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DEGENERATE SERIES REPRESENTATIONS FOR
GL (2n,R) AND FOURIER ANALYSIS

DAN BARBASCH! - SIDDHARTHA Sam?
BireiT SpEH?

1. INTRODUCTION

In this paper we present an example of close relationship between a filtration
of an induced representation by invariant subspaces and the orbit structure of the
action of a subgroup on a vector space. Such a relationship was first observed in
the case SO(4,2) in the work of Jakobsen, Vergne and one of the authors [8]
[11]. They considered the representations induced from a one dimensional rep-
resentation of a maximal parabolic subgroup @ with abelian nilradical N. The
Levi subgroup L of Q isisomorphic to a product of SO(3,1) and R*. Ifthe
induced representation has a finite dimensional subrepresentation, then there is a
bijective correspondence between the orbits of L on N and the lattice of invari-
ant subspaces of the induced representation. Furthermore there is a one to one
correspondence between closed L-invariant subsets and invariant subspaces. This
correspondence preserves inclusion relations. _

A stmilar correspondence between invariant subspaces and orbits is also true
for G = GL(2n,R), the general linear group of 2n x 2n real matrices. Let
P be its «middle» maximal parabolic subgrouup. It has the Levi decomposition
P=LN withLevifactor L = Gl(n,R) x GL(n,R) and N = M, (R) (the
additive groups of all n x n real matrices). In this paper we consider the repre-
sentations Ind g( x) of G induced from an arbitrary one dimensional character y
of P. Using analytic techniques we determine a filtration by invariant subspaces
as follows.

' Supported by a grant of the National Science Foundation.
2 Supported by a grant of the National Science Foundation.
* Supported by a grant of the National Science Foundation.
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We consider Ind g( x) as realized in a certain space V' of functions on N a
M.y (R). In particular if it a K -finite function in V, its Fourier transform
J always makes sense as a tempered distribution on N v M(n,n] (R). Now
M, nw (R) has a natural filtration by closed L-stable subvaricties given by

M{ﬂ.ﬂ)(R)=QnQ"'QQI 2..,;:}.0:{0}29_] .—:g

where Q, = {T € M, an (R),Rank(T) < I}. We may consider the correspond-
ing filtration on ¥

V=V,2..2V...2V, 2V,

where V; = {f € V,supp(f) D Q;}. Since V, is (g, K)-invariant this defines
a filtration by invariant subspaces.

In the first part we obtain necessary conditions for this filtration to be nontrivial.
The key ingredient here is the Radon transform from (n+ ) x (n— [) matri-
cesto M, ., (R). In the second part we use the parametrization of irreducible
(9, K)-modules with  fixed infinitesimal character 1o get a priori control on pos-
sible composition factors of Ind g( x) with a given wave front set. This to gether
with the results of the first section shows that i X satisfies a certain positivity con-
dition, then the quotients V' = Vi/ Vi, are cither irreducible or zero. A precise
statement is given in theorem VIL1,

It is possible to obtain the composition series of the representation Ind f‘;( X)
using only the techniques introduced in the second part. We use Fourier anal ysisin
this paper because it allows us to obtain a very natural analytic description of the
lattice of invariant subspaces. Furthermore we also obtain an interpretation of the
wave front set of subrepresentations which is useful for application to automorphic
forms and number theory.

From now on we will always assume that n > 0.

I. DEGENERATE SERIES REPRESEN TATIONS

Let G = GL(2n,R) be the group of 2n x 2n real matrices with nonzero
determinant. Its Lie algebra g isthe Lie algebra of 2nx 21 matrices. Its maximal
compact subgroup X is isomorphic to O 2m), the group of orthogonal matrices.
Its Lie algebra k is equal to the Lie algebra o(2n) of skew Symmetric matrices.

We write a typical element g in GL(2n,R) as

where a, b, ¢, ¢

for the indicate
the additive gre

One dimen:
Z/2 xC, wh

Characters of |
C. (Here we w

The represe
feC™G) s

forall g € G
If xo isthe

where

Also, if (Ind

where x* = ((
duced represent
e€eZ/2.
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where a,b,c,d € M, (R) and det g# 0. Also, let us write

~{(; D}
-{(5 o)
={(, D}
w{(s D}

for the indicated subgroups of G. Notice that N and N may be identified with
the additive group M, (R).

One dimensional characters of GL(n,R) arc parametrized by elements in
Z /2 x C, where (¢,s) corresponds to the character

a — (signdet o) - | det a.

Characters of [, consist of pairs x = (x,;,X,) Witheach x, = (¢,s,) in Z/2 x
C. (Herc we write Z /2 additively).

The representation Ind g( x) is realized by right translations on the space of
f € C™(@) satisfying

f ((Z ?ﬂ) 9) = [a|™* [d* x;(@)x2(d) £(9)

0 ;
forall g € G and (a ) € P. Here |a| etc. is shorthand for |det o] etc.
b ¢
If x, isthe character (gy,s9) of G, wehave
Xo ®Id$x=d§ %

where
¥=((eg+€,8 +8),(g+ 6,5 +s5))

Also, if (Ind€(x))" is the hermitian dual of Ind $(x), then
(nd $())" = md §(x™),

where x* = ((€;,—3;),(€,,—8,)). Hence to determine the structure of the in-
duced representation we may assume from now on that x{(e,8),(0,—s)) with
ecZ/2.
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PROPOSITIONIL.1. The representation Ind ‘g( X) isirreducible unless 2 s — (n—
DeZ.

