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1 Abstract

Two standard schemes for awarding a prize have been examined in the literature.
The prize is awarded
(πD) deterministically: to the contestant with the highest output;
(πP ) probabilistically: to all contestants, with probabilities proportional to their

outputs.
Our main result is that if there is suffi cient diversity in contestants’skills, and

not too much noise on output, then πP will elicit more output on average than πD.
Indeed if contestants know each others’skills (the complete information case) then
the expected output at any Nash equilibrium selection under πP exceeds that at
any individually rational selection under πD. If there is incomplete information, the
inequality continues to hold when we restrict to Nash selections for both schemes.
JEL Classification: C70, C72, C79, D44, D63, D82.
Key Words: principal, contestant, proportional and deterministic prizes, com-

plete and incomplete information, Nash equilibrium, individually rational strategies

2 Introduction

We take the point of view, not uncommon to game theory, that the purpose of a
prize is not so much to reward performance as to inspire it.
∗Center for Game Theory, Department of Economics, Stony Brook University and Cowles Foun-

dation for Research in Economics, Yale University
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Our focus is on two different traditions for awarding a prize, both much discussed
in the literature (see 2.1). The deterministic prize scheme πD awards the entire prize,
or “pot of gold1”, to the best performer, and has been extensively examined in rela-
tion to tournaments. Sharply juxtaposed to πD is the proportional prize scheme πP ,
which awards the pot to all the contestants with probabilities that are proportional
to their outputs. It has often been the center of attention in the context of studies
on “lobbying”, but not much besides, even though a case can be made for it on a
priori natural grounds. Indeed let the gold be simply put “on market” to be ex-
changed against the output that the contestants have produced. How the gold gets
allocated is then left to “market forces”. Suppose that contestants 1, ..., n have put
up x1, ..., xn units of output; and that y units of gold is present on the other side of
the market. The only price p, of the output in terms of gold, which will “clear”the
market is2 p = y/(x1 + · · · + xn), and this is tantamount to handing out the gold y
to the contestants in proportion to the quantities they have put up3.
Note that πP also makes sense when the pot is indivisible. In this event, what is

being marketed is the probability of winning the whole pot y; or, equivalently, lottery
tickets for the prize. Our analysis is in fact couched in terms of the indivisible prize
rather than the divisible pot of gold (the two are isomorphic). And, for this reason,
when the entire pot goes to the highest output, we shall refer to it as the “deter-
ministic”prize, though it is deterministic only in the outputs, and not necessarily in
the effort undertaken by the contestants, since output may be a random function of
effort.
In this paper, we shall delineate certain circumstances under which the propor-

tional prize πP elicits more performance than the deteministic prize πD, which in
turn is often better than multiple a priori fixed prizes4 (see [22], and also subsection
8.3). These circumstances are roughly as follows. Suppose that the characteristics5

of the contestants are relatively bounded (see Assumption 1 below); and that there
is complete information amongst them regarding each others’characteristics. Then,

1This terminology is from [22].
2The total demand for gold is px1 + · · ·+ pxn which must equal the supply y.
3Consider, as in [12], the set of all possible probabilistic prizes that are based on outputs. (This

set includes both πP and πD as particular elements.) The proportional prize is the only one in the
set which is non-manipulable in the following sense: if an agent pretends to be several agents by
splitting his output to be sent out in different names, this can be of no benefit to him; nor can
several agents benefit by merging their outputs and pretending to be one agent (see [16]).

4This is not to say that there will not be other circumstances where the same result holds, or
yet others where it is reversed. Our analysis is far from being comprehensive, and it is our hope
that this paper will stimulate further inquiry into the relative merits of πP and πD.

