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Abstract. Consider the Kontsevich star-product on the symmetric algebra of a finite-dimen-
sional Lie algebra g, regarded as the algebra of distributions with support 0 on g. In this
Letter, we extend this star product to distributions satisfying an appropriate support condi-
tion. As a consequence, we prove a long-standing conjecture of Kashiwara–Vergne on the
convolution of germs of invariant distributions on the Lie group G.
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0. Introduction

In several problems in harmonic analysis on Lie groups, one needs to relate
invariant distributions on a Lie group G to invariant distributions on its Lie
algebra g. For instance, it is a central aspect in Harish-Chandra’s work in the
semi-simple case. The symmetric algebra S(g) and the enveloping algebra U(g)
can be regarded as convolution algebras of distributions supported at 0 in g

and 1 in G, respectively. Therefore the Harish-Chandra isomorphism between
the ring of invariants in S(g) and U(g) can be seen in this light. At a more
profound level, Harish-Chandra’s regularity result for invariant eigendistribu-
tions on the group involves the lifting of the corresponding result on the Lie
algebra.

Using the orbit method of Kirillov, Duflo defined an isomorphism extend-
ing the Harish-Chandra homomorphism to the case of general Lie groups [6–8].
This result was crucial in the proof of local solvability of invariant differential
operators on Lie groups, established by Raı̈s [19] for nilpotent groups, then by
Duflo and Raı̈s [9] for solvable groups, and finally by Duflo [8] in the general
case.
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Soon thereafter, Kashiwara and Vergne [12] conjectured that a natural exten-
sion of the Duflo isomorphism to germs of distributions on g, when restricted to
invariant germs with appropriate support, should carry the convolution on g to the
convolution on G. (See also an observation of Raı̈s in [20].)

In this Letter, we prove the Kashiwara–Vergne conjecture in full generality,
using, as in [3], the Kontsevich quantization of the dual of a Lie algebra.

0.1. A SHORT REVIEW OF THE SUBJECT

In their paper [12], Kashiwara and Vergne propose a combinatorial conjecture on
the Campbell–Hausdorff formula and prove that it implies the conjecture on dis-
tributions. In that same paper, they prove the combinatorial conjecture for solvable
groups.

Apart from the solvable case and the case of sl(2,R) considered by Rouvière
[21], the Kashiwara–Vergne (KV) conjectures resisted all attempts until 1999. Then
the conjecture on distributions (henceforth KVR conjecture) was established for
arbitrary groups, but under the restriction that one of the distributions have point
support [2,3]. This suffices for many applications, including the local solvability
result mentioned above. Shortly thereafter, Vergne [30] proved the combinatorial
conjecture, but for a special class of Lie algebras, the quadratic Lie algebras (those
admitting an invariant nondegenerate quadratic form).

A first version of this Letter, not substantially different from this one, was writ-
ten in 2001 [4]. In the interval, several related papers have appeared.

Let us mention, in the spirit of Kontsevich’s original approach, [16] which proves
the existence of a A∞-tangent quasi-isomorphism for the Kontsevich formality the-
orem and deduces a proof of the KVR conjecture (see also [15]); [10] which con-
structs a G∞-tangent quasi-isomorphism as in [26], generalizing the A∞ and L∞
cases (formulas in [10] are not explicit in as in [16]).

The paper [27] sheds some light on the deformation quantization approach
to the combinatorial KV conjecture. Indeed, using the homotopy argument
from [14] which is crucial in [3] and here, [27] constructs a two-dimensional
deformation (with the corresponding differential equation) for the Campbell–
Hausdorff formula. That deformation differs from the one considered in [12]
which leads to combinatorial KV, but it implies KVR just as combinatorial KV
does.

Two papers [28,29] extend [27] to the case of symmetric spaces. The paper [18]
(see also [25]) extends the Duflo isomorphism to all cohomology spaces.

In 2002, using Poisson geometry, Alekseev and Meinrenken [1] obtained a con-
ceptual proof of combinatorial KV in the case of a quadratic algebra, i.e. the same
result as [30]. But the combinatorial conjecture remains unproven in general.

Since this Letter deals with the more analytic aspects of the theory (distribu-
tions, germs, symbols) and addresses somewhat subtle convergence problems, it
remains of independent interest.
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0.2. OUTLINE OF THE LETTER

Let us now outline the result and our method. Let G be a Lie group with Lie alge-
bra g, and exp: g →G the exponential map. Let q be the analytic function on g

defined by

q(X)=det

(
eadX/2 − e−adX/2

adX

)1/2

. (1)

Define, for a distribution u on g

η(u)= exp∗(u.q), (2)

where exp∗ is the pushforward of distributions under the exponential map. We con-
sider germs at 0 of distributions on g, henceforth simply germs. For distributions
u, v, . . . the corresponding germs will be denoted u,v, . . . ; we use the same nota-
tion η for the induced map on germs.

We wish to consider the convolution of germs. This notion is well defined under
a certain asymptotic support condition which we now describe. If U is a subset of
R
n, we define the asymptotic cone of U at x ∈R

n as the set Cx(U) of limit points
of all sequences

an(xn−x), (3)

for all sequences xn∈U,xn→x and all sequences an∈R
+. Clearly, Cx(U) depends

only on the intersection of U with an arbitrarily small neighborhood of x. If M is
a manifold, and x∈M, U ⊂M, using a coordinate chart, we can once again define
Cx(U) as a cone in the tangent space TxM.

Let u be a distribution on g. Then C0(suppu) depends only on the germ u, and
we will write it as C0[u]. Assume that u,v are germs such that

C0[u]∩−C0[v]={0}. (4)

When two germs verify (4) we will say that they are compatible. In this case the
(Abelian) convolution on the Lie algebra u ∗g v is well defined as a germ on g.
Also, using the Campbell–Hausdorff formula, it is easy to see that the Lie group
convolution η(u)∗G η(v) is well defined as the germ at 1 of a distribution on the
group G.

The Lie algebra g acts on functions on g by adjoint vector fields. The dual
action descends to germs. We call a germ invariant if it is annihilated by all ele-
ments of the Lie algebra. Our main theorem is

THEOREM 0.1 (Kashiwara–Vergne-Raı̈s conjecture). Assume that u and v are
compatible invariant germs. Then

η(u∗g v)=η(u)∗G η(v). (5)
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As in [12], one can reformulate the conjecture slightly by considering, for t ∈R, the
Lie group Gt with Lie algebra gt , where gt is g as a vector space, equipped with
the Lie bracket

[X,Y ]t = t [X,Y ]. (6)

The function q(X) must then be changed to qt (X)=q(tX) and, accordingly, η to
ηt . Let u and v be compatible germs on g, u and v distributions with small com-
pact support representing u and v, and φ a smooth function; we can define

�(t)=�u,v,φ(t)=〈η−1
t (ηt (u)∗Gt ηt (v)), φ〉 (7)

as a function of t ∈R. Clearly

�(0)=〈u∗g v,φ〉 and �(1)=〈η−1(η(u)∗G η(v)), φ〉.
The Kashiwara–Vergne conjecture is implied by (and in fact equivalent to) the
statement that for u and v invariant germs, and for all φ with sufficiently small
support (depending on u and v), the function �u,v,φ is constant.