PROOF. The subgroup
H° = {diag(, A N R,m €Z/2}
is a Cartan subgroup. A character v of H° is givenby ((6;,v,),...,(6,, vy,))
with characters (§;,2,) of GL(1,R) determined by
y((m, ,e"}), sy, eyi), o S e“z")) = §,(m) - g%
Let
((E,(ﬂ-— ]J/2+ S),(E,(ﬂ—- 3)/2+ 8)}"‘:(5: '_(n'_ I)/2+ S_),
(0,(n~1)/2 -5),...,(0,~(n— 1)/2 - s)).
be a Langlands parameter and X (x) bethe corresponding standard module (prin-
cipal series representation) corresponding to this parameter. The claim follows
from factoring the long intertwining operator for X (x). The part corresponding
10 roots outside GL(n) x GL(n) is formed of isomorphisms. The other Just gives
Ind§(x) as its image. QED.

From now on we will use the same notation forthe (g, K) -module associated
{0 a representation as for the representation of G itself ;

III. THE RANK FILTRATION

Let x beacharacterof L. Since G = P. up 10 a set of measure zero, func-
tionsin Ind $(x) are determined by their restriction to = M,y (R). We write
V(x) for the corresponding realization of Ind ;GD(X)- For x = ((¢,9),(0,—s))
the action I, of G on V(x) is «formally» given by

(3.0 I1,(g) f(z) = (sgn(@))*[a|™™**[d]2/2~ f(3)

where @,d and % arc obtained by solving

LH)GIGHEH

and sgn(a) = sgn(det(a)). This gives

(3.2) a=a+ zh,

(3.3) iz(a+zb)_l‘(c+zd),
and

(34) )= lg| - [3]" = lg| -]+ zb| .

Note that these formulas are valid only if all terms are defined.

A translation f
Let £} = {
M(ﬂ.n) (R)} L

LEMMA IIL1
[(mod 2).

PROOF. The
to show that F,

fEF and x=

Now suppose [
k x k minor fu
by Leibniz’s rul

where fc 18 the
and colummns nc
Thusif f=

which is again i

LEMMA III. .

isa (g, K)-ho

PROOE. We'l
for the G-actio:

REMARK. Tt
the Zuckerman
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A translation functor

Let F; = { polynomials on M, ,(R) degree < [ inthe minorsof z €
Mg (R)}. Then we have

LEMMA IIL1. F) is an invariant subspace of V(e(l), %), where e(l)
I(mod 2).

PROOF. The invariance is immediate on the subgroup P = L - N, thusit suffices

% 4 ) From 3.2, 3.3 we see that for

to show that F) is invariant under w = ( 10

feF and x= (D), %),
I (w) f(z) = (det z)' - f(z7).

Now suppose I and J are two subsets of {1,...,n} ofsize k andthat f isthe
k x k minor function corresponding to rows from I and columns from J. Then
by Leibniz’s rule

f(z™) = #(det )" - f(x)

where f° is the complementary (n— k) x (n— k) minor corresponding to rows
and columns nofin I and J.
Thus if f= f,...f,,, whereeach f; isaminorand m < we get

w-f=x(det 2)""fF... FC
which is again in F. Q.E.D.

LEMMA 111 2. The mulfiplication map

p:F,@V(es) ->V(e+e(l),s+ 2£)

f®v—f-v
is a (g, K) -homomorphism.

PROOF. We have to check only that u is a homomorphism. This is best verified
for the G-action as in the proof of L1, and then it is immediate. QE.D.

REMARK. The correspondence (F; ® —) — V (e+ (1), s+ £) is related to
the Zuckerman translation functors.
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Construction of a su brepresentation

For [ <'m, let P, be the parabolic subgroup of G with Levi factor GL([) x
GL(2n—1). The unitarily induced representation | ; = Ind fé,‘:( 1) is irreducible by
an old result of Gelfand and Naimark [6]. It may be identified with a certain space
of smooth functions on the space M2, (R) of Ix (2n—1{) real matrices.

We introduce the Radon transform @ from M( 121 (R) 1o M, anm (R) as
follows: Let z,y,2 be Ixn,(n—1I) xn and [x (n—1) real matrices respectively.
Then (z,z) and (:) are elements of My,,, » (R) and M., (R).If fisa
function on M2, 1) (R), we write

(3.5 G’f((z))=ff((z,x+zy)}dz.
v

The key properties of ¢ are as follows:

LEMMA IIL.3. The integral defining ® converges absolutely for f in I , and
defines an injective homomorphism from | , mto V(0,(n—1)/2). Furthermore

U{sapp(D (/) : f € I,} = Q,.

PROOF Let us write ¢ € G as z ;) where a,b,¢c and d are [ x I,
(Zn—0 xLlx(2n—1) and Cn-Dx2n-1D respectively. Then P =

0
{(: d)} and the representation I, is realized on Lz(Mu,zn_;)(R)) by
L(o) fCu) = [ ®D2 132 £,

w

where &,d and % are obtained by solving

1 u a c) _ (& 0 1 ﬁ\

0 1 b d) \b d)\o 1)
Now if f is a function in I,, then in particular f is the restriction of a smooth
function on G. Thus there is a constant ¢ € R such that o > |f(k)| for all

ke K. Writing k € K as
e 0O 1 u
=5 3] (s 1)

we get |a| = |d]~! and

Ga)l ) DEH-69

Thus

Hence det(1+

(3.6)

for .f €. Wr
det

So to prove the
of

Let Zygeeey g

Since (n—1+
absolute conve:
Next, we she
first introduce ¢
Let us write

the representati

where a,b,d a
The charactc
s—gq/2 +

of ¥} e XV;‘
the maps are gi

where f.(z) =
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a(l+u-udat = w(l 0
* «/ \o 1/

Hence det(1+ u-uf) = |det a|~? and we have
(3.6) [f(u)] < A-det(1+u-uf)~™?2
for .f € I,. Writing u as (z,z) we get
det(l+u-u) =det(1+z2-20+z-2) > (1+2-2%).