5 i.e., productive skill, cost of effort, valuation of the prize
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fixing the other parameters of the model, the (expected total) output at any Nash
Equilibrium of the strategic game under πP is of the order of min {N, v}, where N is
the number of contestants and v is their minimum valuation of the prize (see Theo-
rem 5). Suppose furthermore that there is an elite coterie of the highly skilled, whose
performance – via maximal effort – significantly outstrips that of the others (in
the sense made precise in section 7, and subsection 8.5). Then, at any individually
rational choice of strategies in the game under πD, the output is of the order of the
size K of the coterie (see Theorem 8). We conclude that whenever K is a small
fraction of N and v is large enough, the proportional prize πP elicits more output
from the contestants than the deterministic prize.πD. The hypothesis of a small elite,
with no other constaints on the skill distribution of the rest of the contestants, thus
lies at the heart of our analysis. We believe that it is pertinent to many real world
situations, and well worth the analysis.
In particular, small K can arise as follows. Think of π = πP or πD as a fixed

tradition for awarding the prize, and not as a scheme designed by a “principal6”,
i.e., π is to be applied across generations to come, or disjoint cohorts of contestants
in different places. In this context, one might model contestants’skills as if they are
drawn at random from a large domain, in a manner that does not correlate them
to be similar (e.g., they are drawn i.i.d.). We show that, if there is not too much
noise on output, then the average size of K will be small (see Theorem 11). It then
follows, from our above result for fixed skills, that the superiority of πP over πD is
maintained in terms of the average output on this domain (Theorem 12).
The intuition for our result is simple and best brought out with two contestants

who have complete information about each other’s characteristics. (We show, in
section 9, that our results are not marred when there is incomplete information, i.e.,
each contestant is informed only of his own characteristics and has a probability
distribution over those of his rivals.) Suppose the deterministic prize πD is in use
and that the two contestants’skills are suffi ciently disparate so that the weak cannot
produce more than the strong, with any significant probability, even if he works hard
and the other slackens. Since effort is costly, the upshot is an equilibrium at which
both contestants undertake low effort, so that total output is also low. In contrast,
the proportional prize πP generates better incentives to work. By increasing effort
and producing more output, the weak contestant is able to achieve a decent increment
in his probability of winning the prize, even when his output always lags behind his
rival’s. Therefore he is inspired to work and creates the competition which also spurs

6Such a principal may even be in a position to modify π away from πP or πD based on his
knowledge of the characteristics of his “agents”, a possibility that is examined in [12] in connection
with “optimal”π on a given domain.
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his rival to work, culminating in an equilibrium where effort and output are high.
That an egalitarian scheme, which distributes rewards commensurate with output
produced, will often generate better incentives to work than an elitist scheme in
which the rewards are reserved for the top few – this, in our view, is a theme of
wide-ranging application in the presence of disparate contestants, and it runs like a
leitmotif in the design of mechanisms in different contexts (see, e.g., [13],[11],[10]).
On the other hand, when skills are similar (think of athletic stars competing in

the Olympics), πD may elicit more effort than πP . For if both work, they come
out with nearly equal probabilities of winning the prize under either scheme. But
if anyone slackens, his probability can drop sharply under πD, and less so under
πP , especially when going down the effort ladder causes significant drops in output7.
Thus there is more to lose by slackening when πD is in use. (See especially the last
example of section 9 in this regard, computed in the case of large noise.)
Now if contestants’skills are picked at random from a suffi ciently large domain,

and the noise on output is not so large as to overwhelm skills and make them count for
little, then the probability that contestants are similar will tend to be low. Therefore
the average output will go up when πP replaces πD. There is a trade-off between the
accuracy of reporting performance and the quantum of performance that is elicited.
Accuracy is best achieved by bestowing the indivisible prize according to πD. In
contrast, πP gives the prize to the best performer only with some – albeit the highest
– probability; and it rewards others with the remaining probability, compromising
the accuracy of the report in the process but simultaneously boosting contestants’
effort and output8.
In section 9, we give examples to show that our theme remains intact when there

is incomplete information: the NE-selection under πP elicits more output compared
to the NE-selection under πD, as long as the noise on output is suffi ciently small
compared to the diversity of contestants’skills. (We write “the NE”because, in the
more structured binary games that we examine in Section 8, NE’s do turn out to be
unique.)
What is clearly essential for our analysis is that contestants’ performance be

susceptible to quantification in terms of some tangible output produced or, more
generally, a “score”. This often obtains in practice. For instance, a manager can

