar, 
s44ch that -2v,, is the corresponding weight. 

The most general weight in 9 is uniquely qf the form 

-as,v, + .‘. +s,,v,,), (1.16) 

where the sj are non-negative integers. Moreover, the corresponding lowest 
weight vector is 

f, = q; . . . qq. (1.17) 

In particular, each irreducible representation of G in 9 has multiplicity one. 
In the notation of the introduction, one has cp,, = cp (up to a scalar), so that 

(P,, is the norm of the Jordan algebra U. 
Finally, the irreducible one-dimensional representations are exactly those 

with lowest weights sv,, for some non-negative integer s. 

Except for the spherical nature of the constituents of (n, P), all the 
statements in the theorem are known. The fact that these constituents are 
spherical follows from the observation that G/K= C is open in u, and 
hence S restricts faithfully to G/K. But by Frobenius reciprocity, any finite- 
dimensional irreducible space of functions on G/K has a spherical vector. 

The multiplicity one statement and the structure of the space of lowest 
weight vectors are usually attributed to [S]. However, a much more 
general theorem was proved earlier by the first named author. (See the 
footnote on p. 79 in [S].) The more general result is a statement about the 
structure of the center 6 of 02 ([b,, b,]), where b, is a Bore1 subalgebra of 
an arbitrary reductive complex Lie algebra gc. The result is that (I is a 
polynomial ring in k generators, where k is the maximal number of 
strongly orthogonal roots of g,. Each highest weight is of multiplicity one 
and may be constructed using the so-called Kostant cascade of orthogonal 
roots (see [LW]). The paper [LW] gives an interesting representation 
theoretic construction of some of the highest weight vectors in 6;. 
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The first author had conjectured and subsequently proved that any 
highest weight vector in 6, say of weight 2, appears as the highest weight 
vector of that subspace of the A-harmonic part of @(g,) for which the 
generalized exponent mi(n) is minimal. However, an earlier proof was 
obtained by [Js] along with a very explicit determination of the weight 
vectors. 

If qC = 1, + u, is the Levi decomposition of any parabolic subalgebra of 
g,, then the results about Q immediately yield the multiplicity one theorem 
for the action of I, on the center of %(uC), as well as the determination of 
highest weight vectors. In particular if u, is abelian (the hermitian sym- 
metric case) one gets this information about the action of 1, on S(u,) or 
Y(u,). Additional references for this case are [Jh] and [U]; the latter 
expresses the generators q, in terms of the norms of smaller Jordan 
algebras. 

Returning, then, to the generators pj of 9, we have for all SEA and 
iieiv, 

n(Un) cpi(X)=cp((Un)-"X)=U~*"'cpj(X), 

where vj is as in (1.15). 

(1.18) 

2. ALGEBRAIC PRELIMINARIES 

Let us write E,I = hi where the h, are as in (1.2); then the Ei, form a basis 
of a, dual to (ei). 

LEMMA 1. For i < j, we can choose elements Eiie tt, and Eji~ iifij such 
that the set {E, 1 1 < i, j< n} forms the standard basis of a reductive 
subalgebra g, of g, isomorphic to gl,(R). 

Proof This follows from Proposition 21 of [KR]. 1 

We wish to investigate the adjoint action of g, on g and u. Let us write 
~7~ and rc2 for these representations; and, for each dominant integral weight 
1 of a, let us write Vi. for the finite-dimensional representation of g, with 
that highest weight. 

LEMMA 2. Let d=dim(n,,) (see (1.4)). Then 

(a) rcI consists of d copies of VEIpcn together with some copies of the 
trivial representation V,, 

(b) z2 consists of one copy of VZE, x 9*( V,,) and d- 1 copies of 
V E,+E*~~2K,). 
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Proof: First, let us observe that that only nonzero dominant weight for 
the action of gn on g is sr -E, with n,, as the corresponding weight space. 
This proves (a), and also shows that dim(n) = ci(n2 - n)/2. 

Next, the action of g,, has two dominant weights, 2~~ and a, + e2. Since 
dim(u,,) = 1, VZEI occurs with multiplicity 1. Let k be the multiplicity of 
V e, + E2; then we have dim(u) = dim( VzE.) + k(dim( V,, + EZ)). But dim( V2,,) = 
(112 + n)/2 and dim( V,, + EL ) = (n’ - n)/2. Thus dim(u) = (n2 + n)/2 + 
k(n2 - n)/2 = n + (k + l)(n2 - n)/2. 