So to prove the absolute convergence, it suffices to check the absolute convergence
of
[dct( 1+ z-2H) %24z,

Let z;,...,2,, bethe columns of z. Then this integral becomes

fdct(1+ 2 -z? + ...+zf‘_l -zn_;}_"ﬁdzl cdzy ;=

n-l —(n—i+1) /2
= ([dct(l-FZ,--z,t-)) dz) =

U(l + |z,,|2)—<“*1’f£i'zf) ;

Since (n—1+ 1) > [+ 1, each factor in the product converges. This proves the

i,
i=

1

absolute convergence.

Next, we show that @ is an intertwining operator from I, to V (0,251) . We
first introduce some useful notation (due to Zelevinski):

Let us write v, for the character |det( )] of GL(p,R) and denote by vy X vé

- 5 0
the representation Ind g‘[‘(’”q}(v’f x v). Here P, is the parabolic {(: d )}

where a,b,d are p X p,¢ X p and ¢ X ¢ matrices respectively.

The character v, is a a subrepresentation of y;*qf 2 x v;“’f 2, and a quotient
of p;“i‘f" 2 x wE »/2  1If these representations are realized in the noncompact picture,
the maps are given by

L N

where f(z) =c forall z € MPXQ(R) and

f= [ #(a)as
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Using induction by stages, we get an intertwining map as follows:

I = uf X vgﬂ !
E}vg X ( n”zi X v_(“*wz)
i’ (Ufn—-f),’?.-—{n—f)ﬁ " y’(:l_z),fm/z) " v;(,,_;);g
U (n-0)2 —(n-D)/2
v, X vy

= V(0,(n—1)/2).

In the noncompact picture the intermediate representation above is realized on func-

I z oz
ticns on the nilpotent group (O 1 y) } , where 7,y and z are asin 3.5.
0 0 1

Since

1 0 0 1 =z
0 1 y -(O 1
0 0 1 0 0

z
1
0
0 z-zy
1 v )
0 1
1 z =z
Tf( 0 1 y))=f((2$))
A0 11
z T+ zy
U(@J(()) Ik (0 g )dz.

0 1

Since @ =U -T,® isa (g, K)-homomorphism from Lo V(0,(n—10)/2).
Furthermore, the argument leading to 3.6 shows that the spherical vector in [ is
f(u) =det(1+u-u*) ™2 Since this is a positive function, 3.5 shows that & is
not identically zero. Now the irreducibility of I, implies that ¢ is injective.

For f € I,,® f isin V(0,n— ). By an argument similar to 3.6. it follows
that |@(f(v))| < Adet(1+v-9)~ D for v € M, , (R). In particular
@ f is a tempered distribution and we may consider its Fourier transform (I}f

To calculate supp(® ), we proceed as follows: Write v = ( ) andlet w =
(¢,m) be the dual variables. Suppose ¢ is a Schwartz function on M, (R).

and

—t

Then
57.4)= ¢
:/ e
- f F
where F, isth
This shows
To prove equali
F f(2,0#0

I, could not b
QE.D.

The filtration .

Combining
subspaces.

PROPOSITIC
0<i<n put
e Suppost

(3.7 (
s Suppos
(3.9) 0:

PROOF. By
2;11;9,) Multi,
transform and
D))} =
Let L(x)
algebra. We d
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D

-]

Then
®7,9) z/((bf)&:

=/[ f((z,$+z-y))dz] [/e-ier(c**ﬂ‘y)é((C,n)dCdﬂJ dzdy

=-/e—itr(({:—zy)-l-w)f((z,z) &((¢,m))d{dndzdydz

=/‘(fe—izr{z£(2,.'6))d:r) (/e~itmy3mei:mzy¢((<’ T;))dydn) dcdz
= [ .1, 08((¢,¢ - ) aca

where F_ is the Fourier transform in the z variable.
This shows that supp(P(f) C {(¢,{z) € M*(R)} = Q,, and so we have

(J{supp(®7) : f e L} c @,

To prove equality, it suffices to find for each 2, and ¢, afunction f € I; suchthat
F.f(2,{)# 0 inncighborhood of (z,{). But if there were no such function, then
I, could not be dense in L?( M3, 1)(R)) and we would get a contradiction.
QED.

The filtration and its characteristic variety

Combining lemma I11.2 and II1.3 we obtain a filtrations of V() by invariant
subspaces.

PROPOSITION IIL.4. Lef ¥ = (¢,8) for2s € Z and 0 < 2s < m For
0 << m put V(x) = {f € V00, supp(f) CQ}. Put r=[222] _1.
e Suppose e=0. Then

(3 -7) 0 # Vn-...Z_g (X) # Vn..23+2 (X) ?" e # Vn—2(a—r) (X) 7{ Vn(x) <
e Suppose e= 1. Then
(3 8) 0 # Vn——?s-ﬂ-] (X) % Vﬂ—E.‘H—} (x} 7& L Vn—zfs——r)-i—l # Vn(x)

PROOF. By lemma IT1.2 and IIL.3 p(F, ® (1)) isasubmodule of V(e{q),
“—‘5131) . Multiplication by a polynomial does not increase the support of the Fourier
transform and since 1 € F), we scc that the union of supp{7,f € u( F, ®
D(L)}=Q, Q.ED.

Let Ij(x) = Annmg){vf(x)} be the annihilaior of V() in the enveloping
algebra. We denote its associated variety by Ass(] ().
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PROPOSITION 1115, Suppose Vy(x) # Vi (x). Then £, C Ass(I(x)).

