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Abstract The FKG inequality asserts that for a distributive lattice with log-
supermodular probability measure, any two increasing functions are positively corre-
lated. In this paper we extend this result to functions with values in partially ordered
algebras, such as algebras of matrices and polynomials.
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1 Introduction

Let 2S be the lattice of all subsets of a finite set S, partially ordered by set inclusion.
A function f : 2S → R is said to be increasing if f (α) − f (β) is positive for all
β ⊆ α. (Here and elsewhere by a positive number we mean one which is ≥0.)

Given a probability measure μ on 2S we define the expectation and covariance of
functions by

Eμ(f ) :=
∑

α∈2S

μ(α)f (α),

Cμ(f,g) := Eμ(fg) − Eμ(f )Eμ(g).

The FKG inequality [8] asserts if f,g are increasing, and μ satisfies

μ(α ∪ β)μ(α ∩ β) ≥ μ(α)μ(β) for all α,β ⊆ S. (1)

then one has Cμ(f,g) ≥ 0.
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A special case of this inequality was previously discovered by Harris [11] and used
by him to establish lower bounds for the critical probability for percolation. Fortuyn
et al. [8] were motivated by questions of statistical mechanics, especially the study of
correlation in the Ising-Potts and related models. The inequality was also discovered
independently by Sarkar [21] in connection with reliability theory in statistics. Other
proofs were subsequently found by Holley [12] and Preston [16].

Over the years, this inequality has proved to be extremely useful in many fields,
and there is a long and growing list of applications to statistics, combinatorics, graph
theory, physics etc. Indeed it is virtually impossible for us to list all the applications
of this inequality. However as a starting point, we refer the interested reader to [2–6,
9, 10, 13–15, 22, 23] and to the references therein.

Our purpose in this paper is to prove a generalization of the FKG inequality, where
one considers functions with values in a partially ordered algebra, such as a matrix
algebra or a polynomial algebra.

Here and elsewhere by an “algebra” we will mean an algebra over R which is
not necessarily associative, commutative or unital. Also by a “convex cone” we will
mean a non-empty subset of a vector space over R, which is closed under addition
and under multiplication by positive scalars.

Definition 1 A partially ordered algebra is a pair (A,P ) where A is an algebra and
P is a convex cone satisfying

x, y ∈ P ⇒ xy ∈ P.

We will say that the elements of P are positive. Now the notion of an increasing
function from 2S to A makes sense (with the same definition), as does the expected
value of such a function. However since A is not necessarily commutative, some care
is needed with the concept of covariance, which we define as

Cμ(f,g) := Eμ(f · g) − Eμ(f ) · Eμ(g),

where a · b = (ab + ba)/2 denotes the anticommutator in A.

Our first main result is the following generalization of the FKG inequality:

Theorem 2 Suppose (A,P ) is a partially ordered algebra and μ satisfies (1). Then
any two increasing functions f,g : 2S → A have positive covariance.

The proof of the theorem involves several new ideas. Apart from the possible non-
commutativity and non-associativity of A, the main difficulty is that the square of an
arbitrary element in A need not be positive. This is a real problem because the proofs
of many inequalities in real analysis rely crucially on the positivity of x2. Indeed it is
rather surprising that the FKG inequality holds without this assumption.

Our techniques also enable us to deduce the following closely related result:

Theorem 3 Suppose (A,P ) and μ are as above, A is associative and commutative,
f : 2S → P is increasing, and g : 2S → P is decreasing, then Eμ(f 2)Eμ(g2) −
Eμ(fg)2 is positive.
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This theorem is a version of the Cauchy-Schwartz inequality. Again, it is some-
what remarkable that it holds in this generality!

We conclude this section with a few remarks.
First of all, the results of this paper apply to the following situations (among oth-

ers):

1. A is the algebra of n × n real matrices and P consists of matrices which preserve
a convex cone in R

n.

2. A is the algebra of polynomials (or formal power series) and P consists of those
polynomials (or power series) which have positive coefficients.

Second, it is well known that the classical FKG inequality follows from the more
general “four function theorem” of Ahlswede and Daykin [1] (see [18] for a further
generalization). Therefore it is natural to ask whether this theorem holds in the present
setting. Unfortunately this turns out to be false, even under the additional assumptions
of associativity and commutativity, as we show in this paper by an explicit counter-
example in the polynomial algebra R[x]. This seems to be connected with the failure
of the cone P to be closed under division.

Third, we note that in the special case of product measures, i.e. those which satisfy

μ(α ∪ β)μ(α ∩ β) = μ(α)μ(β) for all α,β ⊆ S.