7which is not so unnatural an assumption when there are a few discrete levels of effort (rather
than continuous effort)

8Going a bit beyond our model, if one were to grant that skill is not rigidly fixed for individuals,
but is a dynamic thing which gets enhanced by their effort, then the superiority of πP over πD
may be rephrased in more dramatic terms: too much accuracy in reporting performance, i.e., in
certifying the underlying skill of the agents, can inhibit the very production of that skill.
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consider total revenue earned as the criterion to award a badge of honor, or promotion
to a higher echelon, to the best salesman of the year. In a race, the time taken
for completion comes naturally to mind. Sometimes scores are of a more subtle
structure: in a gymnastics contest each member of a jury gives subjective scores to
different aspects of performance which are then aggregated to come up with final
scores. (The reader can no doubt think of many other examples.) One upshot of
assigning numerical scores, and perhaps the reason why they are so prevalent, is that
they enable us to evaluate not only who beat whom, but by how much. Was the
race keenly contested or one-sided? What was the margin of victory? These are
questions that are often not without meaning, and amenable to plausible answers,
which is reflected in the way scores get defined in practice.
The proportional prize πP is our proxy for awarding the prize in a manner that

is less drastic than the deterministic πD, and more commensurate with performance.
Any scheme close to πP will inherit its properties (see subsection 8.2). So, for our
purposes, the precision with which probabilities of winning the prize are defined does
not really matter, so long as they do not stray too far from proportionality; and, in
the same vein, minor differences in the measurement of the scores do not disturb our
conclusions (see again subsection 8.2). Needless to say, if performances are incapable
of being sensibly quantified by scores, and can only be ranked, then the proportional
prize has no meaning and only ordinal prizes (i.e., πD and its variants with multiple
deterministic prizes) make sense. (For an excellent treatment of the ordinal case, see
[22].) In our model here, as in much of the literature, the purpose of the prize is to
maximize the total score (output) of all the contestants, so a fortiori the individual
scores that make up the total are taken to be observable It is not so much a matter
of observability, but that the cost of observation is small enough to be ignored. This
assumption underlies our analysis.
Let us also note that this paper is self-contained but, to round off the perspective,

we shall often allude to its expanded version [12], which contains several variants and
extensions of the results described here.
Finally, a word about the numbering system used in this paper: all assumptions,

remarks, theorems, lemmas etc. are arranged in a single grand sequence: Assumption
1, Remark 2, Remark 3, Assumption 4, Theorem 5 etc. (Thus Theorem 5 is not the
fifth theorem, in fact it is the first theorem, but it has fifth position in the grand
sequence. This indeed makes it easier to locate the theorem, and should cause no
confusion.)
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2.1 Related Literature

There is a considerable literature on lobbying, where contestants put up bids of
money and are awarded the prize either via πP or πD, called often “lottery”or “all-
pay auctions”, respectively.(see, e.g., [28],[19],[14],[26],[27],[3],[4], [7],[8],[24],[15] and
the references therein). In much of this literature contestants are assumed to have
complete information about each other, and in all of it there is no issue of “moral
hazard”, i.e., the bids submitted by the contestants are perfectly observable.
The literature on tournaments is vast and does often emphasize moral hazard,

i.e., the setting in which observable outputs depend stochastically on unobservable
effort. However proportional prizes do not seem to have received attention there.
For tournaments with a single deterministic prize, see [21],[18],[23],[25]; and for the
general case of multiple deterministic prizes, see ([17],[5],[1],[9],[20],[6],[2],[22]).
In both strands of literature the focus is on analyzing Nash Equilibria (NE),

which are often unique and susceptible of being described by explicit formulae, given
the special structural assumptions of the models.
What is new in our approach is that we compare πP and πD in the presence of