PROOF. The Fourier transform provides us with a «fakes Whittaker functional

since for T € U(n) and FEV(x)
Tf=o(T)}.

Here o(T) is the polynomial in §( n) corresponding to 7. The equation o(7")
f=0 foran J € Vi(x) implies that QC{)en, o(T)(X) =0}.

The proposition follows now from the proof of theorem 1 in [10]. Q.E.D.

sentation and cells ag described in sections 12-14 in [13]. The notions introduced
will be illustrated in section VI in the case of U(p, q) and GL(n,R).

Recall that a Langlands parameter for an irreducible Fepresentation with regular
integral infinitesimal characteris a G-conjugacy class of data

(4.1 T=AT, 5. H),

where H = T4 isa §-stable Cartan subgroup with Lie algebra h such that

T={z€ H|bz =z}, t={zeh|fz=z},
A=expa, a:{thsz:-—z}’

and T G.I?I,;yeh‘, satisfy
(4.2) dr=7y+p('1’)—2pc(‘?).

Here ¥ is the unique positive system of imaginary roots such that (Ma) >0
foraoew 'V, are the compact roots and

AP =1/2 3 a,
sl

p(¥)=1/2 E a.

ac¥,

Then X () isthe standard module (induced from dicrete scries) and X () is the
unique irreducible quotient corresponding to the parameter 7. We will denote by

P(x) the
correspond

(4.3)

Recall the ¢
is the equiv

(4.4)

The equival
We will
algebra g
Given a
dieck group
mfinitesima

(4.5
Then

(4.6)

where B an

The Wey!
t(w) define
direct sum d
need.

The 7-in
in A(g,h)
Then

47 =

Recall also, t
in [13]. Ther
are given by

t(s).

(48 [_
{z
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o)

P(x) the parameters with infinitesimal character y, and by P,(x) the subset
corresponding to the Cartan subgroup H. Let

(4.3) [X(%) : X(8)] = multiplicity of  X(8) in X(r).

Recall the equivalence relation ~ defined in 1.14 [13] or Chapter 9 in [14]. This
is the equivalence relation generated by

(4 4) 7 ~g §if [X(7) : X(8)1#0 or [X(6) : X(7)]#0.

The equivalence classes are called blocks,
We will denote by subscript a, the abstract objects attached to the complex Lie

algebra g, isomorphicto g.

Given a regular integral infinitesimal character X, let G(x) be the Grothen-
dieck group over Q generated by characters of irreducible (g, K)-modules with
infinitesimal character y. This has as bases

(4.5)
Then

(4.6)

where B are the various blocks for the infinitesimal character y.

{X( ’T) }v)EP(x) ] {X('T) }'TEP(X) -

G0 = R Gx(x0),
B

The Weyl group W, actson G(x) by the coherent continuation Trepresentation
t(w) defined in sections 12-13 of [13] (with u specialized to 1) and preserves the
direct sum decomposition (4.6). We will describe the properties of #( ) that we

need.

The 7-invariant of = is defined as follows. Let R*( 7) be the positive system
in A(g,h) determined by & and let IT() C R*(7y) be the set of simple roots.

Then

4.7  (p= {aen(’f)

« is compact imaginary or

o is complex, and g R* () or
« real, satisfying the parity condition.

Recall also, the relation y —_ 4" and the Bruhat order < defined in sections 12-13
in [13]. Then the formulas for ¢(s) with s = s, € () onthe basis X ()

are given by

t(s) X(v) =
(4.8) {—X('ﬂ

X('Y) + E‘Y"ﬂ" X( ,)F) * Eé('}r,&Eﬁé) ru'( ér 'T)j{( (;5)

ifa€er(y),
if ag ().
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The action of i(s) on the basis X () are given by the following formulas.
a) 1(s)X(7) = —X(9), if & is compact imaginary.
2)" () X(7) =4, if & is real not satisfying the parity condition.
b) #Us)X(y) =sxX(7), if ais complex, a € R¥ ().
b)” 1) X(7) = s x X(), if & is complex, a¢ R* ().
0 UNX(Y) = —sxX(N+c(X(y) if ¢is noncompact imaginary type II.
0" U X(7) = s x X(7), if a isreal type II, satisfying the parity condition.
d) W)X () = -X(N+X(y2+ X(7)2 if o is noncompact imaginary type L.
d)* () X () = X(7), if e is real type I, satisfying the parity condition.

In these formulas, x is the cross action and (X, (7)), X(ME&, X (7)* come
from the Cayley transform of ~. These are defined in sections 4 and 7 of [13].

I

DEFINITION IV.1. The <, -preorder on B is the smallest order relation with
the following property.
Fixw € W,v € B and write

(4.9 Hw)X{7) =) e, X(9).
¢EB

Thenay#0 = y < ¢. The cone over is defined to be

(4.10) CR(y) = {¢ € By <tro}
(4.11) VR(9) = span{X(4)|¢ € CR(7)}.

DEFIN:TION IV.2. The relation ~, is the smallest equivalence relation gener-
aled by

(4.12) Y~pp <7 <yp¢and <Lr 7

Then we define

(4.13) CR(m) = {$ € B¢ ~;5 7},
(4.14) VR (9) = span {X(4)|¢ € CR()},

(4.15) CX(M) ={$ €Bl¢ <157, ¢ %15 71},

(4.16)

(4.17)

By their de

Recall that
tent orbitin g
and 3].