The results of this paper were obtained earlier in [20].
Finally, we remark that there exists another, as yet conjectural, generalization of

the FKG inequality of the form

En(f1, . . . , fn) ≥ 0,

where En is a certain correlation functional of the n increasing positive functions
f1, . . . , fn : 2S → R≥0, with respect to an FKG measure. The case n = 2 is the clas-
sical FKG inequality, while for n = 3,4,5 these functionals were first introduced
in [17]. The general definition may be found in [19] together with a proof under some
additional assumptions. It seems quite likely that the ideas of this paper have some
bearing on this issue and we shall consider this possibility in a subsequent paper.

2 Proof of the FKG Inequality

Let (A,P ), μ and f,g : 2S → A be as in the statement of the FKG inequality (The-
orem 2). In the special case where f = g, the covariance is simply the variance
Vμ(f ) = Cμ(f,f ) = Eμ(f 2) − Eμ(f )2. Therefore Theorem 2 clearly implies

Theorem 4 For (A,P ), μ, f as above, the variance Vμ(f ) is positive.

For A = R, Theorem 4 is trivial, since the variance can be re-expressed as a
weighted sum of squares. However in the present setting, it turns out that Theorem 4
implies Theorem 2 via a simple polarization argument, as shown below:
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Proof (of Theorem 2) Note that the covariance is unchanged if we add a constant to
f or g. Therefore replacing f and g by f − Eμ(f ) and g − Eμ(g) we may assume
that Eμ(f ) = Eμ(g) = 0. It suffices then to prove that Eμ(f · g) is positive.

Now given (A,P ), let A′ = A[x, y] be the polynomial algebra in two variables,
and let P ′ consist of polynomials with coefficients in P . Also define h : 2S → A′ by

h(α) = xf (α) + yg(α).

Then (A′,P ′) is a partially ordered algebra and h is an increasing function (with
Eμ(h) = 0). Therefore by Theorem 4, the variance belongs to P ′. But we have

Vμ(h) = Eμ([xf + yg]2) = x2Eμ(f 2) + 2xyEμ(f · g) + y2Eμ(g2).

Hence Cμ(f,g) = Eμ(f · g) belongs to P . �

The rest of this section will be devoted to the proof of Theorem 4. First of all, we
define the support of the measure μ to be the set

supp(μ) = {α : μ(α) 
= 0}.
Since our argument involves division by μ(α), a little extra care is required for α /∈
supp(μ). The main point is that in the formula for variance, the values f (α) for
α /∈ supp(μ) play no role whatsoever. Therefore we shall prove the positive variance
theorem under the weaker (but equivalent) assumption that f is increasing on the
support of μ (and not necessarily on all of 2S ).

We fix x in S, and write Sx for the set S \ {x}; and for α ⊆ Sx, we write αx for
the set α ∪ {x}. Now we define a measure μx and a function fx on 2Sx as follows:

μx(α) := μ(α) + μ(αx),

fx(α) :=
{

μ(α)f (α)+μ(αx)f (αx)
μx(α)

if μx(α) 
= 0,

0 if μx(α) = 0.

It follows from the definitions that

Eμx (fx) = Eμ(f ).

For the proof of the positive variance theorem we need two preliminary lemmas.

Lemma 5 If μ is a probability measure satisfying (1), then so is μx .

Proof Although this is well known (see e.g. [7]) we reproduce the calculation for the
sake of completeness. Fix α, β in Sx and write γ = α ∪ β and δ = α ∩ β, then we
need to show that

μx(γ )μx(δ) − μx(α)μx(β) ≥ 0.

To simplify notation we write, respectively,

a0, b0, c0, d0 = μ(α),μ(β),μ(γ ),μ(δ),

a1, b1, c1, d1 = μ(αx),μ(βx),μ(γ x),μ(δx).
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Applying (1) to various combinations of the sets α, αx, β , βx we obtain

c0d0 ≥ a0b0, c1d1 ≥ a1b1 and c1d0 ≥ a1b0, a0b1; (2)

while on the other hand we have

μx(γ )μx(δ) − μx(α)μx(β)

= [c0 + c1][d0 + d1] − [a0 + a1][b0 + b1]
= [c0d0 − a0b0] + [c1d1 − a1b1] + [c1d0 + c0d1 − a1b0 − a0b1].