moral hazard. Our setting is suffi ciently general so as to neither preclude multiple
NE, nor guarantee pure-strategy NE. No assumptions are made on disutility or pro-
ductivity other than the fact that they are monotonic in effort in the appropriate
sense; in particular they are not required to be concave or convex. Nevertheless
we are able to show that the worst NE selection under the proportional prize πP
elicits more output than the best NE under the deterministic prize πD. In fact we
show more, since our comparison is based on “Weak Nash Strategies” for πP (see
subsection ??) and individually rational (IR) strategies for πD, which are looser no-
tions than NE (indeed IR is so mild a reqirement that any solution concept would
be expected to satisfy it). To the extent that this constrains contestants’behavior
less, our comparison is that much stronger (more credible?). Of course, the price we
pay for our generality is that we stop at this comparison, and are unable to discern
any finer structure in contestants’behavior, which would come to the fore were one
to confine attention to NE, especially in simple scenarios where they are unique (as
happens in some of the structured examples we study here in section 9, or in [12]).

3 The Model

There is a finite set N of contestants. Each contestant n ∈ N has access to a
fixed finite subset En ⊂ [0, 1] of effort levels. We assume 0 ∈ En and 1 ∈ En; these
represent no effort and maximal effort respectively.
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Contestant n may choose any effort x ∈ En. In doing so, he incurs disutility
δ(x) ≥ 0 and produces stochastic output given by a non-negative random variable
τ(x) with finite mean µ(x). (We allow for the possibility that the range of τ(x) is
discrete, even finite.) Effort 0 incurs disutility δ(0) = 0 and produces output τ(0) = 0
with certainty: it is just a proxy for “not participating”in the game.
Contestants are driven to work by the lure of an indivisible prize. If a contestant

places valuation v > 0 on the prize, and is awarded it with probability p, this yields
him expected utility pv. (See, however, the subsection 8.2, where it is shown that
the tenor of our results remains unchanged for a wider class of utilities.)
The triple (δ, τ, v) characterizes a contestant. We make throughout the following

monotonicity and boundedness assumptions on the space9 X of possible character-
istics (δ, τ, v):

Assumption 1 Both δ, τ are weakly monotonic in x and there exist universal posi-
tive constants c, C, d,D such that, for all x ∈ En \ {0}, and all n ∈ N

cx < δ(x) < Cx (1)

and
dx < τ(x) < Dx (2)

Remark 2 On account of weak monotonicity, there is no loss of generality in sup-
posing that all contestants have the same set E of effort levels. The case of an arbi-
trary allocation of subsets of E across contestants can be embedded in this framework,
with 0 and 1 representing non-paricipation and maximal effort for each contestant.
So from now on we take En = E for all n ∈ N.

Suppose the population of contestants has characteristics (δn, τn, vn)n∈N . The
prize is awarded on the basis of the realizations t = (tn)n∈N of the random outputs
(τn(en))n∈N .
The deterministic prize πD is shared equally among the winners

W (t) := {k ∈ N : tk ≥ tn for all n ∈ N}.
9This space X is defined after fixing the domain and range of τ . It will shortly be taken to be

measurable. A key scenario we have in mind is that X is a finite set, as spelled out in Remark 3
below. Or else one can confine attention to random variables τ which are characterized by finitely
many parameters, so that (δ, τ, v) is a finite-dimensional vector; and then the Euclidean space
generates the Borel sets. In this case the space X consists of all (δ, τ, v) that satisfy (1) and (2)
of Axiom1 below. More generally, without such restrictions, the Levy-Prokhorov metric on the
random variables τ is understood to define the Borel sets.
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In other words

πnD(t) =

{
1/|W (t)| if n ∈ W (t) and t 6= 0
0 else

.

Note that πD is deterministic only in the outputs, not necessarily in the effort levels.
(Also note that we have set πn(t) = 0 for all n ∈ N if t = 0, otherwise contestants
would be rewarded for not participating in the game.)
The proportional prize πP is awarded to each contestant in proportion to his

output, i.e.,

πnP (t) =

{
tn/
(∑

k∈N t
k
)
if t 6= 0

0 else
.