LetObea

(4.18)
(4.19)

(4 .20)

The correspor

Let H(7,)
subalgebra b,
Then the Grot

(4.21)

where M(w?
unique irredu
W, x W,

(4.22)
Theleftand r
(4.23)

(4 24)
Lets=s,.S

(s,

(4 25) {j
1

Similar formt
order. As be
double cones
1 x W, W,
objects comi
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(4.16) YR () = span {X(4) €CX (M},

(4.17) YR () = PRND/VE( -}

By their definition, VX , VX () and YR () are invariant under the action t( ).
Recall that the wavefront set WF(X (7)) of a representation X () is a nilpo-
tent orbit in g [7]. Most of its properties that we will use use are found in [1], [2]

and[3].

Let © be a complex nilpotent orbit in g. Then we can aiso define
(4.18) CR(0) = {X(7) € BIWF(X(m) ¢ O},
(4.19) CR(0) = {X () €CR(O)Pim(X (M) < 1/2dim 0},
(4 .20) CR(0) = {X(y) € CR(O)PIm(X(M) = 1/2dimO}.

The corresponding objects in G will be denoted by the letter PR

Let H(#,) be the category of highest weight modules with respect to the Borel
subalgebra b, determined by 7, and with (generalized) infinitesimal character 7,.
Then the Grothendieck group G,,(7,) has as bases

(421) {M( wﬁ{a}}wEWk! {L(T.U'T)'n) }wewg;

where M (w?,) is the Verma module with highest weight w7, and L(w?,) 1s its
unique irreducible quotient.
W, x W, acts by the formula

(4.22) (wy,wp) - M(wA,) = M(wi wwgd,)-
The left and right 7-invariants are defined as

(4.23) n(w) = {e € R @A) v e¢ B (W}
(4.24) o(w) = {o € R*(3,) lwed B*(A)},

Let s = s,. Similar to 48, there are u(y,w) € N such that

{31 1) iz L(w’-}‘a} =
(4 .25) { —L(w7,) if a € T (w),

Liswd) + L(wy) + L py,w)L(v7) if gt 7. (w).
y<w,se7,(y)

Similar formulas hold for (1, s) with the same u(y, w). Here < is the usual Bruhat
order. As before, we can define cones and cells. This time there are left, right,
double cones and double cells depending on whether we are using the action of
1x W, W, x1,orW, xW,. We will denote them by the same notation as the
objects coming from the (g, K y-modules, with a superscript L, K, o LR.
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REMARK. The double cells can be interpreted as real cells for the complex group
with Lie algebra g, viewed as a real group.

The two types of cells are related by the family of Jacquet functors
(4.26) Ty Pr(x) — H(x)

defined in [5]. These functors have the following properties.

o Anny .\ (TH(X (7)) D Anny (X(7).
e Define

(427 I:6(x) = DG
H

by Z(X(7) = ©Z5(X (M) = 853 (-1)'T(X(v))). Then I is an injec-
tive intertwinining map for the actions of W, and 1 x W,.

In [13], to each pair (G, B), a dual pair_(é,ﬁ) and a correspondence y — ¥
from B to B is attached. We will use the following properties of this duality to
estimate the number of parameters with certain properties as well as to write them
down explicitly.

1. y<yp difandonlyif d <,z %.

2. Definc a pairing

(X(n), X (h) = (~=DF e,

Then
(X1, X($)) = (~1'Ds .

3. The form (, ) is invariant under the action t( ) in the sense that

(4.28) W)X (), X () = (=D NX (7)), t(w) X()).
In particular,
(4 29) VR(7) = [ VRN @ sgn.

Here tf(fy) is the length function defined in 12.1 in [13].

COROLLARY IV.3. T, maps VR(Q) to C**(0) and intertwines the action of
W, and 1 x W,. By passage to the quotient, it also maps VR (0) ro V**(0). The
induced mapT : VR(Q) — ®; VEE(O) is also injective.

PROOE. The fi
We thank D. ’
Suppose T is
%% 0 such that
according to arej
dim ©. Consider
CHR(W, F(X (&

V. AN ESTIMA

The results in
special unipoten
and one of the at
results will appe

Fix a block

(5.1)
Given a nilpoter

(52) j

PROPOSITION

A=<2Z=
Then

PROOF. Denc
Z satisfying the
Define a map
(5.3)
(5.4)

Since W(S;) a
4.28,4.29 that ¢
which projects .
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PROOF. The first part follows from property (1) of Z},.

We thank D. Vogan for providing the following proof of the second assertion.

Suppose T is not injf:ctivc. The:n there is a combination Z = } %)_C (@) with
ayz# 0 such that WF(X(4)) C O and Dim(X(¢)) = dimO, but Z transforms
according 1o a representation ¢ such that c® o belongs to a CLR( ') withdim O’ <
dim ©. Consider Z. This transforms according to o ®@sgn. This does not come from
CYR(W, F(X(4)). By the first part of Corollary, this is a contradiction. Q.E.D.

V. AN ESTIMATE ON THE NUMBER OF PARAMETERS

The results in this section are a variant of some general results on the number of
special unipotent representations of a real reductive group, obtained by D. Vogan
and one of the authors some time ago. A detailed account of these aforementioned
results will appear elsewhere.

Fix a block B and two orthogonal sets S}, S, C I1(7,). Let

{5.1) B(S,8) ={veB|S; C(M,S ¢}
Given a nilpotent orbit O, we are interested in the cardinality of

(5.2) B(S;,8,) = {7 € B(S,,5,)|WF(z(7)) c O}.

PROPOSITION V.1. Let

A= {z =6, X($)

Then

t(w)Z = (=D DZ for we W(S,),
H(wZ=2 for w € W(5,).

IB(S;,S,)| = dim A.

