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Introduction 

Let n be the ring of Laurent polynomials in Xl' ... 'Xn over a field IF' and let 
S be the subring consisting of polynomials which are invariant under permutations 
and inversions of the variables. In [6], Koornwinder introduced a basis of S con-
sisting of certain polynomials P>., whose coefficients depend on six parameters, q, 
t, a, b, c, d, in IF, and which are indexed by partitions A, 

The Koornwinder polynomials are a generalization of the one-variable Askey-
Wilson polynomials [1], and they possess several remarkable properties which were 
conjectured by Macdonald and Koornwinder. In [3], van Diejen showed that all of 
these properties were implied by a single conjecture-the duality conjecture. This 
conjecture was subsequently proved in [10] by a suitable generalization of the work 
of Cherednik to this setting. See also [8]. In fact, in [10] we introduced certain 
"nonsymmetric" polynomials E>., indexed by A in zn, which form a basis of 'R. 
Most properties of the P>. have natural nonsymmetric analogues for theE>., and in 
[10] we state and prove a duality conjecture for the E>., as well. In this paper we 
investigate the E>. in greater detail. More precisely, we show that they: 

• are orthogonal with respect to a natural inner product on 'R, 
• are triangular with respect to a certain partial order on the monomials, 
• have positive coefficients for suitable limiting values of the parameters. 

In view of the substantial interest and importance attached to the one-variable 
case, we include a brief, self-contained sketch of our principal results in the setting 
of Askey-Wilson polynomials. 

1. Askey-Wilson polynomials 

For the convenience of readers primarily interested in the one variable case, 
we summarize some of our main results for Askey-Wilson polynomials [1]. For the 
proofs (in the general case) see [10] and the later sections of this paper. Let IF be 
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396 SIDDHARTHA SARI 

the field of rational functions in the square roots of 5 parameters q, t0 , t 1, u0 , u 1: 

IF - Q ( 1/2 t1/2 t1/2 1/2 1/2) - q ' o ' 1 'Uo 'U1 

DEFINITION 1.1. Let 1i be the IF-algebra with generators To, T1, Uo, u1 and 
relations: 

To rv to, T1 rv t1, Uo rv uo, u1 rv U1, T1ToUoU1 = q-1/ 2 

(Here, as elsewhere, A"' a means A- A-1 = a112 - a-112.) We define elements 
X, Yin 1t by means of the formulas: 

X= T! 1U!1, Y = T1To. 

Let H = (To, T1), Ho = (T1), 'Rx = (X, x-1 ), 'Ry = (Y, y-1) be the sub-
algebras of 1i generated by the indicated elements. Then Ho is two-dimensional 
(spanned by 1 and To), 'Rx and 'Ry are isomorphic to the Laurent rings in X and 
Y, respectively, and we have the following (linear) isomorphisms: 

1t ~ 'Rx 0 H, H ~ Ho 0 'Ry 

The map x: Ti t-t ti12 , i = 0, 1, extends to a character of H, and we consider 
the induced representation lnd'ji(x) acting on the quotient space ?i/I where I is 
the left ideal generated by the elements h- x(h), hE H. Let 'R be the Laurent ring 
in the variable x. Then we can realize the representation on 'R, via the following 
formulas 

Xf(x) = xf(x) 

Tof(x) = t~ 12 f(x) + t~ 112 (1 - ~~-~)~~-~:x- 1 ) (f(qx- 1)- f(x)) 

Tif(x) = t~/2 f(x) + t~1/2 (1 -(~x~(~2) bx) (f(x-1)- f(x)) 

where we have 
- t1/2 1/2 b- t1/2 -1/2 - 1/2t1/2 1/2 d- 1/2t1/2 -1/2 a - 1 U1 ' - - 1 U1 'c - q o Uo ' - -q o Uo · 

The action of Y on 'R can be diagonalized, and we now describe the eigenvalues and 
eigenvectors. For this we introduce the "formal" q-logarithms of the parameters as 
follows: 

ko = logq to, k1 = logq t1, lo = logq uo, h = logq u1; 
and for n E Z, we put 

n = { n + P if n ~ 0 where p = -21 (ko + k1), 
n-p ifn<O' 

THEOREM 1.1 ( [10]). The action of Y on 'R can be diagonalized, and for each 
n E Z there is an eigenvector En, unique up to multiple, which satisfies 

YEn= qnEn 

THEOREM 1.2 (see Theorem 4.1). The polynomials En can be computed recur-
sively by setting Eo = 1, and defining, up to scalar multiple, 