Using the Campbell–Hausdorff formula, it can be verified that � is a differen-
tiable function of t . Thus, it suffices to show that for u and v invariant

� ′(t)=0 for all t. (8)

This precisely the approach of Kashiwara and Vergne in [12]: the combinatorial
conjecture implies the vanishing of � ′(t).

Our approach is different. We first show that if u and v are invariant, then �(t)
is analytic in t . Thus it suffices to prove that

�(n)(0)=0 for all n. (9)

While at first this may not seem to be an easy problem, in this Letter we relate the
group convolution to an extension of the Kontsevich star product to distributions
and prove an equivalent statement concerning the star product.

We now recall the construction of Kontsevich. In [14], an associative star prod-
uct is defined on any Poisson manifold, given by a formal series in a parameter �

u�� v=
∑ �

n

n!
Bn(u, v), (10)

where u, v are C∞-functions on the manifold, and Bn(u, v) are certain bi-differen-
tial operators.

Consider g∗, the dual of g, equipped with its natural Poisson structure. It is easy
to see that when u, v are in S(g), i.e. polynomial functions on g∗, the formula for
u �� v is locally finite, so that one can set � = 1, and then u �1 v is again in S(g).
Now regarding u and v as distributions supported at 0 on g, �1 can be considered
as a new convolution on g, but defined only for distributions with point support
at 0.
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The star product is closely related to the multiplication in the universal envelop-
ing algebra U(g), which in turn is simply the group convolution ∗G for distribu-
tions supported at 1 in G. Indeed, by the universal property of U(g), there exists
an isomorphism between (S(g), �1) and (U(g),∗G). Kontsevich showed that this
isomorphism is given explicitly in the form

u∈S(g) 
→η(uτ−1), (11)

where τ was defined in [14] as a formal power series S1(X), and was shown in [3]
to be an analytic function in a neighborhood of 0 in g. As it turns out, Shoikhet in
[24] proves that in fact τ ≡1! Taking this striking simplification into account is the
main difference between [4] and the present paper – although it does not change
the argument in any essential way.

More generally, setting � equal to a real number t we deduce that

u 
→ηt (u) (12)

is an isomorphism from (S(g), �t ) to (U(g),∗Gt ). This implies the identity

η−1
t

(
ηt (u)∗Gt ηt (v)

)=u�t v, (13)

for u, v distributions on g supported at 0.
Our first main result, proved in Section 3, is the following:

THEOREM 0.2. The Kontsevich star product on S(g) extends to a (convolution)
product

(u, v) 
→u�t v, (14)

for u and v distributions on g with sufficiently small support near 0. Moreover, for-
mula (13) continues to hold.

In Section 4, we prove:

THEOREM 0.3. The extended star product descends to a product on compatible
germs also denoted �t . If u and v are compatible invariant germs, then u�t v is invari-
ant. Furthermore

u�t v=u∗g v. (15)

The proof of (15) requires the analyticity of �(t) together with an extension of
the Kontsevich homotopy argument from [3].

Clearly, Theorems 0.3 and 0.2 imply Theorem 0.1.

1. Preliminaries

Let G be a finite-dimensional real Lie group with Lie algebra (g, [ , ]) and fix a
basis (ei)1 � i�d of g.
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1.1. SYMMETRIC ALGEBRAS

Here, we work with the Lie algebra g and its dual, but they are considered as vec-
tor spaces. The symmetric algebra S(g) can be considered in three different ways:

• as the algebra R[g∗] of polynomial functions on g∗;
• as the algebra of constant coefficient differential operators on g: if p ∈ S(g),

we write ∂p for the corresponding differential operator. For example, for p∈g,
∂p is the constant vector field defined by p;

• finally, as the algebra (for convolution) of distributions on g with support {0}
by the map p 
→ dp where 〈dp,φ〉=∂p(φ)(0) for φ a test function on g. (Up
to some powers of i, d coincides with the Fourier transform from functions
on g∗ to distributions on g.)

When there is no ambiguity, we drop d, and use the same notation for an element
of S(g) as a polynomial function on g∗ and as a distribution on g. We will then
use · or ∗g for the product in S(g) depending on how we view elements of S(g).

The symmetric algebra S(g∗) has similar interpretations.

1.2. ALGEBRA OF DIFFERENTIAL OPERATORS

Let W(g) the Weyl algebra of differential operators with polynomial coefficients on
g. Any element in W(g) can be uniquely written as a sum

∑
qi∂pi with qi ∈S(g∗)

and pi ∈S(g). In other words, we have a vector space isomorphism from S(g∗)⊗
S(g) to W(g). The inverse map associates to a differential operator in W(g) its
symbol in S(g∗)⊗S(g); the symbol can be viewed as a polynomial map from g∗ to
S(g∗). We observe that an element of W(g) is completely determined by its action
on S(g∗).

Similarly, any element in W(g∗) can be written as a sum
∑
i pi∂qi with pi ∈S(g)

and qi ∈S(g∗).
By duality with test functions, the set of distributions D(g) on g is a right W(g)-

module: 〈D ·L,φ〉=〈D,L ·φ〉, where φ∈C∞
c (g), D∈D(g), L∈W(g). We can define

a canonical anti-isomorphism (the Fourier transform) F from W(g∗) to W(g) such
that F(∑pi∂qi )=

∑
qi∂pi for pi ∈S(g) and qi ∈S(g∗). It verifies

dL·p=dp ·F(L) (16)

for any L∈W(g∗), p∈S(g).
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1.3. MULTI-DIFFERENTIAL OPERATORS

Let Wm(g∗) be the set of m-differential operators with polynomial coefficients on
g∗. These are linear combinations of operators from C∞(g∗)⊗m to C∞(g∗) of the
form

(f1 ⊗· · ·⊗fm) 
→p∂q1(f1) . . .∂qm(fm), (17)

where p ∈ S(g) and qi ∈ S(g∗). There is an obvious linear isomorphism, written
A∈S(g)⊗⊗m S(g∗) 
→∂A ∈Wm(g∗). Its inverse maps a m-differential operator B
to its symbol σB . A symbol will often be viewed as a polynomial map from gm to
S(g)

For multidifferential operators there is no symmetry similar to the one given
by the Fourier transform F from W(g∗) to W(g). Nevertheless, in the case of bi-
differential operators, for any B=p∂q1 ⊗∂q2 ∈W2(g∗), we define an operator F(B)
mapping functions on g to functions on g×g:

F(B)(f )(x, y)=q1(x)q2(y)[∂p(f )](x+y). (18)

By duality, we get a ‘right’ action on pairs of distributions on g in the following
way:

(u, v) ·F(B)= [(u ·q1)∗g (v ·q2)] ·∂p , (19)

where u, v are distributions on g, ∗g is the convolution on g and it is assumed that
the convolution makes sense. We then have a formula similar to (16)

dB(f,g)= (df ,dg) ·F(B). (20)

Note that a bi-differential operator with polynomial coefficients is completely
determined by its action on point distributions.