On the other hand, since C is open in u, and fl,4 acts simply transitively 
on C, we have dim(u) = dim(a) + dim(n) = n + d(n2 - n)/2. Comparing this 
with above we get k=d- 1, thus proving (b). 8 

COROLLARY. For i < j, each of the root spaces n,, R,, uii, iiir (see (1.4)) 
is d-dimensional. Thus if p is half the sum of the restricted roots of a in n 
(counted with multiplicities), we have 

(2.1) 

LEMMA 3. For Y, in ii, let Y;= -f9( YO) (as in (1.11)). Then Yb~n~, 
and if Ed is as in (1.2) then we have 

(a) Y:, .sl, = 0 unless j = k. 

(b) Yik.ekEuik. 

(Cl (Yik12.ek=2 lIyikl12e,. 

(d) (Yik)p.ek=Ofor alZp>2. 

ProoJ All parts are trivial except for (c). For this, let us recall from 
[Ko, Theorem 2.1.71 that if d> 1, then the centralizer of a in K acts tran- 
sitively on the unit sphere in iijk. Therefore it suffices to prove (c) for 
Y, = Eki. But now Y:, = Eik and the result follows from Lemma 1, (b) of 
Lemma 2, the normalization of ( , ) in (l.lO), and the calculation 
E~~.(v,0v,)=2(oiOv,), inside Y’(V,,). 1 

LEMMA 4. Let ‘p, ...qn be as in Section 1; then cp,(e)#O for all j. 

Proof: If g= fiak is the Iwasawa decomposition of gE G, we get 
cp,(g.e)=cpj(fiak.e)=qj(tia.e)= a2”/(pj(e) by (1.18). So if cp;(e)=O, ‘pi 
must vanish on all of C = G . e; but since C is open, this forces ‘pr = 0, a 
contradiction. 1 

In view of Lemma 4, we may normalize cp, , . . . . (Pi so that 

Pj(e) = 1 for all j. (2.2) 

Then we have the following consequence of the proof of Lemma 4: 
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COROLLARY. With normalization as above, qj(iia . e) = a”‘j. In particular, 
~j(y)>OforallyECandeach j=l,...,n. 

The converse of this corollary is also true, and follows immediately from 
the fact that every element in u is MB-conjugate to an element of cj Rej 
as in (0.8). Since we have no use for the converse in what follows, we omit 
the (easy) proof of this fact. 

3. THE LAPLACE TRANSFORM 

The results of this section are due to [Si] for the cone of positive definite 
real matrices, and may be found in [Gil for the general case. We give here 
a Lie-theoretic reformulation of some of the results in [Gil. 

Continuing with our development, in view of the Corollary to Lemma 4, 
we may make the following 

DEFINITION 1. For s = (sr, . . . . s,)EC” we define the complex power 
function f, on C by 

k=l 

(3.1) 

DEFINITION 2. Let d*x be a G-invariant measure on the cone C. Then 
the gamma function of C is defined by the formula 

T,(s) = Jc exp( --e, x) f,(x) d*x. (3.2) 

LEMMA 5. The integral in (3.2) is absolutely convergent for Re(s) suf- 
ficiently large, and for a suitable normalization of d*x, we have 

T,(s)= fi r 
k=l ( 

tk-;(k-l) 
1 

(3.3) 

where d is as in Lemma 2, r is the ordinary gamma function, and 

tk=Sk+ ... +s,. (3.4) 

The proof of this Lemma requires some preparation. Let us define a total 
order on the positive roots in A+(g, a) by specifying, for i<j and p < q, 

Ep-Eq>Ei-Ej if either q is greater than j, 

or q = j and p is less than i. (3.5) 
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Let ii,, be as in (1.4) and define 

li’j= 1 {npq I E, - Eq 3 6, -El]. (3.6) 

Then the nU form a chain of ideals in ii, and the following lemma in an easy 
consequence of this observation. 

LEMMA 6. Write Y in ii as the direct sum 

Y=(Y,,)+ ... +(Y,-,,,+ ‘.. + Y,,)+ ... 