E-n-1 = (anUo + bn) En, for n ~ 0 
En = (cnT1 + dn) E-n, for n > 0 
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SOME PROPERTIES OF KOORNWINDER POLYNOMIALS 

where Uo = q- 112T0- 1 X = q- 112 (ro - t~ 12 + t0112) X and 

an = qn _ q-n-1 

b _ rr( -1/2 1/2) + -1/2( -1/2 1/2) n - q u0 - u0 q u 1 - u1 

Cn = qn _ q-n 

dn = q=n(t~1/2 - t~/2) + (tQ"1/2 - t~/2) 

REMARK 1.1. This defines En recursively, along the.following sequence: 

(1) n = 0, -1, 1, -2, 2, -3, ... 

DEFINITION 1.2. We also define (up to multiples) 

for n ~ 0 

for n > 0 

397 

Finally, we normalize En, Pn, Qn so that, in each case, the coefficient of xn is 
1. After this normalization, the other coefficients become rational functions in q, 
a, b, c, d. 

THEOREM 1.3 ([10]). Pn is the Askey- Wilson polynomial. 

THEOREM 1.4 (see Theorem 5.1). The coefficient ofxm in En is nonzero iffm 
precedes n in the sequence (1). 

For the next result, we treat k0 , kn, lo, ln as the primary parameters, and con-
sider the limits 

En= lim En, 
q--+1 

Qn =lim Qn. 
q--+1 

For each integer n, define 

en = g (ko + k1 + i), where m = { 2n 
2lnl-1 

if n ~ 0 
if n < 0 

THEOREM 1.5 (see Theorem 6.4). The coefficients of enEn and enPn are poly-
nomials in ko + k1 and lo + l1 with non-negative integer coefficients. 

For our final result, we now specialize the parameters, assuming that IF = 
IQ(q112 ) and that 

ko = n1 + n2, k1 = n1 - n2, lo = n3 + n4, h = n3 - n4 

for some positive integers ni EN. We define an inner product on R as follows: 
First, recall that the Askey-Wilson weight function [1] is 

where 

~(x) := ~+(x)~+(x- 1 ) 

~+(x) := (x)oo( -x)oo(q1/2x)oo( -q1/2x)oo 
(ax )00 (bx )00 ( cx)00 (dx) 00 

and (u)oo = (u; q)00 denotes the following infinite product (see [4]): 

(1 - u)(1 - qu)(1 - q2u) ... , 
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398 SIDDHARTHA SARI 

DEFINITION 1.3. We define C(x) := Ll(x)'P(x), where 

() ·- (x-a)(x-b) 
'P x .- x2- 1 . 

Next observe that under the present assumptions, C(x) is a Laurent polynomial. 

DEFINITION 1.4. Lett be the involution ofR which maps q f---> q-I,x f---> x-I, 
and define an inner product on R by 

(!,g)== [fgtc]I. 
where [ · ]I denotes the constant term of a Laurent polynomial. 

THEOREM 1.6 (see Corollary 3.2). 
1. The polynomials {En : n E Z} are an orthogonal basis of R. 
2. The polynomials {Po, PI, ... , QI, Q2 , ... } are an orthogonal basis ofR. 

2. Preliminaries 

2.1. The Weyl group. Define L0 = zn, L = zn EB ZJ, and regard L as a 
space of affine linear functions on L 0 , via the pairing 

(x, y + z8) = (x, y) + z, x, y E zn, z E Z 

where the inner product on the right is the usual one on zn. Let ei' ... 'en be the 
unit vectors in zn' then 

Ro = {±ei ±ej,2ei} c Lo 

is a root system of type Cn, and 

R ={a+ z8: aERo, z E Z} c L 

is an affine root system of type Cn. We fix compatible positive root systems as 
follows 

Rri = { -ei ± ej, i < j} U { -2ei} 

R+ = {a + n8 : n > 0, a E Ro} U Rri 
Then the corresponding simple roots are 

no= 8 + 2ei, DI = -ei + e2, dots, Dn-I =-en-I+ en, Dn = -2en· 

For each a in R, let s0 denote the reflection in L0 about the hyperplane 

H o = { x E L0 : ( x, a) = 0} 
0 

The Weyl groups W and W are the groups generated by the reflections from 
Ro and R respectively. They are Coxeter groups on generators si, dots, Sn and 
s0 , ... , Sn respectively, where Si = s0 ,. If A = (AI, ... , An) E Lo, then we have the 
following formulas for the action of the generators: 