1.4. ENVELOPING ALGEBRA

The enveloping algebra U =U(g) of g can be seen as the algebra of left invariant
differential operators on G (multiplication being composition of differential oper-
ators), as the algebra of distributions on G with support 1, multiplication being
convolution of distributions. Depending on the situation, we will write · or ∗G the
product in U(g).

It is well known, and can be easily seen, that the symmetrization map β from
S(g) to U(g) can be interpreted as the pushforward of distributions from the Lie
algebra to the Lie group by the exponential map: for all p ∈S(g), β(p)= exp∗ p.
(Note that there is no Jacobian involved here.)
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1.5. POISSON STRUCTURE

As is well known, the dual g∗ of g is a Poisson manifold. For f, g functions on
g∗, the Poisson bracket is

{f, g}(ν)= 1
2
ν([df (ν),dg(ν)]) (21)

for ν= νke∗k ∈ g∗, where df (ν),dg(ν)∈ g∗∗ are identified with elements of g. Con-
sider the structure constants relative to the given basis ei of g:

[ei, ej ]= ckij ek (22)

(we use the Einstein convention of summing repeated indices). Writing ∂j for the
partial derivatives with respect to the dual basis e∗j of ei , we get the following for-
mula for the Poisson bracket

γ (f, g)(ν)={f, g}(ν)= 1
2c
k
ij νk∂i (f )(ν)∂j (g)(ν); (23)

said otherwise, the corresponding Poisson tensor is linear:

γ ij (ν)= 1
2c
k
ij νk.

2. General Facts about the Kontsevich Construction of a Star Product

2.1. ADMISSIBLE GRAPHS

Consider, for every integers n�1 and m�1 a set Gn,m of labelled oriented graphs

 with n+m vertices: 1, . . . , n are the vertices of ‘first kind’, 1̄, . . . , m̄ are the verti-
ces of ‘second kind’. Here labelled means that the edges are labelled. We will actu-
ally use these graphs here mostly for m=1 (resp. 2). In those cases, the vertices of
second kind will be named M (resp. L,R). The set of vertices of 
 is denoted V
,
the set of vertices of the first kind V 1


 , and the set of edges E
. For e= (a, b)∈E
,
we write a= a(e) and b= b(e). For graphs in Gn,m, we assume that for any edge
e, a(e) is a vertex of the first kind, b(e) 
=a(e) and for every vertex a ∈{1, . . . , n},
the set of edges starting at a has two elements, written e1

a, e
2
a . Finally, we assume

that there are no double edges.
As usual, a root of an oriented graph is a vertex which is the end-point of no

edge, and a leaf is a vertex which is the beginning-point of no edge.

2.2. MULTIDIFFERENTIAL OPERATORS ASSOCIATED TO GRAPHS

Let X be a real vector space of dimension d with a chosen basis v1, . . . , vd . The
vector field ∂vj on X is denoted ∂j . We fix a C∞ bi-vector field
α=∑

i,j∈{1,...,d} αij∂i∂j on X.
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2.2.1. Differential Operators

Let 
∈Gn,1. We define a differential operator D
,α by the formula:

D
,α(φ)=
∑
I∈L

 n∏
k=1

 ∏
e∈E

b(e)=k

∂I (e)

αI (e1
k )I (e

2
k )


 ∏

e∈Eγ
b(e)=M

∂I (e)

φ, (24)

where L is the set of maps from E
 to {1, . . . , d} (tagging of edges). One should
think of this operator in the following way: for each tagging of edges, ‘put’ at each
vertex of the first kind � the coefficient αij corresponding to the tags of the edges
originating at � and ‘put’ φ at M. Whatever is at a given vertex (�∈ {1, . . . , n} or
M) should be differentiated according to the tags of edges ending at that vertex,
and multiply over all vertices.

2.2.2. Bi and Multi-Differential Operators

Consider a graph 
∈Gn,2. Define a bi-differential operator B
,α by the formula

B
,α(f, g)=
∑
I∈L

 n∏
k=1

 ∏
e∈E

b(e)=k

∂I (e)

αI (e1
k )I (e

2
k )


 ∏

e∈Eγ
b(e)=L

∂I (e)

f
 ∏

e∈Eγ
b(e)=R

∂I (e)

g. (25)

The bi-differential operator B
,α has a similar interpretation as D
,α.
For graphs 
 in Gn,m, by a straightforward generalization of (25), we define

m-differential operators, with the same interpretation as before.

2.3. LIE ALGEBRA CASE

2.3.1. Relevant Graphs

Assume that the vector space X=g∗, and that the bi-vector field α is the Poisson
bracket γ , so that αij (ν)= γ ij (ν)= 1

2c
k
ij νk. Since we use only this bi-vector field,

we shall drop α from the notation. Because of the linearity of the bi-vector field
associated with the Poisson bracket, for the graphs 
∈Gn,m for which there exists
a vertex of the first kind � with at least two edges ending at �, B
 = 0. We will
call relevant the graphs which have at most one edge ending at any vertex of the
first kind; since we are dealing exclusively with the Lie algebra case, we will hence-
forth change our notation slightly, and use the notation Gn,m for the set of relevant
graphs.
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2.3.2. Action on Distributions

Let 
∈Gn,2, and let us interpret ‘graphically’ the operator F(B
) acting on pairs
of distributions u, v on g. As in (25), the action is defined as a sum over all tag-
ging of edges of terms obtained in the following way: ‘put’ u and v at vertices L
and R, put at any vertex of the first kind the distribution d[ei ,ej ], where i, j are the
tags of the edges originating at that vertex; any edge tagged by � gives a multipli-
cation by the function e∗� of the distribution sitting at the end point of that edge.
And finally, we take the convolution of the distributions at all vertices.

2.4. THE KONTSEVICH STAR PRODUCT

Kontsevich defines a certain compactification C
+
n,m of the configuration space of

n points z1, . . . , zn in the Poincaré upper half space, with zi 
= zj for i 
= j , and
m points y1<y2< · · ·<ym in R, up to the action of the az+b-group for a ∈R

+∗

and b∈R. To each graph 
 is associated a weight w
 which is an integral of some
differential form on C

+
n,m.