4 The Strategic Game of Complete Information

We suppose that, in addition to knowing π = πD or πP , the contestants also know
each others’characteristics (δn, τn, vn)n∈N . This seems to be a tenable hypothesis if
contestants compete in close proximity with one another. (In section 9, we consider
the case when a contestant knows his own characteristics but is unsure about those
of his rivals.)
Given (δn, τn, vn)n∈N , a strategic game is induced among the contestants by the

choice of an allocation scheme π. The set of pure strategies of each contestant n ∈ N
is E. Any N -tuple of pure strategies e = (en)n∈N gives rise to a random vector

t̃ = t̃ (e) = (τn(en))n∈N

of outputs. The expected value pk of πk(t̃) represents the probability of k winning
the prize and we define k’s payoff to be

F k(e) = pkvk − δk(ek).

Denote by Γ the mixed extension of this game; and by Σk the set of (mixed)
strategies of k in Γ, i.e. Σk is just the set of probability distributions on E. (Without
confusion, F k(σ) will continue to denote k’s payoff, when the mixed strategy N -tuple
σ ≡ (σn)n∈N ∈

∏
n∈N Σn ≡ Σ is played in Γ.) For any σ∈Σ, denote

σ−n ≡
(
σk
)
k∈N\{n} ∈ Σ−n ≡

∏
k∈N\{n}

Σk.

Recall that the choice σ∈Σ is called individually rational (IR) in Γ if

F n(σ) ≥ max
u∈Σn

min
w∈Σ−n

F n(u,w)
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for all n ∈ N ; and is called a Nash Equilibrium (NE) of Γ if

F n(σ) = max
u∈Σn

F n(u, σ−n)

for all n ∈ N . Denote by IR(Γ), NE(Γ) the set of all strategies σ∈Σ that are IR,
NE in the game Γ, and note NE(Γ) ⊂ IR(Γ).

5 Spaces of Games

Suppose characteristics χ ≡ (δn, τn, vn)n∈N are picked from X × · · · × X ≡ X ac-
cording to some probability distribution ξ on X. (Recall that the underlying set X
satisfies Assumption 1; and that X is a Borel space as explained in footnote 4, so
that ξ is a measure on the Borel sets of X,using the product topology from X.) Fix
an allocation scheme π = πD or πP . Then any χ ∈ X induces a mixed-strategy game
among the contestants (as discussed in section 4), which we shall denote Γπ(χ). We
wish to extend our solution concepts to the space of games specified by ξ. Our focus
will be on what happens for almost all χ according to ξ, denoted a.a.χ(ξ), i.e., for
all χ except perhaps for those in a set of ξ-measure zero.
Let f : X → Σ be a measurable function. Denoting f (χ) ≡ (σn)n∈N ∈Σ, the

total output at χ is

T (f, χ) ≡
∑
n∈N

∑
x∈E

σn(x)µn(x). (3)

and integrating over X according to ξ, the expected total output is

T (f) ≡
∫
X

T (f, χ) dξ(χ) (4)

Given a prize scheme π we will say that f : X→ Σ is an ξ-NE selection under
π if f is measurable and if f (χ) is a Nash Equilibrium of the game Γπ(χ) for a.a.χ(ξ).
The notion of a ξ-IR selection under π is defined similarly, substituting “IR”for
“NE”.

Remark 3 We eschew the discussion as to when a measurable NE or IR selection
exists, as it would be a technical digression from the main thrust of this paper. If they
do not exist, our theorems are vacuously true. But in the key scenario where the space
X of characteristics is finite, measurable selections are not an issue. This scenario is,
in particular, realized when the relevant real intervals [c, C] , [d,D], [vmin, vmax] and
[0, 1], i.e., the range of δ, τ , v and of the probabilities occuring in τ , are all restricted
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to finite grids. (Alternatively, the finitely many parameters that characterize τ –
see footnote 9 – could be taken to vary over a finite grid.) For some of our results,
as will be self-evident, it is further needed to suppose that the mesh of the grids are
suffi ciently small – see, e.g., Remark 13. We invite the reader to focus on this key
scenario.