(2) 
So· A= ( -1- AI, A2, ... , An) 
Si ·A= (AI, A2, ... , Ai+I, Ai, ... , An) i :/= 0, n 

Sn ·A= (AI, A2, ... , An-I' -An) 

Via the pairing, we get a linear action v f---> wv of W on L, satisfying 

(w · vo, wv) = (vo, v). 
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SOME PROPERTIES OF KOORNWINDER POLYNOMIALS 399 

For .X + r5 E L, we have 
so (.X+ r5) = ( -.\1, .\2, ... , An)+ (r- .XI) 5 

(3) 
si(.X + r5) = Si ·A+ r5, i =I 0 

As before, let 'R be the ring of Laurent polynomials in x1, ... , Xn over a field 
lF. Then 'R can be regarded as the group algebra of L0 through the map 

.X = (.\1, ... , .An) f--+ x>- = x;1 • · • x~n. 
and via (2) we obtain a representation of Won 'R, given by the formulas 

so· f(x) = x1 1 f (x1\ x2, ... , Xn) 
(4) Si · j(x) = j (xl, X2, ... , Xi+!, Xi, ... , Xn), i =I 0, n 

Sn · f(x) = f (x1, x2, ... , Xn-b x~ 1 ). 
Now fix an element q in lF, and co.nsider the map from L to 'R, given by 

A+ z5 f--+ qzx;1 • • • x~n. 

Using this map, we obtain another representation of Won 'R corresponding to (3). 
This is given by the following explicit formulas: 

sof(x) = f (qx1 1 , x2, ... , xn) 
(5) 

snf(x) = f (x1,x2, ... ,Xn-l,x~ 1 ). 

In the subsequent discussion, we will need both representations (4) and (5). We 
will distinguish them from each other by writing them as f f--+ w · f and f f--+ w f, 
respectively. (Note that f f--+ w f is an algebra automorphism of 'R.) 

2.2. The Heeke algebra. Let H be the Heeke algebra of W. This is a 
deformation of the group algebra of W, and depends on three parameters t, to, and 
tn with square roots in lF. We recall (see e.g. [7]) that H is generated by elements 
To, ... , Tn which satisfy the same braid relations as s0, s 1, ... , Sn (of type Cn), and 
also satisfy quadratic relations, which we write in the form 

Ti- Ti-l = t;/2- r:l/2_ 

where h = t2 = · · · = tn-1 = t. H contains a commutative subalgebra 'Ry 
isomorphic to the Laurent ring in Y1, ... , Yn, where 

Yi = (Ti ... Tn-l)(Tn ... To)(T1- 1 ... Ti-=:_11). 

Following Noumi [9], we can define a representation of H on 'R which depends 
on two additional parameters uo, Un with square roots in lF, as follows: Put 

a= tlf2ul/2 b = -tlf2u-1/2 c = ql/2tl/2ul/2 d _ -ql/2tl/2u -1/2 n n' n n' 0 0'- 0 0 

and define 
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400 SIDDHARTHA SAHI 

Then these operators satisfy the quadratic and braid relations, and extend to a rep-
resentation of H on R. The action of Ry can be simultaneously diagonalized, and 
the nonsymmetric Koornwinder polynomials E>.. (see [10]) are the corresponding 
eigenbasis. The eigenvalues are given as follows: Put 

k = logq t, ko = logq to, kn = logq tn, lo = logq uo, ln = logq Un· 
and p = (p1, ... ,pn) with 

ko + kn . Pi= 2 + (n- z)k. 

0 
DEFINITION 2.1. For A in zn, let {]; >.. be the (unique) 

-1 
shortest element of W 

such that {]; >.. ·A is a partition, and define 

'X= A+{];>.. ·p 

PROPOSITION 2.1 (see [10]). The Yi are simultaneously diagonalizable, and for 
each A in zn, there is an eigenvector E>.. satisfying 

YiE>..=l'E>.., i=1, ... ,n. D 

(TheE>.. 's are unique up to scalar multiples and can be normalized by requiring 
that the coefficient of x>.. be 1.) 