Let X=R
d with a Poisson structure γ considered as a bi-vector field. Let A=

C∞(X) the corresponding Poisson algebra. A �-product on A is an associative
R[[�]]-bilinear product on A[[�]] given by a formula of the type:

(f, g) 
→f �� g=fg+�B1(f, g)+ 1
2!

�
2B2(f, g)+· · ·+ 1

n!
�
nBn(f, g)+· · · , (26)

where Bj are bi-differential operators and such that

f �� g−g �� f =2�γ (f, g) (27)

modulo terms in �
2.

The Kontsevich star product is given by formulas

Bn(f, g)=
∑


∈Gn,2
w
B
(f, g). (28)

Note that each Bn(·, ·), being a finite sum, is a bi-differential operator.

2.4.1. Setting � =1

As is explained in [3], one can set � = 1, or, for that matter, � = t for any t ∈ R

in the Kontsevich formula in the Lie algebra case. Indeed, for fixed f, g∈S(g) of
degrees p,q respectively, the terms B
,γ (f, g)= 0 for n>p+ q, so that the sum
(26) actually involves a finite number of terms. This operation is written � rather
than �1.

Replace the Lie algebra g by gt for t ∈ R, or t a formal variable as in (6). Is
is easy to check that the Kontsevich �-product �1 for the Lie algebra gt at � = 1
coincides with �t .
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3. An Extension of the Kontsevich Star Product

3.1. THE SYMBOL OF THE STAR PRODUCT

We consider here the star product as a formal bi-differential operator, i.e. as an
element of W2(g∗)[[�]]. It has a symbol A� which belongs to S(g∗) ⊗ S(g∗) ⊗
S(g)[[�]]. We will view A� =A�(X,Y ) as a polynomial map of (X,Y )∈ g× g into
S(g)[[�]] and prove some properties of A�.

Recall that, for 
 ∈Gn,2, σ
 is the symbol of the corresponding bi-differential
operator B
. Let

σn=
∑


∈Gn,2
w
σ
. (29)

We have, for X,Y ∈g

A�(X,Y )=1+
∑
n� 1

�
n

n!
σn(X,Y ). (30)

We will describe a factorization of A�(X,Y ) in Proposition 3.7 below. We first
need to have a careful inspection of various graphs and their symbols.

3.1.1. Wheels

We say that a graph 
 ∈Gn,m contains a wheel of length p if there is a finite
sequence �1, . . . , �p ∈{1, . . . , n} with p�2 such that (�1, �2), . . . , (�p−1, �p), (�p, �1)

are edges, and there are no other edges beginning at one of the �k and ending at
another �k′ . The graph 
 is a wheel if p=n.

3.1.2. Simple Components

Let 
∈Gn,m. Consider the graph 
̃ whose vertices are {1, . . . , n} and whose edges
are those edges e ∈E
 such that b(e) /∈ 1̄, . . . , m̄. Let 
̃i (i ∈ I ) be the connected
components of 
̃. The simple component 
i is the graph whose vertices are the
vertices of 
̃i and 1̄, . . . , m̄, and whose edges are the edges of 
̃i and the edges of

 beginning at a vertex of 
̃i . It is easy to see that any simple component of a
graph in Gn,m can be identified to a graph in Gn′,m for n′ �n.

In this situation, we use the notation


=
∐
i


i, (31)

and more generally, if 
′ and 
′′ are sub-graphs whose simple components deter-
mine a partition of the 
i , we write


=
′ �
′′. (32)

A simple graph is a graph with only one simple component.
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3.1.3. Symbols

We now give rules to compute the symbol of the operator attached to a graph 
∈
Gn,m. They are recorded as a series of lemmas. First, one observes:

LEMMA 3.1. Let 
∈Gn,2 with r roots. The symbol σ
 is of total degree n+2r, of
partial degree r for the S(g) components (we call this degree the polynomial degree)
and of partial degree n+r for the S(g∗)⊗S(g∗) component (the differential degree).

The next two lemmas are essentially in [14]:

LEMMA 3.2. If 
∈Gn,n is a wheel of length n, then

σ
(X1, . . . ,Xn)= tr(adX1 . . .adXn). (33)

LEMMA 3.3. The symbol associated to the graph 
 ∈G1,2 whose edges are (1,L)
and (1,R) is the map

(X,Y )∈g×g 
→ 1
2 [X,Y ].

Finally, the following statements can be easily derived from the definitions.

LEMMA 3.4. Let 
∈Gn,m. Assume that there exists a sub-graph 
0 with p leaves
�1, . . . , �p such that

• each leaf �j is the end-point of one edge
• 
 is the union of 
0 and of p sub-graphs 
1, . . . , 
p
• each 
j has a single root �j .

Then

σ
 =σ
0(σ
1 , . . . , σ
p ). (34)

LEMMA 3.5. Let 
∈Gn,m. There exist two subgraphs 
1 and 
2 (possibly empty),
with 
1 having wheels and no roots, and 
2 having roots and no wheels such that

=
1 �
2. The decomposition is unique up to labelling of vertices.

LEMMA 3.6. Let 
∈Gn,m and assume that 
=
′ �
′′, then σ
 =σ
′σ
′′ .

3.1.4. Decomposition of A�

Let us consider the following two subsets of Gn,m:

Gwn,2 ={
∈Gn,2, 
 with no roots},
Grn,2 ={
∈Gn,2, 
 with no wheels},
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and consider the two following symbols:

Aw
�
(X,Y )=1+

∑
n� 1

�
n

n!

∑

∈Gw

n,2

w
σ
(X,Y ),

Ar
�
(X,Y )=1+

∑
n� 1

�
n

n!

∑

∈Gr

n,2

w
σ
(X,Y ).

PROPOSITION 3.7. (1) As an S(g) valued map on g×g, Aw
�

is scalar valued.
(2) The symbol A�(X,Y ) decomposes as a product

A�(X,Y )=Aw� (X,Y )Ar�(X,Y ).
Proof. (1) By Lemma 3.1, the symbol of a graph with no roots has polynomial

degree 0. This proves the first assertion.
(2) By Lemma 3.5, any graph 
 is 
1 �
2, 
1 with no roots, 
2 with no wheels.

It is easy to see from their definition that the weights are multiplicative [14, 6.4.1]:
w
=w
1w
2 . Finally, the n! factors come from the labelling in the decomposition
3.5.

For X,Y ∈g�, let Z�(X,Y ) be their Campbell–Hausdorff series. Writing Z=Z1,
we have

Z�(X,Y )=�
−1Z(�X,�Y ). (35)

It is well known that the Campbell–Hausdorff series Z(X,Y ) converges for X,Y
small enough. Therefore, for any h0, there exists ε such that for ‖X‖, ‖Y‖� ε, the
power series (in �) Z� converges in norm for |�|� |h0|.