PROOF. Denote by Gr( S;, S,) the linear span of B(S;, S,). Then by 4.8, any

Z satisfying thc condition for W(S,) is a combination of elements in B(S,, ).
Define a map

(5.3) (DS: :Gp(85,,8,) — A,
(5.4 D (Z)= Y HwZ
weW(8,)

Since W(S;) and W(S,) commute, CD32 maps Gp(5;,5,) to A. Using formula
4.28,4.29 that G‘JS2 is injective. To see that it is also surjective, consider the map @
which projects A onto Gz(S;,S,). The proof follows from formula 4.8. Q.E.D.
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COROLLARY V2. Let

AO) = {2 = e, %(9) € Ga(S,, ) IWF(X(#) c O}

Then
]B(S‘I,Sz}(O){ = dimA(O).

PROOF. This follows from V.1 and 4.27. CED.

PROPOSITION V.3.
% W
IB(S;,S,)| = dim HOmW’ [QB : hldW?S,)xW(S:)El ®€2J ,

wherc €, = sgn, e, = triy.

PROOF. This is a standard fact about representations of compact groups and
Proposition V.1, : QED.

PROPOSITION V. 4. Lef

Gs(S1,5)(0) = span{X(7)|X(v) € B(S;,5,)(O)}.

Then

IB(S1,$,)(0)| = dim Homy, (Gx(S,, 5,)(0) : Indg;(ﬁr][es(ff)])‘

PROOF. This follows from V.1-V.3. Q.ED.
We summarize the results obtained in this section. For oE K;VO, let

(5.5) mp(0) = [0 : Ind g2 o {eg(H)},

(5.6) mg(0) = [0 : Ind gt s {6 @ 6, 1.

THEOREM V.5.

(5.7) IB(SLS)(O) = 3 mp(o)m,(a).

o@acCLi( )

VI. THE CAS

In this sectit
pute [B(S;, S,
explicitly.

Fix the Cart

(6.1)

(6.2)

Then a set of :

given by H™ =
(6.3) i
(6 .4) A
Thene; = £1
(6.5)

The complexii
...@C €5, SWC

(6.6)

(6.7) a’

The Cartan i

(6.8)
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VI. THE CASE GL(2n, R) and U(p, ¢)

In this section we illustrate the notions introduced in section 4 and 5, and com-
pute |[B(S;,S,)(0)| for the case relevant to the degencrate series in section 1-3
explicitly.

Fix the Cartan involution to be

(6.1) 6(z) = (s ) tforz €@,

(6.2) 8(X)=-X'forXcg.

Then a set of representatives for the conjugacy classes of Cartan subgroups are
givenby H™ = T7 A", where

{63) Tr = {diag{t(qﬁl!al):'"si(‘ﬁﬂar)rcli---)E?.n—-?.rnés‘ (= R} 1

(6.4) AT = {diag[e™1,€™,...,eT e &% ... e ]|T, y, ER},

Then £= +1 and

) (e 0 cos¢, sing;
(6.5) i(’i"nﬂfi)_(g 1) (—sinqﬁ,- COSS{"‘)-

The complexified Lic algebra h™ = t7 + a” can be identified with C?* 2 Ce; ®
...® Ce,, such that

(6.6) tr = { Z pi(ex; 1 — €8 € C} ;

1<i<r

(6.7) a"={ Y aley i —e)t Y. Yeuals.y €C
gy 1<i<m-2r

The Cartan involution is in this notation,

(6.8) 67(ey; ) = —ey, for 1 <1<,
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(6.9 Sr(e)-) =—g; for 2r < j.

The roots e3;_; — e3; arc noncompact imaginary, e} — e; for k,l > 2 r real and all
others complex. Let

(6.10) M*=Cent(G; A") ¥ GL(2,R)" x GL(1,R) > %"
be the Levi component attached to A". A Langlands parameter for an irreducible
(g, K)-module in P(H) with not necessarily regular integral infinitesimal char-

acter is given by {m,|det|%} where =, are discrete series for GL(2,R) and by
(8;,v;), character of GL(1,R) determined by

(6.11) (6;,v;) (€;€%) = 6;(¢;) e,

The parameter 7 in 4.1 is given by

(6-12} ‘-T=(dwl+CIS"',d¢r-FCf’yI’---’yzﬂ—zr)'
We write it as (A®, v) , where

(6.13) 38 = (d¢y,...,dn,,,0,...,0)

H

(614) y:(Cls“‘:CZrJ"':ylﬁp}aer)'

I" in4.1 is determined by 4.2 and the §;.
Let P" = M"NT be the parabolic subgroup such that the roots of N are domi-
nant for v. Then the standard module X () is

(6.15) X(7) = Ind§ [m]det | ® (6;,v,) ® 1].
In the case of GL(2n,R ), this has a unique irreducible quotient (even at noninte-
gral singular infinitesimal character) denoted X ().

The Langlands quotient is also determined by the lowest K-type as follows.

Parametrize O@-ﬁ) asin [15] by

(6]6) #:[(Hp---sﬂﬂ)s’?]; ﬂ}Z’---Z#nZU:

where u; € N givethe highest weightandn = Q orlifu_= 0,7 = 1/2 otherwise.

The relatic
Then

(6.17)

Letg = 2n
g=go+q't

(6.18)

Then GL(1,
(6.19)
L{p) isthei
group with
( 1 , R ) Zn-2r
We will *
(6.20)

where

~ is integra
LetU(g
tian form

invariant.

this form 11
The cor

eachr < g

(6.21)

(6.22)
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The relation of 2 10 is as follows. Let r be the largest integer such that p, > 2.
Then

(6.17) 3= (p —1,...,4,—1,0,...,0).

letg=2n—2r=2n-r)andp = |{jly; = 1}{- Define g, ¢; such that
g=do+ @ by the formula

—p ifn=0,1/2
(6.18) g0={q p ifn /

P ifn=1,1/2.
Then GL(1,R)*™2" is the split Cartan subgroup of
(6.19) L(p) = GL(gy) x GL(qy).