3. Orthogonality 

In this section we specialize parameters, assuming that F = Q ( q112) and that 

t = qno, a = qnl, b = -qn2, c = qn3+1/2, d = -qn4+1/2 

for some integers ni EN. Equivalently, we have 
t = qno, to = qn1 +n2, tn = qn1-n2, Uo = qn3+n4, Un = qn3-n4 

k =no, ko = n1 + n2, kn = n1- n2, lo = n3 + n4, ln = n3- n4 
We write (u) 00 for the infinite product 

(1 - u)(1 - qu)(1 - q2u) ... , 

and following Koornwinder [6] we define ~(x) := ~+(x)~+(x- 1 ), where 

A ( ) ·- II (x;)oo( -x;)oo (q 112x;) 00 ( -q112x;)00 II (x;Xj )oo(X;Xj 1 )oo 
~+ X .- ) ( ( 1 . . (ax;)oo(bx; oo cx;)oo dx;)oo .. (tx;xj)oo(tx;x3. ) 00 

~ ~<} 

Under the present assumptions,~+ and~ are Laurent polynomials in RandS, 
respectively, and Koornwinder [6] has shown that the P>.. are mutually orthogonal 
with respect to the inner product 

(!,g)= [fg~]!, 
where [ · h denotes the constant term of a Laurent polynomial. In this section we 
shall prove the nonsymmetric analog of this result. 

DEFINITION 3.1. We define C(x) := ~(x)cp(x), where 

II (x;- a)(x;- b) II (x;Xj- t)(x;xj 1 - t) 
cp(x) := 2 1 . 

i X; - 1 i<j (x;x1 - 1)(x;xj -1) 
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SOME PROPERTIES OF KOORNWINDER POLYNOMIALS 401 

Observe that the denominator of cp "occurs" in A(x- 1), and hence C(x) is a 
Laurent polynomial as well. 

DEFINITION 3.2. We define an inner product on R by 
(!,g):= [fgtc]t. 

where t is the involution of R which maps q ~ q-1, and Xi ~ x; 1 . 

Our main result is: 

THEOREM 3.1. For all f, g in R and i = 0, ... , n, we have 
(Td,g) = (f,Ti-19). 

PROOF. Writing Ti in the form 

Ti = fi + 9iSi 
it is easy to check that g1 = 9i, while 

/i - !} = ti12 - t; 112 = Ti -Ti-l. 
which implies 

(see also [10]). Then we get 

(Td,g)- (f, Ti- 1g) = (fd + 9isd,g)- (f,J} g + 91 sig) 
= (gisd,g)- (gd, sig) 

= [(sd)gt(giC)h- [/ (sigt) (giC)h 
= [(sd)gt(giC)h- [(sd)gtsi(giC)]t. 

(To obtain the last equality, we used the fact that Si is an algebra homomor-
phism and does not affect the constant term.) 

Thus it suffices to show that si(giC) = giC for all i, or equivalently that 

si(9i) si(cp) si(A) = 1 £ or i = 0, ... ,n 
9i cp A 

If i :/; 0, then si(A) = A, and we have 

_ 112 (1- txixi=t\) 
9i = t _ 1 for 1 S i < n 

(1- XiXi+l) 
_ -1/2 (1 - axn)(1 - bxn) 

9n - tn (1 _ x~J · 

Now by direct computation, we get 
. -1 ( -1 ) cp (1 - txi+1Xi ) 1 - XiXi+l Si(9i) - - for 1 S i < n 

si(cp) - (1- Xi+!Xi 1) (1- txixH\) - 9i 
cp (1-ax;; 1)(1-bx;; 1) (1-x;) sn(9n) 

sn('P) = (1- x~ 2 ) (1- axn)(1- bxn) = g;;-
which implies the result in these cases. 

For i = 0, we note that if u is independent of x1, then 

(ux1)00 (ux1 1)oo ( ) ( _1) 
_ 1 = ux1 oo uqx1 00 

1- ux1 
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402 SIDDHARTHA SARI 

is so-invariant. This implies that 

Using this we get 

where 

so ((ux1) 00 (ux!1)oo) 
(ux1}00 (ux!1)00 

'I/J1 = (1- x11)(1 + x11)(1- q1/2x11)(1 + q1/2x11) 
(1- ax! 1)(1- bx!1)(1- cx!1)(1- dx! 1) 

IT (1- x!1xj)(l- x!1xj 1) 
X 1 -1 -1 . 

1<i (1- tx1 Xj)(1- tx1 xi ) 

On the other hand, by a direct calculation, we see that 

so( r.p) so( 'I/J2) --=--

where 

Now, since 

it follows that 
·'· ·'· -1/2 '1-'1'1-'290 =to · 

This implies that 
so(go) so(rp) so(~) = so ('I/J1'1/J29o) = l, 

9o r.p ~ 'I/J1 'I/J2Yo 
which completes the proof. 0 

From the theorem it follows that the Ti are t-unitary operators. But then so are 
the }i, and since the nonsymmetric Koornwinder polynomials E>. are simultaneous 
eigenfunctions of the Yi, with distinct eigenvalues q>., , we deduce the following: 

COROLLARY 3.2. TheE>. are mutually orthogonal with respect to(·,·). 