+ty,,-,,.+ ‘.. + Y,,), (3.7) 

where the Y, are in fi,. Then the map 

Ywr( Y)= (exp Y,,)...(exp Y,. ,,k . ..exp Y,,) . . . 

(exp Yn-I.N ...exp Y,,) (3.8) 

is a diffeomorphism from ii to IV, and takes the Lebesgue measure on ii to 
the Haar measure on iiC 

The crucial calculation involved in the proof of Lemma 5 is contained in 

LEMMA 7. Let Y, Y, be as in Lemma 6, and let ek, e be as in ( 1.2); then 

k-l 

(ek3v(Y)e)=1+ c lIYikII’. 
i=l 

(3.9) 

Proof: By (1.12) the right side is (q(Y)’ .ek, e) where y(Y)’ = 
d(q( Y))-‘. Now 

q( Y)‘.e,= [(exp Y;, . ..exp Y:,PI.,,)... 

(exp Y;,.“exp YLpl,k)“‘(exp Yi2)]‘ek. (3.10) 

The (adjoint) action of exp Yb on u is by 1 + Yc + (Yh)*/2! + . . . So by 
(a) of Lemma 3, we see that in the right side of (3.10), factors of the form 
exp Y:, with j< k, leave ek unchanged. Now (b), (c). and (d) of Lemma 3 
imply that 

k-l 

(exp Y;,‘..exp Y6_l,k).ek=ek+ c llYjkl12ei 

i=l mod (,;<k “)’ 

(3.11) 

Finally, the remaining factors are all of the form exp Yb, where q is 
greater than k. So they leave the last expression fixed. Since the spaces ri, 
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are mutually orthogonal with respect to ( , ), (3.9) follows by taking the 
inner product of (3.11) with e=e,+ ... +e,. fl 

We are now in a position to prove Lemma 5. 

Proof of Lemma 5. Recall from Section 1 that ,4N acts simply tran- 
sitively on C. This sets up a diffeomorphism of AN with C which takes the 
left-invariant measure on ,4N to the G-invariant measure d*x on C. 

For a in A, let us write ai for the number u2’l. Then the map 
a H (a1 ) . ..) a,) is an isomorphism of A with (R + )“. We have a. ek = ukek 
and 

f&at?. e) = n a:, (3.12) 

where tk =sk + .. . + s, as in (3.4). 
So, if da and dii are Haar measures on A and N, respectively, the right 

side of (3.2) becomes 

T,(s) = jc exp( --e, x) f,(x) d*x. 

= IS exp(-e, ufi.e) f,(uii.e)dtidu 
A N 

= exp(-u-e, fi.e) 

= SSn [a: exp( -ukek, 6. e)] dri da 
Amk 

= 
SSn 

[U; exp(-Ukek, t’/(Y) .e)] dY da 
Aiik 

= u: exp( -uk) 

k-l 

1 /lyik/12 dYlk...dYk-l,k dXUk 
i= 1 I 1 

= a~-d’k-1)‘2 eXp( -Uk) dXUk 1 
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where d Xak is a multiplicative Haar measure on R + , and the various 
measures have been normalized suitably. 

The absolute convergence follows easily from the explicit calculation 
above. i 

DEFINITION 3. For a suitable function f on C, we define its Laplace 
transform 2f to be the function on C given by the formula 

2f(y) = !” exp( -y, xl f(x) d*x. (3.13) 
C 

Recalling the notation of Section 1, let 0 be the Cartan involution of G 
with respect to K. Then 8 gives rise to the usual Cartan “symmetry” (also 
denoted by 0) on C = GJK. Then 0. e = e, and if a E A and n E N, then 

B(a)=a-’ and B(n) E N. (3.14) 

LEMMA 8. Let f, be as in Definition 1; then the integral defining 2fs 
converges absolutely for Re(s) sufficiently large and 

Qf,(y) = T,(S) f,(e Y). (3.15) 

ProoJ The group NA acts transitively on C. So we may write y = na . e 
with aEA and HEN. Now e.(na.e)=B(n)8(a).e. Then by (3.14), we get 

f,(O.y)=f,(a-‘.e)=n akfk. 

On the other hand, 

efs(y) = 2fJna. e) 

= J exp( -na .e, x) f,(x) d*x 
C 

= s exp( -e, a’n’ . x) f,(x) d*x 
c 

= s c exp( -e, x) f,((n’)-’ (a’)-’ .x) d*x. 