The following is due to V. Kathotia [13, Theorem 5.0.2]:

PROPOSITION 3.8. Ar
�
(X,Y )= eZ�(X,Y )−X−Y .

As a consequence, for ‖X‖ and ‖Y‖ small enough, the formal series Ar
�

converges for � =1.

PROPOSITION 3.9. Considered as an S(g)-valued function on g×g, Aw
�
(X,Y ) is a

convergent series in a neighborhood of (0,0). Moreover, Aw
�
(X,Y )=exp

(
A
(w)
�
(X,Y )

)
where A(w)

�
is the contribution to the series corresponding to graphs with exactly one

wheel.
Proof. It’s easy to see that graphs with exactly one wheel (and no roots) corre-

spond to simple graphs of wheel type. For such 
 with n
 vertices of first type,
denote by m
 the cardinal of his group of symmetries (a subgroup of the group
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of permutations of n
 elements). Let us call geometric a graph without labels and
numberings. A geometric graph without roots has a decomposition


1 �· · ·�
1︸ ︷︷ ︸
k1

�
2 �· · ·�
2︸ ︷︷ ︸
k2

· · ·
p�· · ·�
p︸ ︷︷ ︸
kp

and appears

(k1n
1 +· · ·+kpn
p)!
k1!(m
1)

k1 · · · kp!(m
p)
kp

times in Aw
�
(X,Y ) due to the various numberings of vertices and 2k1n1+···+kpnp due

to the numberings of arrows. So one gets
�

Aw
�
(X,Y )=1+

∑
n� 1

�
n

n!

∑

∈Gw

n,2

w
σ
(X,Y )

=1+
∑
n� 1

�
n

n!

∑
ki ,ni ,

∑
i kini=n


i simple geometric
of wheel type (ni ,2)

n!
∏
i

w
ki

i

(2ni σ
i (X,Y ))
ki

ki !m
ki

i

= exp

∑
n� 1

�
n

∑

 simple geometric
of wheel type (n,2)

w

2nσ
(X,Y )

m



= exp

(
A
(w)
�
(X,Y )

)
. (36)

We now need to prove convergence of the series A(w)
�
(X,Y ), and by homogene-

ity we can set � = 1. Without loss of generality, we can assume that the structure
constants |ckij |�2. Therefore,

1
2p

| tr(ad ei1 ad ei2 . . .ad eip )|�dp

(where d=dim g) and, more generally,

1
2p

| tr(ad z1 ad z2 . . .ad zk)|�dp,

with zj Lie monomial in ei of degree pj and
∑
pj =p.

Let 
 ∈Gw
n,2 with only one wheel of length p�n. If the absolute values of all

components xi, yj of X,Y respectively are less than r,

|σ
(X,Y )|� rndndn= rnd2n. (37)

�
In [27,28] one should correct the definition of density function with geometric graphs by this

factor 1/m
 .
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Besides, the following inequalities can be found in [3, Lemma 2.2 and 2.3]:

|w
|�4n, |Gn,2|� (8e)nn!.

Finally, the terms of the series in A
(w)

1 (X,Y ) can be bounded by (32e)nrnd2n,
which proves convergence for r small enough.

3.2. A FORMULA FOR THE STAR PRODUCT

PROPOSITION 3.10. Let t ∈R. Let u, v ∈S(g), and u �t v their star product, con-
sidered as distributions on g. Then u�t v is given by the

〈u�t v, φ〉=〈u⊗v,Awt · (φ ◦Zt)〉 (38)

for φ a test function on g.

In this proposition, we are of course looking at the Fourier transform of �t (see
20), meaning that we are actually expressing du�t v in terms of du,dv, but we avoid
using these cumbersome notations. (See also [5] for a similar ‘integral’ formula.)

Proof. Since for fixed u, v the series for u �� v is finite, we can substitute to �

a real number t , and interchange summation with the test function-distribution
bracket:

〈u�t v, φ〉=〈u(X)⊗v(Y ), [∂At (X,Y )φ](X+Y )〉, (39)

and we avoid convergence problems for a fixed t by taking a test function φ with
small enough support. We know that At(X,Y )=Awt (X,Y )Art (X,Y ), and Awt (X,Y )
is scalar valued (Proposition 3.7). So

[∂At (X,Y )]φ(X+Y )=Awt (X,Y )[∂Art (X,Y )φ](X+Y )

By Proposition 3.8, Art (X,Y )= eZt (X,Y )−X−Y , and by Taylor’s formula for polyno-
mials,

∂Art (X,Y )φ(X+Y )=φ(X+Y +Zt(X,Y )−X−Y )=φ(Zt (X,Y )). (40)

The proposition follows.

3.3. AN EXTENSION OF THE KONTSEVICH STAR PRODUCT

In this section, we use formula (38) to define the star product of distributions with
small enough compact support. By Proposition 3.10, the definition agrees with the
original one for distributions with point support.
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PROPOSITION AND DEFINITION 3.11. Let t be a fixed real number. Then for
all distributions u and v on g with sufficiently small support, the formula (38):

φ 
→ 〈u�t v, φ〉=〈u⊗v,Awt (X,Y ) ·φ(Zt (X,Y ))〉
defines a distribution u�t v on g.

Proof. Let Ku and Kv be the supports of u and v. Assume that Ku and Kv are
included in a ball or radius α. Assume that 2α is less than the radius of conver-
gence of At(X,Y ). It is clear that (38) makes sense. We need to prove that the
functional t defined therein is a distribution. Since (X,Y ) 
→Zt(X,Y ) is analytic
from g × g to g, the pushforward of the compactly supported distribution u⊗ v

under Zt is a distribution. But u �t v is obtained by multiplying this distribution
by the analytic function Atw, so it is a distribution.

This proves the first statement of Theorem 0.2.

3.4. A CONNECTION BETWEEN THE STAR PRODUCT AND GROUP CONVOLUTION

An element of S((g∗))=R[[g]] play a crucial role in this situation:

q(X)=
(

det g
eadX/2 − e−adX/2

adX

)1/2

. (41)

It is clear by definition that q(X) is analytic on g. Consider the ‘infinite order con-
stant coefficient differential operator’ ∂q with symbol q (written Ist in [14]).

In [14] another element of S((g∗)) plays a role:

τ(X)= exp

(∑
n

wn

n
tr((adX)n)

)
,

where wn is the weight corresponding to the graph with one pure wheel of order
n. Since by [24] τ(X)=1 for all X, we will not mention it further.