4. Recursion 

In this section we provide explicit recursive formulas for the nonsymmetric 
Koornwinder polynomials. We work once again with general (unspecialized) pa-
rameters q, t, t0, tn, u0 ,un. The recursion is with respect to theW-action (4). 

THEOREM 4.1. Suppose A = Si · f.l =/: f.l then, up to a scalar multiple, 
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where U0 = q- 112T0- 1x 1, and 

co= q>:t(u-;;1/2 _ u~/2) + q-1/2(u~1/2 _ u;/2) 

ci = qli• (t- 112 - t 112 ) for 0 < i < n 

= Tin (t-1/2 _ t1/2) + (C1/2 _ t1/2) Cnq n n 0 0 

PROOF. By Theorems 5.3 and 6.1 of [10], E>. is a multiple of SiE,.., where 

Si = [Ti, Yi] for i = 1, ... ,n; 

So = [Yb Un] with Un = x!1ToY1- 1 

To deduce the theorem we use the relations 

from [10], where 
t1 = · · · = tn-1 = t, 

and 
z"' z means z- z-1 = z 112 - z- 112 . 

For i =f. 0, n we have 

Si = [Ti-1, Yi] = ~- 1 Yi- YiTi- 1. 

But YiTi- 1 = TiYi+l, so we get 

Si = Ti(Yi - YiH) + (t-1/2 - t112 )Yi 
Since 

YiE,.. = qli• E,.. 

Yi+1E,.. = qlii+t£,.. = q>.• E,.., 

the result follows for i =f. 0, n. 
Fori= n, we get 

But 
YnT,;- 1 = (Tn ... T1)To(T1- 1 ... T,;- 1 ), 

which is conjugate to To. Hence we get 

YnT,;- 1 "'to, 
and it follows that 

Sn = Tn(Yn- yn-1) + (t~ 1 / 2 - t;/2 )Yn + (t-;; 1/ 2 - t~/ 2 ) 
Since 

YnE,.. = qlinE,.. 

yn-1 £,.. = q-Tin£f.J = q):.n £,.., 

the result follows in this case. 
For i = 0, we have 

So= [Y1, U,;-1] = [Y1, YiT01x1] = q112Y1Sb 

403 
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404 SIDDHARTHA SAHI 

where S0 = [Y17 U0 ]. Since Y1 is invertible, E>. is also a multiple of S0E,... Now 

Y1Uo = q-1/2u;;1 = q-1f2(Un + u~1/2- u:/2) 

Un = q-1f2Uo1y1-1 = q-1f2(Uo + u~1/2 - u~f2)y1-1· 

So we get 

S0 = Y1Uo- UoY1 

= Uo(q-1y1-1 _ y1) + (u~1/2 _ u~12)q-1y 1-1 + q-1/2(u~1/2 _ u:/2). 

The result follows since 

Y1E,. = q711 E,. 

q-1 y1-1 E,. = q-71~ -1 E,. = qX1 E,... 

5. Triangularity 

0 

In this section and the next we consider the coefficients of the Koornwinder 
polynomials with respect to the monomial basis. For this we shall need various 
basic facts about the Bruhat order and Coxeter groups, which can be found in [5], 
for example. 

DEFINITION 5.1. We define W>. to be the shortest element in W such that W>. · 
A=O. 

(This conflicts with the notation in [10] but that should not cause confusion.) 
The element W>. admits the following alternative description: Let ~ denote 

the Bruhat order on W with respect to the generators so,··· , Sn· Now W acts 
0 

transitively on zn via the action (2) and the stabilizer of 0 is w. Thus we can 
identify 

0 
zn~w;w, 

and w~ 1 is the (unique) coset representative of A E zn = W/ W, which is minimal 
with respect to the Bruhat order. Our second main result is: 

THEOREM 5.1. The coefficient of x~' in E>. is nonzero if and only if W>. ~ w,.. 

The proof is somewhat involved, and in this section we will prove the "only if'' 
implication. For this we need several intermediate results. 

LEMMA 5.2. For 0 $ i $ n and w E W, 

either w < wsi or w > wsi. 