Since n’ EN and a’ = a the last integral becomes 

( >J rI4 c exP( --e, x)f,(x) d*x =f,(e. y) f,(s). 

Again, the absolute convergence is immediate. 1 
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Let p be as in (2.1). We wish to rewrite (3.15) in a slightly different form, 
taking into account a shift by p. 

DEFINITION 4. For 1 E a*, let f’ be the function on C satisfying 

f”(na.e)=~“+~ for all aEA, nEN. (3.16) 

Now the proof of Lemma 8 shows that 

f”(Y) =f&;.,(~ ..JJ)> (3.17) 

where s(A) is given by solving 

- 2M~) + . . . + s,(l)) = 1, + f (n - 2k + 1). (3.18) 

This gives 

r,(s(n))= fi I- 
1 

k=l 

-$; (n-2k+ I)-; (k-1) 

= 

Let us write G(A) for the last expression. Then (3.15) becomes 

2fsii, = $2) f”. 

(3.19) 

(3.20) 

4. INVARIANT DIFFERENTIAL OPERATORS 

Let V be a vector space over R, and let V* be its dual. Write Y(V) and 
Y( V*) for the symmetric algebras over these spaces. Then P’( V*) is 
naturally isomorphic to 9(V), the space of (real) polynomial functions 
on V. On the other hand, each v in I/ defines the differential operator a(u) 
on V by the formula (a(v)f )(x) = (d/dt) f(x+ tv) IrzO. This extends to a 
natural isomorphism, still denoted by 8, from P’(V) to D(V), the space of 
constant (real) coefficient differential operators on V. 

For 5: in V*, let us write eg for the function on V given by 
eg(x) =exp(<, x) where ( , > is the pairing between V* and V. Then an 
easy calculation gives for r E Y(V) z P( V*), 

a(z) ec = ~(5) et for all 5: E Y( V). (4.1) 

Let us apply this to the case at hand with V = u. There the inner product 
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( , ) allows us to identify u and u*. If r is a homogeneous polynomial of 
degree k in P(u) and f is a suitable function on C, we get 

d(z)(q”) = (- l)k Q(rf). (4.2) 

This follows by differentiating under the integral in (3.13) and using (4.1). 
Let us further specialize this to the case where f = f,,;, and r = cp”. 

Applying (3.20) we get 

3cpr (I = (- 1 rfl L’W’,f,,,,). (4.3 1 

However, cp”f,~~~ =fscj. - lrna), where E=v,,=E,+ ... +E,, (see (1.15)). So 
the right side becomes ( - 1 ),” W(1- 2ms)f” ~ ““&. 

Now f”- 2mE(~) = cp”(B ~1) f”(u); and by an easy calculation 
(~(0 .y) = cp(~j))‘. Substituting this into (4.3) we get 

cp”ij( cp)‘” f” = ( - I),, 
W(l, - 2rn&) ; 

O(i) f. 
t1 m-l . 

=rI 4 
?+fj (n-1)-j 

> 
.f”. (4.4) 

k=l .,=o 

Let us recall from [H2] some pertinent facts about invariant differential 
operators. 

If M is a smooth manifold, a linear map D from C;X (M) to itself is called 
a differential operator if it decreases supports, i.e., if supp(Df) c supp(f), 
for all f E C,“(M). If D is a differential operator, then D extends canoni- 
cally to an operator on C”(M) also denoted by D. 

Suppose y is a diffeomorphism of M and f~ C x(M); then the function 
f” =fc “J ~ ’ is also in C”(M). If D is a differential operator, then the 
operator D7 defined by Dyf = (Ofye’)’ = (D(f 0 y))o~~’ is also a differen- 
tial operator. We say that f is y-invariant if f’ =f and that D is y-invariant 
if Ds=D. 

If G is a Lie group and H is a closed subgroup, then the homogeneous 
space G/H is a smooth manifolds and G acts on it by diffeomorphisms. We 
will write D(G/H) for the set of G-invariant differential operators on G/H. 