6 Proportional Prize: Expected Total Output from
Nash Equilibria

It is clear a priori that, for any χ ∈ X and any scheme π, the total expected output
in Γπ(χ), at any σ∈Σ, cannot exceed |N |D since no contestant produces more thanD
when he chooses maximal effort 1 (see Assumption 1). Also10, supposing vn = v for
all n ∈ N , the total expected disutility incurred by the contestants at any individually
rational strategy selection cannot exceed v, otherwise some contestant is incurring
negative utility and would be better off not participating in the game. But then
expected total output (see, again, Assumption 1) is at most Dv/c. Thus, the most
this total can be is “of the order of”min(v, |N |), since D and c are constants of our
model.
This is the flavor of our estimate in Theorem 5 below, showing that the propor-

tional prize elicits a “decent quantum”of output from the contestants. However the
theorem requires an additional assumption, which we now describe.
For χ = (δn, τn, vn)n∈N we denote

v(χ) = min{vn : n ∈ N}

and define v to be the essential infimum of v(χ) with respect to ξ.

Assumption 4 (Minimum valuation) v > DC/d.

This basically says that, for any two individuals picked from the population, if
both work at maximal effort and are awarded the prize proportionately, then neither
will have incentive to unilaterally quit the game – each values the prize suffi ciently
highly to want to stay in. Indeed, by Assumption 1 the most disadvantaged such
individual produces d, incurs disutility C, and values the prize at v (while his rival

10Given χ = (δn, τn, vn)n∈N , and a vector α ≡ (αn)n∈N >> 0 of positive scalars, let χ(α) ≡
(αnδn, τn, αnvn). Then the games Γπ(χ) and Γπ(χ(α)) are "strategically equivalent" and all our
solution concepts remain the same for them. So w.l.o.g., scaling utilities appropriately, one could
imagine vn = v for all n ∈ N .
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produces D).Thus his reward is vd/(d+D) which must exceed C. Our Assumption
4 is somewhat milder.
The following result shows that Nash Equilibria (NE) elicit a decent quantum of

output under the proportional prize.

Theorem 5 Suppose Assumptions 1 and 4 hold; and denote emin = min{x ∈ E :
x 6= 0} and

a = |N |demin, b = (dv/C)−D
Let χ ∈ X be arbitrary and let Z be the expected total output (see equation 4) at any
NE at χ under πP . Then

Z ≥ min {a, b} .

The following Corollary is immediate.

Corollary 6 Let f be a ξ-NE selection under πP . Then T (f) ≥ min {a, b} .

6.1 Some extensions of Theorem 5

The presence of “emin” is a dampener on our lower bound, but unavoidable given
our extremely weak assumptions. Indeed there is nothing to preclude the scenario
that every contestant incurs sharply rising disutility of effort as he advances above
emin,while his output hardly goes up; and then the best one can hope for is to inspire
everyone to work at emin. Were we to strengthen our assumption on productivity,
requiring output to go up in significant chunks as we go up the effort ladder from
emin to 1, sharper estimates could be reached by the methods of this paper. (We leave
this to the reader). Incidentally notice that, in the special case of binary effort levels,
i.e., E = {0, 1} , we automatically have emin = 1 in Theorem 1 above, producing a
sharp bound without further ado.
With this strengthened assumption, it can further be shown (see [12]) that under

the proportional prize, there are increasing thresholds such that, as the valuation of
the prize exceeds these thresholds, maximal effort successively becomes NE, unique
NE, and “strictly dominant strategy upto error ε”(i.e., maximal effort is the best
reply of every contestant provided his rivals’aggregate output is at least ε – the
threshold obviously needing to be raised as ε is lowered.) In this sense, the propor-
tional scheme permits more certainty (predictability) about contestants’behavior at
the cost of enhancing the prize This is not a feature of the deterministic prize.
Finally, we note that Theorem 1 remains valid – by the same proof – if we

replace NE by WNS (“Weak Nash Strategies”). WNS are defined just like NE, but
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with unilateral deviations of a contestant restricted to shifting probabilities, albeit in
whatever manner he desires, from his current strategy onto maximal effort. (Thus,
in particular, the choice of maximal effort level 1 by each contestant constitutes a
WNS.) Since NE are clearly a subset of WNS, this generalizes Theorem 1. (For
details, see again [12].)