LEMMA 5.3. For 0 :5 i :5 n and w, w' E W, 

if w :5 w' and w' :5 w' si then wsi :5 w' Si· 

PROOF. These are basic properties of the Bruhat order, see Chapter 5 in [5]. 
0 

LEMMA 5.4. Suppose A E zn and si · A =f. A for some 0 :5 i :5 n. Then 
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SOME PROPERTIES OF KOORNWINDER POLYNOMIALS 405 

LEMMA 5.5. Suppose A E zn' and that v E zn is a convex combination of A 
and JL = si · A. Then, 

either W,>. :$ W11 :$ w~-' or w~-' :$ W11 :$ W,>.. 

We shall prove these lemmas in the appendix. In order to use them, we also 
need the following result: 

LEMMA 5.6. 
1. If x~-' occurs in Uox>., then JL is a convex combination of A and so · A. 
2. For 1 :$ i :$ n, if x~-' occurs in Tix>., then JL is a convex combination of A 

and Si ·A. 

PROOF. For the first case, we recall that 

So· (At.··· , An) = ( -A1 - 1, .. · , An). 

Now Uo commutes with multiplication by x2, · · · , Xn. Therefore we may assume 

x>. = xi for some integer m. 

and we need to verify that if 

1 { m-1<l<m if m;:::o x1 occurs in Uoxm1 , then t'f m :$ l :$ -m - 1 m < 0 

Since 
Uoxi = q-1/2To1xi+l 

it suffices to establish the following two assertions: 
• T 0- 1 x~ is a linear combination of x~ for l between k and -k. 
• If k > 0, then x~ does not occur in T 0- 1 x~. 

To see this we observe that 

T.-1 k:.... t-1/2 k + t-1/2 (1- cx11)(1- dx11) (( _1)k k) 0 X1 - 0 X1 0 ( -2) qx1 - X1 · 1- qx1 

If k :$ 0, we rewrite this as 

-1k -1/2k( -1 (q-1xn-k-1) T0 x1 = t0 x1 1 + q (x1 - c)(x1 -d) q- 1 x~ _ 1 ; 

and observe that the parenthetical expression is a polynomial of degree - 2k in x1. 

If k > 0, we rewrite the expression in the form 

T 0- 1 x~ = t0112xt (1- (1- cx11)(1- dx11) (qx1 2t- 1); 
qx1 -1 

and observe that the parenthetical expression is a polynomial of degree 2k in x1 1, 

without constant term. These considerations imply the two assertions and, thereby, 
the first part of the lemma. The proof of the second part of the lemma is similar 
and easier, and we leave the details to the reader. 0 

We can now prove the first part of Theorem 5.1. More precisely: 

LEMMA 5.7. If x~-' occurs in E.>. then W>. ;:::: Ww 
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PROOF. We shall proceed by induction on the Bruhat order of W>.. If W>. is the 
identity, then >.. = 0 and E.>. = 1, and the result is trivially true. If W>. is not the 
identity, then there is some i such that 

By Lemma 5.4, the right side equals Wp, where 

P, = Si ·A. 

By Theorem 4.1 and Lemma 5.6, we conclude that if xv occurs in E.>., then v 
is a convex combination of 1 and si · 1 for some 1 such that x"~ occurs in Ew By 
Lemma 5.5 this implies that 

Wv:::; max(w'Y,w'Ysi). 

On the other hand, by the inductive hypothesis, we have 

and by Lemma 5.4 and Lemma 5.3 we deduce that 

Combining these, we deduce that W>. 2: Wv· 0 

6. Positivity 

In this section we treat k, k0 , kn, lo, ln as the primary indeterminates, rather 
than as formal q-logarithms oft, to, tn, uo, Un· Then we have: 

t = qk' to = qko' tn = qkn ' Uo = qlo' Un = qln. 

DEFINITION 6.1. With the above specialization, we define E.>. to be the limit 

E.>.= lim E.>. 
q-+1 

A priori, it is not obvious that this limit exists. However we shall deduce this, 
and more, from a recursion formula for the E.>.. Recall the action f.._.., Si · f defined 
in formula 4, then we have 

THEOREM 6.1. Suppose >.. = Si · p, =/- p,; then, up to a scalar multiple, 

E.>.= (esi +f)· Ep, 

where 
Ji1 -Xl, xi - Jii, 
An- Jin, 

lo + ln 
k 

ko + kn 

for 
for 
for 

i=O 
0 < i < n 

i = n 

PROOF. From the formula forTi, it follows that, as q--+ 1, 

Td --+ Si · f, for i > 0 
Uo --+ so · f, for i = 0 

Now, up to scalar multiple, the recursions of 4.1 can be rewritten as 

Ti + ci I ( qTi' - qX') and Uo +co I ( l 1 - qP:t) . 
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SOME PROPERTIES OF KOORNWINDER POLYNOMIALS 407 