Suppose now that G is a reductive Lie group. Let G = KAN be its 
Iwasawa decomposition, so that K is a maximal compact subgroup, A is a 
maximal real split torus, and N is the nil radical of a minimal parabolic 
subgroup. Let us write e for the identity coset in G/K; then if D E D(G/K), 
the N-radial part of D is the unique differential operator d,(D) on the 
submanifold A . e such that for any N-invariant function f E C”(G/K), we 
have 

~,(D)(fl...)= (of) 1A.r. (4.5) 
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Since A acts simply transitively on A . e we may identify the two spaces 
and consider d,(D) to be a differential operator on A. Let us write p for 
the half-sum of the roots of a in n and up for the function 
a- exp(p(log a)). If W is the Weyl group of A in G, let us write D&A) 
for the set of W-invariant differential operators in D(A). Then it is known 
(see [H2, Theorem 11.5.181) that 

D(G/K) is a commutative algebra and the map 

f~:Dk-+a-~d~(D)oa~ (4.6) 

gives an isomorphism of D(G/K) with D&A). 

Returning to our situation, where G/K is the cone C, let 

D, = cp”d(cp)“. (4.7) 

Then it is clear that operators D, are in D(G/K). Moreover, the exponen- 
tial map gives an isomorphism of a (with the additive structure) with A. 
Under this isomorphism, D(A) corresponds to constant coefficient differen- 
tial operators, or equivalently, polynomials on a* via the map a described 
earlier. In our case a* z R” and W is the symmetric group on n letters, act- 
ing in the usual manner on R”. Thus D&A) corresponds to “symmetric” 
polynomials on a*. 

Then our main result is 

THEOREM 1. Let pm be the function on a* given by 

p,(l)= fi mfil ($+$24)-j). (4.8) 
k=l j=O 

Then 

4DnJ = a(~,). (4.9) 

Proof The functions f” are N-invariant and fA 1 A . e = ai.+p. Clearly it 
suffices to show that a(D,) and d(p,) agree on all a’. However, 

a(D,) ’ = (a-Pd,(D,) 0 a”) an 

=a pp(d,(D,) a’+“) 

=a -P(Dmfi. 1 A .e) 

=a -P(~,(~)fi- I A .e) 

=a -p(p,(il) a’+ “) 

= p,(A) a’ 

= d(p,) a’. 1 
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5. DIFFERENTIAL IDENTITIES 

Let us recall from [Hl, p. 528, Example 41 the classification of the 
irreducible symmetric tube domains. They are the symmetric spaces 

(A) (A III) U(n, ~)lU(n) x U(n), rank = n; 

(B) (BD I) O(p, 2)/0(p) x O(2), rank = 2; 

(C) (C I) Sp(2n, R)/U(n), rank = n; 

(D) (D III) SO*(4n)/U(2n), rank = n; 

(E) (E VII) E,,p25)/E6 x S0(2), rank = 3. 

In this section we specialize (0.16) to each of these domains, considering 
the first case in some detail. All unexplained notation is from the introduc- 
tion, especially from the discussion preceding (0.14), (0.15 ), and (0.16). 

Type A. The group G is GL(n, C), the cone C is the set of all n x n 
complex Hermitian, positive definite matrices, and the functions (Pi are 
the principal k x k minors. G acts on C by g . x = gxg*, where g* is the 
conjugate transpose of g. The root multiplicities are d= 2. 

Complexifying G and u we get the action of G, = GL(n, C) x GL(n, C) on 
M(n, C) given by (g,, g2). (z) = g,zgT, so that G imbeds in G, as the 
diagonal subgroup. Let us write GL and GR for the two copies (left and 
right) of GL(n, C), and gL and gR for their Lie algebras. The representa- 
tions of GL x GR occurring in B are those of the form V, 0 VT, where I’, 
is an arbitrary holomorphic representation of GL(n, C). 

As before, let h = a + t be a Cartan subalgebra of g. Projection onto each 
component yields isomorphisms nL and rrR of h with Cartan subalgebras h” 
and hR of gL and gR, and we note that h, = hL @ hR is a Cartan subalgebra 
for gc. 

Let sl, . . . . E, be as in (1.10) and let E: = ck 0 xL ’ and E: = sk 0 71; ‘. Then 
the E: form a C-basis for hL and the roots of h” are 1.s: +&IL}. (Similarly 
for E:.) Under the inclusion map I of a* into h,*, Z(Q) = f(ck, E:). 