As in [14], we write Ialg for the isomorphism from (U(g),∗G) to (S(g), �) coming
from (27) and the universal property of U(g). Recall that β is the symmetrization
map (IPBW in [14]). By [14,24] these three maps are related by the following:

I−1
alg =β ◦∂q . (42)

When we consider elements in S(g) and U(g) as distributions, ∂q should be
replaced by multiplication operators, so that (42) is equivalent to

I−1
alg (p)=β(p q), (43)

for p ∈ S(g), and β is interpreted as the direct image of distributions under the
exponential map. Using (2), and replacing everywhere g by gt , we therefore have
the identity (13):

η−1
t

(
ηt (u)∗Gt ηt (v)

)=u�t v,
for u, v distributions on g supported at 0.
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The following Proposition finishes the proof of Theorem 0.2.

PROPOSITION 3.12. (1) The scalar valued function Aw is given by

Aw(X,Y )= q(X)q(Y )

q(Z(X,Y ))
. (44)

(2) Let u, v be distributions on g with (small enough) compact support. The iden-
tity (13) :

η−1
t

(
ηt (u)∗Gt ηt (v)

)=u�t v
holds.

Proof. (1) Let u, v∈S(g). The convolution β(uq)∗G β(vq) is given by

〈β(uq)∗G β(vq),ψ〉=〈uq⊗vq,ψ ◦ expZ〉, (45)

for ψ a test function on G. Since Ialg is an algebra homomorphism, by (42) we
get

β((u�v)q)=β(uq)∗G β(vq). (46)

Therefore, applying (38), we get for any distributions u, v with support 0:

〈u⊗v,Aw · (q ◦Z)ψ ◦ expZ〉=〈uq⊗vq,ψ ◦ expZ〉. (47)

Fix a neighborhood of (0,0) in g×g on which Aw(X,Y ) is defined. Assume that
ψ(exp(Z(X,Y )))≡1 on that neighborhood. We have

〈u⊗v,Aw · (q ◦Z)〉=〈u⊗v, q⊗q〉. (48)

Since this equality holds for any u and v supported at 0, this implies that the two
functions Aw(X,Y )q(Z(X,Y )) and q(X)q(Y ) have same derivatives at (0,0); since
they are analytic, they must be equal.

(2) The second statement follows immediately from (45), (44) and (38).

We will prove now one last property about the extended star product, relating it
directly to graphs:

PROPOSITION 3.13. Let u, v be two distributions with small enough compact sup-
port on g. The following holds for any integer n�1:

dn

dtn

∣∣∣∣
t=0
u�t v=

∑

∈Gn,2

(u, v) ·F(w
B
). (49)
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Before giving the proof, let us observe that we fall short from proving that u�t v
is analytic in t for u, v general. However, we will prove such a result for u, v invari-
ant in Section 4.

Proof. For u, v be two distributions on g with small support, and φ a test func-
tion on g, let us define

〈Cn(u, v), φ〉= dn

dtn

∣∣∣∣
t=0

〈u�t v, φ〉. (50)

By inspection, Cn is a bi-differential operator with polynomial coefficient acting on
distributions.

For distributions u, v∈S(g), we know that

Cn(u, v)=
∑


∈Gn,2
(u, v) ·F(w
B
). (51)

Now bi-differential operators with polynomial coefficients are completely deter-
mined by their action on distributions with point support. This proves that

Cn=
∑


∈Gn,2
F(w
B
). (52)

4. Proof of Theorem 0.3

4.1. CONVOLUTION ON THE LEVEL OF GERMS

The first step is to transfer the results of Section 3 to germs. We will begin by giv-
ing a few definitions.

4.1.1. Germs

Recall that the germ at 0 (resp. at 1) of a distribution u on g (resp. G) is the equiv-
alence class of u for the equivalence relation u1 ∼u2 if and only if there exists a
neighborhood C of 0 (resp. 1) such that for any test function φ on g (resp. G) with
support in C, 〈u1, φ〉=〈u2, φ〉. Clearly, for any distribution u and any given neigh-
borhood � of 0 (resp. 1), there exists a distribution with support in � defining the
same germ at 0 as u.

4.1.2. Action of G on Germs

From the action of G on G by conjugation (resp. the adjoint action on g) we get
an action of G on functions and distributions on G (resp. g). For g ∈G and u a
distribution, we write ug for the image of u under g. We get therefore an infinitesi-
mal action of g on functions and distributions on g, which is exactly the action by
adjoint vector fields adjX for X∈g. It is straightforward to see that these actions
descend to germs.
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4.1.3. Invariant Germs

Invariant germs are defined as germs u such that u ·A=0 for all A∈g. By taking
a basis of g, it is easy to see

LEMMA 4.1. A germ u is invariant if and only if, for any distribution u represent-
ing u, there exists an open neighborhood � of 0 such that, for any φ supported in �
and any A∈g

〈u ·A,φ〉=0. (53)

4.1.4. The Compatibility Condition

For u a germ on g, recall we have defined C0[u] as the cone C0(suppu) for any u
representing u. Two germs u,v are compatible if

C0[u]∩−C0[v]={0}. (54)

4.1.5. Proof of the First Statement of Theorem 0.3

We need to prove that the star product descends to germs. The analogous state-
ments about the convolutions on g and on G are made in [12]. By formula (13),
we deduce it for u�v.

4.2. INVARIANT GERMS

In order to finish the proof of Theorem 0.3, we need to have very precise state-
ments about the choice of representatives of invariant germs that we will work
with. This is what we do in this section.

We choose some norm ‖‖ on g, and write B(0, r) for the open ball of center 0
and radius r. For us, open cone means cone containing 0 with open intersection
with B(0,1)\ {0}.

LEMMA 4.2. (1) Let u be a germ. For any open cone D containing C0[u], there
exists a representative of u with support included in D.

(2) Let u,v be compatible germs. There exist open cones D0[u] ⊃C0[u], D0[v] ⊃
C0[v] such that

D0[u]∩−D0[v]={0}. (55)

Proof. The second statement is easy. We prove the first. Let u1 be any represen-
tative of u. By definition of C0[u], there exists η>0 such that suppu1 ∩B(0, η)⊂D.
Let χ be a C∞ function supported in B(0, η) which is identically equal to 1 in
B(0, η/2). Clearly, u=u1χ is a representative of u with support included in D.
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For β > 0, we write Dβ0 [u] =D0[u] ∩B(0, β). The following lemma is crucial for
our purposes.