As q ---.. 1, we obtain 
-1/2 1/2 -1/2 1/2 -=_eo __ = qX1 Uo - uo + q-112un - Un 

q>..l - q7Il q>..l - q7Il q>..l - q7Il 

lo + ln f 
li1- .-\1 e 

For i > 0, a similar calculation shows that 

and the result follows. 0 

LEMMA 6.2. If A = Si ·IL I- /.L, then W>.. > wf.J. iff one of the following conditions 
is satisfied 

• i = 0 and ILl ~ 0 
• 0 < i < n and /.Li < /.Li+l 

• i = n and /.Ln < 0. 

LEMMA 6.3. Suppose A = si · IL I- /.L, and one of the conditions of the above 
lemma is satisfied, then the scalar e in Theorem 6.1 is of the form 

e =do+ d1(ko + kn) + d2k 

where do is a positive integer and d1 and d2 are non-negative integers. 

We shall prove these lemmas in the appendix. Our positivity result for the E>.. 
is the following: 

THEOREM 6.4. There exists a scalar C>..>.. such that we have 

C>..>..E>.. = L C>..f.J.Xf.J.' 
f.J.:w,.~w>. 

where each C>..f.J. is a nonzero polynomial in k0 + kn, k, and l0 + ln, with nonnegative 
integral coefficients. 

PROOF. Fix a reduced decomposition of W>.. as follows: 

and for j = 0, ... , l, define 
A (j) = sij · · · si1 · 0 

Then by Theorem 6.1 we see that there is a scalar C>..>.. such that 

(6) C>..>..E\ = (e!Si 1 +fit)··· (eiSi1 +fit)· 1 

where, 

{ 
, u-1) _ d1l .f .. _ 0 -"1 -"1 1 tJ -

ej = A(j)- A(j-l) if iJ· I- 0 . 
t; 'tj 

Multiplying out the right side of formula 6, we can write it in the form L C>..f.J.xf.J.. 
By Theorem 6.1 and Lemma 6.3 the e1 'sand fii 's are nonzero polynomials in ko+kn, 
k, and lo + ln with non-negative integral coefficients. Since the coeffcients C>..f.J. are 
sums of products of the ej 's and Iii's, they too are positive. The monomials which 
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occur in the expansion of formula 6 are those obtained by applying subexpressions 
of 

Si1 • • • Sit 

to the constant function 1. Now if w!-1 :::; w,x, then w!-1 can be written as a subex-
pression of 

W,x =Sit.·· Si1 • 

Taking the corresponding subexpressions on the right side of formula 6, we see 
that the coefficient of xi-1 in c,x,xE,x is not zero. In conclusion we note that by the 
minimality of w,x, no proper subexpression applied to 1 gives x\ hence 

l 

c,x,x = IT ei. 
j=l 

7. Appendix: Bruhat order 

0 

For each win W, let l(w) be the length of a reduced (i.e., shortest) expression 
of w in terms of the si. Then we have 

l(w) = III(w)l 

where 
II(w) ={a E R+: wa ~ R+}. 

The Bruhat order on W can be characterized in the following ways 
1. For a in R+ , we have wso: < w iff a is in II(w). 
2. w' < w iff w' can be obtained by omitting some factors in a fixed reduced 

expression of w. 

Similar results hold for W and R0 . For A in zn, let w ,x, and {fl,x be as in Definitions 
5.1 and 2.1. 

LEMMA 7.1. For A in zn we have 
1. II(w,x) ={a E R+: (A,a) < 0} 

2. II ( U'J~ 1 ) ={a E Rci: (A, a)> 0} 

PROOF. See Theorem 1.4 in [2]. 

We can now prove Lemmas 5.4, 6.2, and 5.5. 

PROOF (OF LEMMA 5.4). Write J.L = Si ·A and w = w,xsi, then we have 

w. J.l = W>.Si . J.l = W,x . A = 0 

By minimality of w!-1, this implies 

w>ww 
Therefore to prove that w = w!-1, it suffices to show that 

l(w):::; l(w!-1). 

To prove this we first assume that ai E II (w,x) and put 

S = II ( w >.) \ { ai} 

0 
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Then we have 

Since 
(Jl., si · o:) = (si ·A, Si · o:) = (A, o:) 

It follows from Lemma 7.1 that 

Si · S C II(wJ.I). 

This implies that 
l(w>.)- 1::; l(wJ.I). 