7 Deterministic Prize: Expected Output from In-
dividually Rational Strategies

Theorem 8 below provides the crucial insight as to why the deterministic prize πD
elicits limited output. Indeed it shows that only the most productive contestant,
along with those who stand a chance of beating him, set the bound on the output
at any individually rational strategy-tuple.
Fix χ = (δn, τn, vn)n∈N . Denote by h a contestant (the “hero”) who has max-

imal mean output under effort level 1, i.e., for all n ∈ N , we have µh(1) ≥ µn(1)
(where, recall, µn(x) is the mean of τn(x)). Define K(χ) to be the set of “elite
contestants”whose outputs at effort 1 have a positive probability of exceeding that
of h, i.e.,

K(χ) = {n ∈ N : Pr[τn(1) ≥ τh(1)] > 0}.
We can show that the output under deterministic prize is commensurate with |K(χ)|.
First we need

Assumption 7

1. (Bounded relative valuations) There exists a universal constant B such
that for a.a.χ(ξ), if χ = (δn, τn, vn)n∈N , then vn/vk < B for all n, k ∈ N .

2. (Stochastic dominance) If x > y in E then τn(x) � τn(y), where “�”
denotes first order stochastic dominance11.

Theorem 8 Suppose Assumptions 1 and 7 hold. Let f be a ξ- IR-selection under
πD; then for a.a. χ(ξ)

T (f, χ) ≤ 2|K(χ)|B2CD/c.

11Recall that X � Y if Pr{X ≥ z} ≥ Pr{Y ≥ z} for all z
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7.1 Average Size of the Elite Set K(χ)

Let In denote the support of τn(1). Any population distribution of In, with a thin
tail at the top, will have a small elite set. Indeed, as an extremal measure, just
consider moving the highest In suffi ciently to the right. This will have the upshot
that the elite set has size one, consisting of the “superhero”alone. By way of a more
robust example, suppose: (a) In ⊂ (1.9, 2) for no more than 5% of the population
(the highly skilled); (b) In ⊂ (1, 1.7) for the remaining 95%; (c) every In is contained
in an interval of size 0.1. (Here (c) ensures that the stochastic variation of 0.1 in
the performance of any contestant is small compared to the domain (1, 2) which
describes the spread in performance across the entire population, i.e., idiosyncratic
stochasticity does not seriously dampen overall diversity.) Consider any noise on
τn(1) whose size is 100% of the initial stochasticity of τn(1). Such a noise will cause
each In to expand, but to at most thrice its initial size. Even with the onset of
this noise, it is clear that the elite will not exceed 5% of the population. Of course
with very large noise, every pair of In will overlap and the elite set will be all of N,
rendering our analysis irrelevant.
Another natural scenario is that contestants’characteristics are not correlated to

be similar but are suffi ciently “diverse” (e.g., drawn i.i.d. from a large set12). We
shall, of course, require this diversity only on their productivities (τn(1))n∈N under
maximal effort. This is embodied in Assumption 10 below. First, a definition:

Definition 9 (Normalized Density) Let Z be a random variable taking values
in the n-cube C|N | = [d,D]|N |. Let λ denote the standard Lebesgue measure on C|N |
scaled by (D − d)−|N |. (so that λ(C|N |) = 1).We say that Z has normalized density
function ρ if ρ is Borel-measurable, nonnegative and

Pr(Z ∈ A) =

∫
A

ρ(x)dλ(x)

for all Borel sets A ⊂ C|N |;and we define the upper bound of ρ to be the essential
supremum of ρ on C|N |.

We are ready to state

Assumption 10 (Diversity of Skills)

12The i.i.d. assumption, though not always “realistic”, is mathematically convenient and has
come to constitute a benchmark.
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1. There exists ε > 0 such that, for a.a. χ(ξ), if χ = (δn, τn, vn)n∈N , then

support τn(1) ⊂ [µn(1)− ε, µn(1) + ε] for all n ∈ N.

2. As we vary χ on X according to ξ, the marginal distribution of the random
variable13 (µn(1))n∈N has a normalized density function with finite upper bound
β.