Now (2) implies that the first two expressions on the right are positive, and it remains
only to prove that the third expression is positive. If c1d0 = 0 then by (2) we have
a1b0 = a0b1 = 0 and the third expression reduces to c0d1. If c1d0 
= 0, then applying
(2) twice we obtain

c1d0 − a1b0 − a0b1 + c0d1 ≥ c1d0 − a1b0 − a0b1 + a0a1b0b1

c1d0

=
(

1 − a1b0

c1d0

)
(c1d0 − a0b1) ≥ 0. �

Lemma 6 If μ is an FKG measure and f is increasing on supp(μ), then fx is in-
creasing on supp(μx)

Proof For this we fix subsets α ⊃ β in supp(μx) and write

a0, b0, a1, b1 = μ(α),μ(β),μ(αx),μ(βx)

as before. By assumption, these are all non-zero, and we have

μx(α)μx(β)[fx(α) − fx(β)]
= (b0 + b1)[a0f (α) + a1f (αx)] − (a0 + a1)[b0f (β) + b1f (βx)]
= a1b1[f (αx) − f (βx)] + a0b0[f (α) − f (β)]

+ a1b0[f (αx) − f (β)] + a0b1[f (α) − f (βx)].
Since μx(α)μx(β) 
= 0 it suffices to show that the above expression is positive. The
first two terms are each positive since f is increasing, while the last two terms can be
rewritten as follows:

1

2
[a1b0 + a0b1][f (αx) − f (βx) + f (α) − f (β)]

+ 1

2
[a1b0 − a0b1][f (αx) − f (α) + f (βx) − f (β)].

By the FKG condition on μ, we have a1b0 ≥ a0b1. Since f is increasing, it follows
that the above expression is positive. �
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Proof (of Theorem 4) We proceed by induction on |S|, the result being obvious for
S = ∅.

Now suppose S 
= ∅, and fix x ∈ S. In view of the two previous lemmas, the in-
duction hypothesis implies that Vμx (fx) is positive. Therefore it suffices to prove that
Vμ(f ) − Vμx (fx) is positive.

Since Eμx (fx) is equal to Eμ(f ), we get

Vμ(f ) − Vμx (fx) = Eμ(f 2) − Eμx (f
2
x )

=
∑

α⊆Sx

[μ(α)f (α)2 + μ(αx)f (αx)2 − μx(α)fx(α)2].

We prove that each summand is positive. This is obvious if μx(α) = 0, for then
μ(αx) = μ(α) = 0 as well. Otherwise, writing a0, a1 = μ(α),μ(αx), the expression
becomes

[a0f (α)2 + a1f (αx)2] − (a0 + a1)

[
a0f (α) + a1f (αx)

a0 + a1

]2

= 1

a0 + a1
[(a0 + a1)(a0f (α)2 + a1f (αx)2) − (a0f (α) + a1f (αx))2]

= a0a1

a0 + a1
[f (α)2 + f (αx)2 − 2f (α) · f (αx)]

= a0a1

a0 + a1
[f (αx) − f (α)]2.

which is positive since f is increasing. �

We close this section with the remark that the proof of Theorem 4 does not require
that P be closed under multiplication, but only that the square of a positive element
is positive.

3 The Proof of Theorem 3

In this section we will prove Theorem 3. We will deduce it from the following result,
which is of independent interest.

Theorem 7 Suppose (A,P ) is a partially ordered algebra, μ satisfies (1), and
f : 2S → A is an increasing function. Then the following expression is positive

�(μ,S,f ) :=
∑

{ω,ωc}
μ(ω)μ(ωc)[f (ω) − f (ωc)]2

(where the sum ranges over all unordered pairs of complementary subsets of S.)
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Proof If μ(ω)μ(ωc) = 0 for all ω, then �(μ,S,f ) = 0. Therefore we may assume
that M = ∑

ω μ(ω)μ(ωc) is positive. Now define

ν(ω) = μ(ω)μ(ωc)

M
and g(ω) = f (ω) − f (ωc).

An easy calculation shows that ν is a probability measure satisfying (1), and that
g is an increasing function with Eν(g) = 0. Hence by Theorem 4 Vν(g) = Eν(g

2) is
positive. But this may be rewritten as follows:

Eν(g
2) =

∑

ω

μ(ω)μ(ωc)

M
[f (ω) − f (ωc)]2

= 2

M

∑

{ω,ωc}
μ(ω)μ(ωc)[f (ω) − f (ωc)]2 = 2

M
�(μ,S,f ).

Therefore it follows that �(μ,S,f ) is positive. �

Again, the proof of this theorem merely requires that P be closed under squaring,
rather than multiplication. We now make two observations needed in the proof be-
low. The first remark is that the previous result holds even if μ is not a probability
measure, but merely a positive measure satisfying (1)—this is completely obvious.
The second remark is that if f1, f2 are increasing and P -valued functions, then the
product f1f2 is also increasing and P -valued. To see this, we choose α ⊇ β, and
calculate as follows:

f1(α)f2(α) − f1(β)f2(β) = f1(α)[f2(α) − f2(β)] + [f1(α) − f1(β)]f2(β).

Since f1, f2 are increasing and P -valued, it follows that the expression above posi-
tive.