LEMMA 4.3. Let u,v be compatible germs, and D0[u],D0[v] open cones as in
Lemma 4.2. There exists a β > 0 such that, for any γ > 0, there exists δ > 0 satis-
fying

supp(φ ◦Zt)∩ (Dβ0 [u]×Dβ0 [v])⊂B(0, γ )×B(0, γ ), (56)

for all smooth φ with support in B(0, δ).
Proof. We choose open cones D1[u],D1[v] containing D0[u],D0[v] respectively,

and verifying

D1[u]∩−D1[v]={0}.
We study the restriction of Zt(X,Y ) to D1[u] ×D1[v]. The Campbell–Hausdorff
formula implies that there exists a positive number β1 such that the g-valued map
(t,X,Y ) 
→Zt(X,Y ) is analytic for t �1,‖X‖�β1,‖Y‖�β1. Furthermore,

∂Zt

∂X
(0,0)= ∂Zt

∂Y
(0,0)= I. (57)

Therefore, the implicit equation Zt(X,Y )=0 can be solved: there exists a constant
β2 <β1 and an analytic map (X, t) 
→ zt (X), defined for t ∈ [−1,1] and ‖X‖�β2

such that Zt(X,Y )=0 is equivalent to Y =zt (X) for ‖X‖�β2,‖Y‖�β2. Now since
∂zt/∂X(0)= −I and D1[u] is an open cone, we conclude that there exists β <β2

such that, for X ∈Dβ0 [u], and any t ∈ [−1,1], zt (X)∈ −D1[u]. Using (55), for X ∈
D
β

0 [u], Y ∈Dβ0 [v], Zt(X,Y )= 0 implies X= Y = 0. Using a compactness argument,
we deduce

∃β,∀γ ∈ (0, β],∃δ>0, ∀X∈Dβ0 [u],∀Y ∈Dβ0 [v],
∀t ∈ [−1,1],‖Zt(X,Y )‖� δ implies‖X‖�γ,‖Y‖�γ. (58)

Assume that φ is a test function supported in B(0, δ). Then, by (58),

supp(φ ◦Zt)∩ (Dβ0 [u]×Dβ0 [v])

is included in B(0, γ )×B(0, γ ), as we wanted.

We can now make the following precise statement about the choice of represen-
tatives of germs.

PROPOSITION 4.4. Let u,v be compatible germs, and D0[u],D0[v] open cones as
in Lemma 4.2. There exists a positive real β such that, for any t ∈ [−1,1], the germ
at 0 of u�t v does not depend on the choice of u (resp. v) distribution supported in
D
β

0 [u] (resp. Dβ0 [v]) representing u (resp. v). This implies that the germ of u � v is
independent of the choice of D0[u],D0[v].
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Proof. Let u,v be compatible germs, and (u1, v1), (u2, v2) two pairs of represen-
tatives. By formula (38), since the multiplication factor Awt does not play a role, it
is enough to prove, for any t ∈ [−1,1], the formula

〈u1 ⊗v1, φ ◦Zt 〉=〈u2 ⊗v2, φ ◦Zt 〉 (59)

provided the support of φ is small enough. Assume that (u1, u2) (resp. (v1, v2)) are
supported in Dβ0 [u] (resp. Dβ0 [v]). Since u1 ∼u2, v1 ∼v2, there exists γ such that for
any test function ψ with support included in the ball B(0, γ ),

〈u1,ψ〉=〈u2,ψ〉, 〈v1,ψ〉=〈v2,ψ〉. (60)

From γ , we get δ by Lemma 4.3. Using (56) we deduce (59) for φ supported in
B(0, δ).

PROPOSITION 4.5. Let u,v be two compatible invariant germs. The germ u�t v is
invariant.

Proof. It is enough to do it for t = 1. We consider β from Proposition 4.4. As
before, we chose representatives u, v of u,v supported in D

β

0 [u] and D
β

0 [v] respec-
tively. Since the germs are invariant, there exists a γ < β such that, for any test
function ψ supported in B(0, γ )

〈u ·A,ψ〉=〈v ·A,ψ〉=0, (61)

for all A∈g. Applying again Lemma 4.3, consider φ a test function supported in
B(0, δ). We need to prove that

〈(u�v) ·A,φ〉=〈(u�v),A ·φ〉=0,

for all A∈g. Indeed, since the function q is invariant, it is enough to prove

〈u⊗v, (A ·φ)◦Z〉=0. (62)

Using the covariance of Z(X,Y ) under the adjoint action of g∈G:

g.(Z(X,Y ))=Z(g.X,g.Y ),
writing g= exp(tA) and differentiating at t=0, we get

(A ·φ)◦Z= (A⊗1+1⊗A)(φ ◦Z). (63)

Thus we get

〈u⊗v, (A ·φ)◦Z)〉=〈u ·A⊗v,φ ◦Z〉+〈u⊗v ·A,φ ◦Z〉.
By Lemma 4.3

supp(φ ◦Z)∩ (Dβ0 [u]×Dβ0 [v])⊂B(0, γ )×B(0, γ ).
Now we use (61) to conclude.
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4.3. END OF PROOF OF THEOREM 0.3

As before, we consider two compatible invariant germs u and v, and take repre-
sentatives u, v of u,v. We shall prove the equivalence of distributions:

u�t v∼u∗g v, (64)

for u, and v adequately chosen. It clearly will imply Theorem 0.3. It is enough to
prove that for any arbitrary test function φ with sufficiently small support

〈u�t v, φ〉=〈u∗g v,φ〉. (65)

Considering both sides as functions of t , we will prove that they are analytic in t ,
and that their derivatives at 0 at any order are equal.

4.3.1. Analyticity

We will derive the required analyticity result by extending some arguments of Rou-
vière from [22,23]. For the reader’s convenience, we summarize below the results
that we need from these papers.

Rouvière� defines an analytic function e(X,Y )�� on a neighborhood of (0,0)
in g×g and a family of maps �t (depending smoothly on t ∈ [0,1]) from a neigh-
borhood of (0,0) in g×g to g×g with the following properties

• �0 = I .
• For all t , �t(0,0)= (0,0) and �t is a local diffeomorphism at (0,0).
• If σ :g×g→g is the addition map, then σ ◦�−1

t =Zt .
For a smooth function g on g×g, define gt = (ftg)◦�−1

t , where

ft (X,Y )= q(tX)q(tY )

q(tX+ tY ) e(tX, tY )
−1.

Rouvière proves

∂

∂t
gt = tr g

(
adX ◦ ∂

∂X
(gtFt )+adY ◦ ∂

∂Y
(gtGt )

)
, (66)

where Ft and Gt are certain smooth functions on g × g, and all differentials are
taken at (X,Y ). Since the differential operators on the right can be expressed in
terms of adjoint vector fields, Rouvière uses this to conclude that, for invariant dis-
tributions u and v,〈

u⊗v, ∂

∂t
gt

〉
≡0, whence 〈u⊗v, g0〉=〈u⊗v, g1〉. (67)

�Rouvière’s work is for symmetric spaces, but we apply it in the special case of Lie algebras.
��The Kashiwara-Vergne combinatorial conjecture for Lie algebras is equivalent to the

statement: e(X,Y )=1.
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If now φ is a smooth function on g, applying this result to

g(X,Y )= e(X,Y )

q(X)q(Y )
φ(X+Y ),

and pairing with uq and vq, we obtain

〈u⊗v, e(φ ◦σ)〉=〈uq⊗vq, (φq−1)◦Z〉. (68)

Rewriting this, we get

〈u⊗v, e(φ ◦σ)〉=〈η−1(η(u)∗G η(v)), φ〉. (69)

LEMMA 4.6. Let u,v be two compatible invariant germs, D0[u],D0[v] chosen as in
Lemma 4.2, and β from (56). Let u, v be representatives which verify the conditions
of Proposition 4.4. There exists a positive number δ such that, for any test function
φ supported in B(0, δ),

〈u�t v, φ〉 (70)

is an analytic function of t in a neighborhood of [0,1].