L(p) isthe intersection of the Levi component of a complex 6-stable parabolic sub-
group with G. The &, are obtained by restricting 1 ® det of L(p) to GL
(1,R)>2".

We will write the parameter «y as

(6_20) 0= (’Yl,f}'z,-.. ,’}'2',_1,’}'21,,'}';.1:;11,-..,-’Iheh),
where

Taio1 =i = 2T, M1 ¥ i = 26

_ + for§; = v,
NV 71— ford#triv.
~isintegral if v, — v, € Z forall &, L.

Let U(p, q) with p > g be the group of m x m matrices which leave the hermi-

tian form
2
Sz =) Il
i<p i>p

invariant. Its Lic algebra is the subalgebra of skew-hermitian matrices that leave
this form invariant.

The conjugacy classes of Cartan subalgebras are parametrized as follows. For
cach r < glet H = T7 A" be the Cartan subgroup such that

(6.21) T = {(d(ig,),...,d(id, ), e(idy_ri1),- -, e(idp),
d({¢p+r+1},...,d(7:¢’p+q))}s

(6‘22) A = {(G(Ip—.ﬂ—l)""’a(xp))}’
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where
(6.23) d{s¢) = 3XP[£¢E{,.‘L5( i) = explig( Eir{ + Ep-n-{,p-e-i]!
(6.24) o(z)) = explz(E, ;5 By pp ]

and E; ; is the matrix with 2 1 in the (4, §) entry, 0 otherwise. The Lie algebra is
written

fr = {(1¢1 § ey 1:Qﬁp-—r! t.djp-—awl pEE £¢Jp1i¢H+l R id’p: £¢p+r+f Ple it Wsp-o.g)}:

e {(0,_..,0,:cp__r+1,...,:rpl—xp_”_l,...,-—::P,O,...,O)}‘

Since the Cartan subgroups are connected, we replace the parameter ybyqy =
(A%, v). In coordinates, (A%, ) is given by

(6 25) (ﬂ;:---,ﬂp_r:ﬁp_rn+1’-1!"7p"'”r

Tlp—r+1 _ylr‘”!np_vrinp—r-o-lr---:ﬂ?fg)

This parameter satisfies the parity condition with respect to a real root o (v) =2y,
if and only if \%(m,) = exp[2min,_,, ] = —(—1)2%. (m, is defined as in 4.3.6
of [14]). Note also that the infinitesimal character is integral if and only if the coor-
dinates in 6.3.4 arc all integers or half-integers. At the infinitesimal character pof
the trivial representation, there are two blocks, one with dual block in GL(2n, R )
and the other occuring in the case p = g only, with dual block in U*(2mn).

In the following, G will refer to the block with dual in GL(2n,R).

Recall that the nilpotent orbits in GL(2n,C) are parametrized by their Jordan
canonical form, so they are in 1-1 correspondence with partitions of 2n. The repre-
sentations of the Weyl group W, are also parametrized by partitions of 25. Tensor-
ing with sgn changes the partition 1o its transpose. Given a nilpotent orbit O, we
denote by o( 0) the representation corresponding to the partition defining the Jor-
dan canonical form of 0. Recall also that, the (real) nilpotent orbits in GL( 2n,R)
are also parametrized by partitions. In U(p,g) the nilpotent orbits arc parame-
trized by signed partitions. This means that, if we picture each partitions as rows
of squares, each square gets a + or a — subject to the condition that they alternate
in rows. The number of +’s must equal p, the number of —’s must equal q.

DEFINITION V1.1 We will denote 2 partition by 1%:2% ... where k,is the num-
ber of times row i occurs in the partition. (The lerms with k; = 0 will of course be

omitted.) Fora s

of rows of size i !
Givern a partil

sentation attache
From [4], we

THEOREM VL
m[o(0) : G]

This computes 7
Write the infi

(6.26)

The condition in
The WEF-set «
sentations corres
The set S, is
ter is singular (i
proposition.

PROPOSITION
integral infinifes
mal character. 1

where each B(-
functors to sing
with finite dime
mal characier.
To find S| »

(6.27)

If @ is simple, Ic
module with ex
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omitted.) For a signed partition we will write 1*P11~% . where p; is the number
of rows of size i slarting with+ and q; is the number of rows of size i starting with
Given a partition 1, we will denote by O(n) and o(n) the nilpotent and repre-
sentation attached to n as before.
From [4], we recall the following result.

THEOREM V1.2,
m[o(0) : G] = |{orbits in U(p,q) corresponding to the partition of Q}].

This computes mg( o) in 5.6.
Write the infinitesimal character of V{(x)

n—1 n—1

(9= (22
~(s) = 3 Syenn,y 7 TS T TS

(6.26)

The condition in Proposition II.1 translates into 2s € N .

The WF-set of V(x) is O(2n) . By [2], [3], the cone PZ® is formed of repre-
sentations corresponding to the partitions 2™ 12¢,

The sct S, is formed of the roots €, — ¢,,; for which the infinitesimal charac-
ter is singular (i.c. (4,¢; — ¢.,) = 0.) This is justified in view of the following
proposition.