Now WeS,, and W,z S, x S, acting on each factor. Since G is quasi- 
split, we have p,, =0 in (0.1.5), so Z,(h,) %Z(h,). Also, in this case, the 
positive restricted system ,4(n) = (si - cj 1 i <j) determines a unique 
positive root system for b, in gc. Its projection onto each component deter- 
mines positive root systems for gL and gR. Write pL and pR for half the 
sums of positive roots in each case. Then 

yL=; z (n-2k+ I)& pR=;x (n-2k+l)c,R. (5.1) 
h k 
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Define the polynomial qm on h, = h” 0 h” by 

qm(p,v)= fi Mff 
k=l j=O ( 

vc++j). 

for p = c, ,ujsF and v = xi vi&T. Then clearly q, E 1(I),) = Z,,(l),) and 

(5.2) 

Thus by (0.16), o’,=rc”(Z,), where Z,=I+~‘(~~). From the definition 
of qm it is clear that Z, belongs to the center of %(gR), and it may be 
calculated by explicitly inverting II/, as described in Section 23.3 of [Hm] 
for example. 

In the case m = 1, let us just check that Z, is indeed the (holomorphic 
extension of the) left side of (0.1). An easy argument (see [Ho]) shows that 
the left side is a central operator. In its expansion as in (0.3), all terms 
except the diagonal term have a last factor of the form n”(E,) with i<j. 
This implies that these terms kill every highest weight vector in P(u,). 
Finally, if f is a highest weight vector for gR with weight v = x& vk&F, then 
the diagonal term multiplies it by 

kn, ( 
v,+n-k). (5.3) 

On the other hand, 

z,f=&(v+pR)f=, (v&+-y+’ +q)/ (5.4) 
k 

Comparing (5.3) and (5.4) we obtain the Capelli identity. 

Type B: The group G is O(p - 1, 1) x R, , and the cone C is the set of 
all vectors (xi, x2, . . . . x,)ERP such that xi>0 and xf>x:+ . . . +xi. The 
functions ‘pi is simply x1 and q*(x) = xi - (xi + . . . + xi). The root multi- 
plicities are d= p - 1. 

Theorem 1, in this case, specializes to a formula for the N-radial part of 
the wave operator, and (0.16) leads to a well known identity for powers of 
the Laplace operator. 

Type C. The group G is GL(n, R), the cone C is the set of all il x n 
positive definite symmetric matrices, and the functions qk are the principal 
k x k minors. G acts on C by g . x = gxg’, where g’ is the transpose of g. 
The root multiplicities are d = 1. 
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In this case the identity (0.16), with ~2 = 1, was first proved by [IT]; see 
also [G]. 

Tvppe D. The group G is GL(n, H), the cone C is the set of all n x n 
positive definite Hermitian quaternionic matrices, and the functions qn, are 
the principal k x k minors, which happen to be real valued and, in fact, 
positive for such matrices. G acts on C by g s = gUxgt, where gt is the 
quaternionic conjugate transpose of g. The root multiplicities are d=4. 

After complexitication, the space u becomes the space of 2n x 2n complex 
sken,-symmetric matrices, and the various (Pi become the Pfaftians of the 
leading 2k x 2k submatrices. An identity corresponding to (0.16), again 
with wz = 1, is briefly referred to in [T]. although details are not given. 

rllppe E. The group G is G’ x R + , where G’ is a real form of E, with 
split rank 2. The space II may be identified with the set of all 3 x 3 Her- 
mitian matrices over the Cayley numbers. The root multiplicities are d = 8. 
The cone C is the set of all positive definite matrices, and the stabilizer of 
a point on the cone is a compact form of the exceptional group F4. 

The functions cpx- are the principal k x k minors, which happen to be real 
valued for Hermitian matrices. Suitable care must be taken in defining 
these minors since the entries of the matrices belong to a non-commutative, 
indeed non-associative, ring. This can be done for 3 x 3 matrices; see [F]. 

The function Q is sometimes called the Freudenthal determinant. 
This example is different from the others in that we cannot assume 

Zk = 1 in (0.16). However, a recent result of Helgason [H3] shows that 
one can always take Z& to a polynomial in the Casimir. The identity (0.16) 
seems to be completely new in this case. 
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