Note that this lemma implies that the function �u,v,φ(t) considered in the intro-
duction is analytic.

Proof. The first step is to prove that (69) holds under the assumptions of the
lemma, provided φ has small enough support. We proceed as in Proposition 4.5:
from the invariance of u,v, we have a constant γ such that

〈u ·A,ψ〉=〈v ·A,ψ〉=0, (71)

for all A∈g and any ψ supported in B(0, γ ). We derive δ from Lemma 4.3. Let φ
have support in B(0, δ). In Rouvière’s proof which was just outlined above, the dis-
tribution u⊗v is paired with the function gt and some derivatives of gt . Since σ ◦
�−1
t =Zt , we can write gt =Kt(φ ◦Zt), where Kt is some smooth function. There-

fore, the support of gt (and any derivative) is included in the support of φ ◦Zt . By
(56) we see that

suppgt ∩ (Dβ0 [u]×Dβ0 [v]) (72)

is included in B(0, γ )×B(0, γ ). Since we are pairing with u⊗v, with u, v verifying
(71), we still conclude as in [23, Theorem 2.1]) that 〈u⊗v, gt 〉 is independent of t ,
so that (67) and (69) still hold.



200 MARTIN ANDLER ET AL.

Now we apply (69), but to the algebra gt (note that this t is not ‘the same’ as
the t used before !). Using (13), since the e function for gt is given by et (X,Y )=
e(tX, tY ) (see [22, Proposition 3.14]) we derive

〈u�t v, φ〉=〈u(X)⊗v(Y ), e(tX, tY )φ(X+Y )〉. (73)

Using the fact that e and q are analytic in a neighborhood of 0, we conclude
from (73) that 〈u�t v, φ〉 is an analytic function of t ∈ [−1,1].

The analyticity of the right-hand side of (65) being immediate, it now remains
to prove the equality of derivatives of both sides of (65) at 0 to all orders.

4.3.2. Cancellation

Recall that from Proposition 3.13 that we have for u, v be two distributions with
small enough compact support on g and any integer n�1:

dn

dtn

∣∣∣∣
t=0
u�t v= (u, v)F(Bn), (74)

with Bn=∑

∈Gn,2 w
B
.

We now define a certain subset J of W2(g∗). Considering the natural surjective
map C from W(g∗)⊗W(g∗) to W2(g∗) given by

p1 ⊗q1 ⊗p2 ⊗q2 
→p1p2 ⊗q1 ⊗q2

for pi ∈S(g), qi ∈S(g∗). Let B=C(D1 ⊗D2), then

〈(u, v) ·F(B),φ〉=〈u ·F(D1)⊗v ·F(D2), φ ◦σ 〉. (75)

Let now I be the left ideal in W(g∗) generated by adjoint vector fields; we define

J=C(I⊗W(g∗)+W(g∗)⊗I). (76)

We now establish the following Lemma:

LEMMA 4.7. For any B ∈J, and u, v,φ as in Proposition 4.5,

〈(u, v)F(B),φ〉=0. (77)

Proof. By symmetry, it is enough to prove that for B=C(D1A⊗D2) with A an
adjoint vector field, D1 ∈W(g∗),D2 ∈W(g∗),

〈(u, v) ·F(B),φ〉=0. (78)

But

〈(u, v) ·F(B),φ〉=〈u ·A⊗v,C(D1 ⊗D2)(φ ◦σ)〉. (79)

Since the support C(D1 ⊗D2)(φ ◦ σ) is included in the support of φ ◦ σ , we can
now apply Equation (60).
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To conclude the proof of Theorem 0.3, we need to prove that Bn belongs to J.
We adapt the proof of Theorem 0.3 of [3], which relies on an argument of homot-
opy. We use the notations therein.

Proof. As a consequence of Stokes’ formula, one can express

(u, v) 
→ (u, v) ·F(Bn) (80)

as a weighted sum of bi-differential operators B
 for 
∈Gn,2 with weights

w′

 =

∫
Zn

ω′

, (81)

where Zn is some subset of the boundary of the compactification C
+
n+2,0, and ω′




is a differential form. The integral
∫
Zn
ω′

 is a sum of integrals over the top dimen-

sional components of Zn. Recall that C
+
n+2,0 corresponds to (possibly degenerate)

configurations of n+2 points in the Poincaré open half plane H. Top-dimensional
components of the boundary correspond to configurations with exactly one clus-
ter of points; writing 1,2 for the two distinguished points in the configuration, we
observe that in Zn 1 and 2 remain in H and do not belong to the same cluster.

So, as in [3, Proof of Theorem 0.3], we have four types of components of Zn to
consider:

• one cluster at 1;
• one cluster at 2;
• one cluster in H not at 1 or 2;
• one cluster in R.

The same argument as in [3], shows that type 3 and 4 components give 0 contribu-
tion, as well as any type 1 or 2 component with a cluster of more than two points
at 1 and 2.

We now show that the first type corresponds to a bi-differential operator of the
form C(I ⊗ W(g∗)), whereas the second corresponds to a bi-differential operator
of the form C(W(g∗)⊗I). Since here u, v are both invariant, case 2 is identical to
case 1; so we shall only outline the argument for case 1. Let Z be a type 1 com-
ponent of Zn, with a the vertex infinitesimally close to 1. We know that Z is diffe-
omorphic to C2 ×Cn+1,0. Let 
 be a graph in Gn,2. There has to be an edge from
a to 1, otherwise the C2 contribution to

∫
Z
ω′

 is 0. Similarly, there cannot be two

edges with the same origin and ending at a and 1. Then
∫
Z
ω′

 depends only on


 where 
 is the graph obtained from 
 by collapsing the two vertices a,1. Con-
sidering all graphs 
′ (with one edge from a to 1), such that 


′ =
 (there differ
from 
 only by one edge ending at a or 1), one sees that

(u, v) ·F
 ∑

′, 
′=


B
′


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is a sum of terms of the form

d∑
j=1

(
(u · e∗j )∂([ei, ej ]), v

) ·F(B
).
Since

∑d
j=1(u · e∗j )∂([ei, ej ])=u ·adj ei , by Lemma 4.7, the proof of Theorem 0.3

is complete.
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