PROPOSITION V1.3. Lef L(«) be the category of Harish-Chandra modules with
integral infinitesimal charactery as before. Let vy, be a regular integral infinitesi-
mal character. Then

Ly =B
B

where each 3(~y) is in I-1 correspondence with a B( 0, 82)(’ng) via fransiation
functors fo singular infinitesimal character (e.g. [12]), given in terms of tensoring
with finite dimensional representations and projecting onto generalized infinitesi-
mal character.

To find S; we argue as follows. Let B*(«) be a positive system such that

(6.27) @ € R*(7y) if (e,7) > 0.

If avis simple, let y, = ¥ — (7, &)« and F'(y,) be the finite dimensional irreducible
module with extremal weight —(v, &)a.
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We define a functor
(6.28) T .(X) =P,,Q[X®F(’:!a}]

where P, is projection onto infinitesimal character -y, . This functor is exact.

Using the aforementioned equivalence with B(8,S,) we find that T, (X ()
=0 if and only if & € 7T(yq) -

Let now a be one of the simple roots such that {e, ) > 0. Then we find that
T,(V(x)) = 0. Thus every irreducible eomposition factor of V (x) has the same
property.

We have proved the following result.

THEOREM V1.4, The only possible factors of V () are the ones coming from
the irreducible representations in 3( S, §,)(0).

PROPOSITION V1.5. Let €, €, be the representations attached to S|, S, as in

section 5. Then
1 if2s<i.

mgloF )= {0 if 28 < 5.

PROOF. This follows by the Littlewood-Richardson rule. See for example [9]
for the description of the rule. We omit the details. Q.ED.

We determine the parameters in B( S, S,)(0).

Assume that the WF-set is O(2 7). and the infinitesimal character is as in 6.26.
Then the WF-set in the dual is either {n*n*}, {n*n }, or {n" n"}.

To {n*n"} we attached the parameter

[(n—1 n—1 n—1 n—1
6 .29 , — -1, — —s=1,...].
€ ) \ 5t ) 81, 3 s—1,

This has lowest K-type[ (2s+ 1,...,2s+ 1),1/2]. This is a derived functor in-
duced reopresentation in GL(2n,R).

Now consider the case {n*n"}, {n n }. The parameters in GL(2n,R) are
obtained from the parameter in 6.29 corresponding to GL(2n— 2, R) of the form

2 .

_ € =] € i €
by adding (nzl +s) ,(unz —s) , if 2s iseven, (nzl -+-s) .

—1 1 1 _
(6 .30) (”—5—+s—1,L_s E—-H_z,”z} ~—s——I,...).

oy T
(—n = s) ,if 25 is odd. Their lowest K -types are [(2s,...,25,0),0]

2

aﬂd {(23!"‘!

odd.
The reason

ter, these corrc
subalgebra de!

and the trivia
{{n—17,(r
Assume th
obtained as ft
Start with

(6.31) (
and add to it
n—1

2
n—
2
n—1
D
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The reasc
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The follo

LEMMA

(25—
[(2s—
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The com

PROPOSI
BCS,: 85X
b
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and [(2s,...,25,0),1] if 25 is even, respectively [(2s,...,2s,1),1] if 25 is
odd.

The reason for this is that in the dual group at regular infinitesimal parame-
ter, these correspond to derived functor induced representations from the parabolic
subalgebra determined by

£= (1,0,...,0]0,...,0,-1) formeven,
~1¢1,0,...,0,-1]0,...,0) fornodd,

and the trivial representation tensored with the representation corresponding to
{(n—1)*,(n—1)"}. The relevant calculation of WE-set are in [4].

Assume that the WE-set is strictly smaller than O(2 ") . Then the parameters arc
obtained as follows.

Start with the parameter

= ] e ]
(631) (nzl +S'_)'}.:ﬂ = 8yeeny = +8, L _‘S+j:>

and add to it

o e IR
> s, 5 8] v 3 5—] ;

2
_-1 E _1 e
(nz +s—j+1),<—n2 ~—3+j-1) )

The K -types are obtained by the formulas in 6.2.

The reason why these representations have the right WF-set is the same as for
the case O(2%).

The following lemma is well known.

LEMMA VL6. The K -typesin V() are of the form

[(2s—j+1,...,2s—7+1,0,...,0),0 or 1] for 25— 7+ 1 even,
[(2s—j+1,...,2s—j+1,1,...,1)0,1/2], for2s—j+1odd.

All K -types have multiplicitly one.
The computations of the minimal K -type and V1.6 show

PROPOSITION VI.7. Fori > 0 there are exactly 2 representations in
B(S;,5,)(0(2 71129 whose minimal K -type isinInd E( ¥} for some character

X
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VIL. THE MAIN THEOREM
Let x = ((¢,8),(0,—5)) be a character of GL(n) x GL(n).

THEOREM VIL1. Suppose2s € Z and 0 <2s< nFor0 < k < npur
Va0 = {f € V(x),supp(f) C Q}. Purr = [252¢] _ 1.
e Supposce= 0. Then

0 % Vn ---Zs(x) # Vn—25+2 (X) # iy % Vn—Z(,g_r) (X) # Vn(X) .

Fathermore all quotients are irreducible.
e Supposce= 1. Then

0 # Vn—23+1 (X)# Vn—23+3 (x} ?{- EHE # Vn-—-Z(s—r)ﬂ-I (X) ?{ Vn(x)

Furthermore all guotients are irreducible.

REMARK. Since the other two families of degenerate series representations are
obtained by tensoring with a one dimensional representation we also have similar
results for those other families.

PROOF. By 1114 this defines a filtration by invariant subspaces. By IIL5 all the
quotient representations are distinct. Since all the quotient representations are in
B(S;,8,)(0(2*)) proposition VI.7 and the previous remark imply the theorem.

Q.E.D.
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