However, O:i E II(w>.) implies that 

l(w) = l(w>.si) < l(w>.). 

Thus we get 
l(w) ::; l(wJ.I) 

409 

which implies the result in this case. If O:i ~II (w>.), then from Lemma 7.1 is easy 
to see that o:i E II (wJ.I). The result follows by interchanging the role of A and J.l.· 0 

PROOF (OF LEMMA 6.2). By Lemma 5.4 we have 

Therefore we have 
W>. > wJ.I ¢:> o:i ~II (wJ.I) 

By Lemma 7.1, we deduce that 

Now we have 

(~,a;)~{ 
and the result follows. 

W).. > WJ.I ¢:> (J.l., O:i) > 0 

(Jl., 8 + 2e-1) = 2J.l.l + 1 
(Jl., -e:i + ei+l) = -Jl.i + J.l.i+l 

(Jl., -2en) = -2J.l.n 

To continue, we recall that 

if i = 0 
ifO< i<n 

if i = n 

~(ko+kn . ) p= {:-: 2 +(n-t)k t"i 

Observe that p is anti-dominant: that is to say, for all o: not in R;i we have 

(p, o:) = c1 (ko + kn) + c2 

where c1, c2 are non-negative integers. 

PROOF (oF LEMMA 6.3). We can rewrite e as 

{ 
(ji- "X, e-1) i = 0 

e = -(Ji- ~, ei) 0 < i < n 
-("jl- A, en) i = n 

Now by formula (23) of [10] we have 

-;\" = Si · "jl. 

0 
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Therefore 

Now if i =/: 0, then we get 

SIDDHARTHA SAHI 

i=O 
O<i<n 

i=n 

e = (J.L,o:i) + (;I;J.L ·p,o:i) = (J.L,o:i) + (p,;b: 1 ·o:i) 

By the first part of Lemma 7.1 we get (J.L, O:i) > 0, and by the second part of the 
-1 

same lemma, we deduce that ;I; J.L ·O:i is a negative root. Since p is anti-dominant, 
we deduce that the second term is positive and this proves the lemma for i =J 0. 
On the other hand, if i =J 0, then we get 

o-1 
e = (J.L, o:o)- (p, wJ.L ·B) 

where B = -2c:1 is the highest (positive) root. Once again, we have (J.L, o:0 ) > 0 by 
Lemma 7.1. Writing o:o = 8- B, we get that 

(J.L, B) < 1. 
Since (J.L, B) is an integer, we deduce in fact that 

(J.L, B) :::; 0. 

Applying Lemma 7.1 again we conclude that - ;b: 1 ·B is a negative root. Thus 
0-1 

-(p, wJ.L ·B) is positive, and this proves the lemma fori =J 0. D 

PROOF (OF LEMMA 5.5). If Si ·A = A, then v = A = J.L, and the result is 
trivially true. So we may assume si ·A =J A. Then by Lemma 5.4 we have wJ.L = W>, ·Si 

, so either wJ.L < W>. or wJ.L > W>,, and without loss of generality we may assume 
that wJ.L < W>,. Hence we have O:i E II(w>.), and by Lemma 7.1 this implies that 

(A, o:i) < 0. 
Now the reflection corresponding to the affine root o: + kJ is given by 

2 
sa+k8 ·A= A- (A, o: + kJ) ii = A- (A, o:) iikii; where ii = -( --) o:. o:,o: 

First suppose that i =J 0, then we have 

/-L = Si . A = A- (A, Ai) iii· 
If v E Z is a convex combination of A and J.L, then 

v =A+ liii, for some l in Z with 0 < l < -(A, Ai). 
Now let 

k = -(A, o:i) - l. 
Then k is positive, and hence o:i + k8 is a positive affine root. Moreover, then we 
have 

Thus we get 
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and by minimality of Wv, this implies 
(7) 

On the other hand, 
(.X,o:i + k8) = (.X,o:i) + k = -l < 0 

so by Lemma 7.1, we get 
O:i + k8 E II (wA) 

and so 
WASa;+k6 < WA. 

Combining this with the inequality 7 we get 

A similar calculation shows that 

WI' $ WvS-a;+l6 < Wv 

which completes the proof of the lemma for i # 0. Now for i = 0, we have 
J.1. = so· .X= .X- (.X, o:o) e1 

and 
11 =a+ let for some 0 < l <- (.X,o:o). 

Setting 
k =- (.X,o:o) -l, 

and arguing as for i # 0, we deduce that 

WI' $ WvS-a0 +16 < Wv $ WASa 0 +k6 < WA. 
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