We are now ready to prove Theorem 3.
Proof (of Theorem 3) Since A is associative and commutative, we obtain

Eμ(f 2)Eμ(g2) − Eμ(fg)2

=
(∑

μ(α)f (α)2
)(∑

μ(β)g(β)2
)

−
(∑

μ(α)f (α)g(α)
)2

=
∑

α,β

μ(α)μ(β)f (α)2g(β)2 −
∑

α,β

μ(α)μ(β)f (α)g(α)f (β)g(β)

=
∑

{α,β}
μ(α)μ(β)[f (α)g(β) − g(α)f (β)]2.

Grouping together all the terms with a fixed union and intersection, we can rewrite
this as follows:

∑

ω0⊆ω1

∑

{α,β}
α∩β=ω0,α∪β=ω1.

μ(α)μ(β)[f (α)g(β) − g(α)f (β)]2,

and it suffices to show that the inner sum is positive for each ω0 ⊆ ω1.
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Each term of the inner sum corresponds to a pair of complementary subsets of the
set T = ω1 \ ω0. More precisely we can write

α = γ ∪ ω0, β = γ c ∪ ω0,

where γ is a subset of T and γ c denotes its complement T \ γ . Define a measure ν

and a function h on 2T by

ν(γ ) = μ(γ ∪ ω0),

h(γ ) = f (γ ∪ ω0)g(γ c ∪ ω0).

Then the inner sum can be rewritten as
∑

{γ,γ c}
ν(γ )ν(γ c)[h(γ ) − h(γ c)]2 = �(ν,T ,h),

where � is as in the previous theorem.
Since g is a decreasing P -valued function, g(γ c ∪ ω0) is an increasing P -valued

function of γ . Hence by the remark preceding the proof, h is also an increasing
function. Moreover the measure ν, although not necessarily a probability measure,
clearly satisfies (1). Therefore by the previous theorem, the expression �(ν,T ,h) is
positive. �

4 The Ahlswede-Daykin Inequality

The Ahlswede-Daykin “four function theorem” [1] asserts that if a, b, c, d: 2S →
R≥0 are four functions such that for all a,β ⊆ S,

a(α ∪ β)b(α ∩ β) − c(α)d(β) ≥ 0 (3)

then the following inequality holds:

[∑

α

a(α)

][∑

α

b(α)

]
−

[∑

α

c(α)

][∑

α

d(α)

]
≥ 0. (4)

This easily implies the FKG inequality by taking

a = fgμ, b = μ, c = f μ, d = gμ.

Therefore it is natural to ask whether this results holds in the present setting of par-
tially ordered algebras. Unfortunately this turns out to be false, as the following ex-
ample shows.

Let A be the polynomial algebra R[x] and let P be the set of polynomials with
positive coefficients. Let S be a set with a single element, so that 2S has two elements
{S,∅}. We now define four functions a, b, c, d from 2S → P . In order to simplify the
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notation we write a0, a1 etc. instead of a(∅), a(S) etc. Our functions are defined as
follows:

a0 = x2, b0 = 1, c0 = d0 = x,

a1 = x3 + 2x2 + x + 1, b1 = x + 1, c1 = d1 = x2 + x + 1.

We verify that these functions satisfy the Ahlswede-Daykin hypotheses (3). There
are 3 expressions to calculate, viz.

a0b0 − c2
0 = x2 − x2 = 0,

a1b0 − c1c0 = (x3 + 2x2 + x + 1) − x(x2 + x + 1) = x2 + 1,

a1b1 − c2
1 = (x3 + 2x2 + x + 1)(x + 1) − (x2 + x + 1)2

= (x4 + 3x3 + 3x2 + 2x + 1) − (x4 + 2x3 + 3x2 + 2x + 1)

= x3.

These all belong to P as desired.
However the Ahlswede-Daykin conclusion (4) does not hold, since we have

(a0 + a1)(b0 + b1) − (c0 + c1)
2

= (x3 + 3x2 + x + 1)(x + 2) − (x2 + 2x + 1)2

= (x4 + 5x3 + 7x2 + 3x + 2) − (x4 + 4x3 + 6x2 + 4x + 1)

= x3 + x2 − x + 1,

which does not belong to P .
Why does this inequality fail to hold? A key step in the proof of the Ahlswede-

Daykin inequality is the following elementary fact for real numbers: if a, b, c, d are
positive real numbers such that a ≥ c, d and ab ≥ cd then

a + b − c − d ≥ 0.

Indeed this is obvious if a = 0 (which forces c = d = 0); while if a 
= 0, then we
calculate

a(a + b − c − d) = a2 + ab − ac − ad

≥ a2 + cd − ac − ad

= (a − c)(a − d) ≥ 0

and the desired result follows upon dividing by a.
It is this last division step that breaks down in the general setting. In a partially or-

dered algebra the quotient of two positive elements need not be positive. For instance,
in the polynomial algebra we have

(x3 + 1)/(x + 1) = x2 − x + 1.
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