Condition 2 of this assumption rules out the possibility that (µn(1))n∈N is con-
centrated on the “diagonal”

{
(z, ..., z) ∈ C|N | : d 5 z 5 D

}
of the cube C|N |. As the

random variables µ1(1), ...., µN(1) go from being iid, with uniform density on [d,D]
, to being concentrated on smaller and smaller neighbourhoods of the diagonal, β
rises from 1 to ∞.In this scenario β is a measure of how likely it is that the con-
testants are similar. We should expect a threshold β∗such that πP outperforms πD if
β < β∗,and πD outperforms πP if β > β∗. This is not to say that high β is necessarily
bad for πP . Indeed if β were high in regions of C|N | where contestants are disparate
(e.g.,towards the northwest or southeast corners of the square, when |N | = 2), this
would only accentuate the superiority of πP over πD. We do not follow this general
line of inquiry here , wherein β would be allowed to become unbounded in selective
regions of C|N |, and remain bounded only where contestants are similar. Instead we
restrict attention to the scenario where β is universally bounded on C|N | , thereby
only preventing contestants from being similar (or dissimilar!) with high probability.
Consider first (by way of motivation) the iid case. We can think of ε as the

random noise on output, and then the “diversity” of contestants’productive skills
is reflected for us in how small the term βε = ε/(D − d)|N | is. (Diversity in skills
is dampened by the noise ε. Indeed suppose noise ε is symmetric across the two
contestants and let ε grow, keeping skills fixed. The two contestants will become
increasingly similar since their output will depend essentially on the identical noise
term and their skills will count for little when ε is suffi ciently large).
Even in the non-i.i.d setting, the term βε serves as a measure of diversity; and

Lemma 1 below shows that the average size of the elite set, is no more than 1+β|N |ε.

Lemma 11 Suppose the distribution ξ satisfies Assumption 10. Then the expected
size, under ξ, of the elite set K(χ) is at most 1 + β|N |ε.

We are ready to state the main conclusion of this section.

13Recall that (µn(1))n∈N ∈ C|N | by (2).
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Theorem 12 Suppose Assumptions 1,7 and 10 hold. If f is any ξ-IR-selection on
X under πD then

T (f) ≤ 2B2CD

c
(1 + β|N |ε).

Proof. Immediate from Theorems 8 and 11.

Remark 13 With a suffi ciently fine finite grid on [d,D] the above estimate holds
with any degree of accuracy desired, and our analysis goes through

8 Deterministic versus Proportional Prizes

Theorems 5 and 8 enable an immediate comparison between the (expected total)
outputs elicited by NE, IR strategy selections under πP , πD respectively. For any
fixed χ ∈ X, the two theorems imply that πP is better than πD, without further ado,
provided only that:
(a) highly-skilled “elite”contestants exist, whose best performance outstrips that

of the rest by a significant margin;
(b) such elite contestants constitute a small fraction of the population
We believe that conditions (a) and (b) are pertinent in many real world situations.
Now we turn to variable χ. Suppose χ ∈ X is chosen at random, and we

are interested in the average output on X. Fix, for example, all the parameters
c, C, d,D, b, B, v of the model and suppose that Assumptions 1,4,7,10 hold..Then,
for large enough N and v, there exists a threshold ε̄(N) such that, if ε < ε̄(N), we
have

T (f) > T (g)

for any ξ-NE-selection f under πP , and any ξ-IR-selection g under πD.This is so
because the lower bound on output given by Theorem 5 (and its Corollary) is inde-
pendent of the noise ε, and rises with N, v ; while the upper bound given by Theorem
12 goes to 2B2CD/c as β|N |ε goes to 0.
To get a better feel, it might help to consider a numerical example. Let

B = C = c = d = 1, D = 2, |N | = 7, v = 30, ε = 0.05.

Further let the set of effort levels be E = {0, 1} so that emin = 1; and let the
contestants’skills be picked iid with uniform probability in the interval [d,D] = [1, 2]
so that β = 1.
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By Theorem 5, the output is bounded below (noting a = 7, b = 28 ) by 5.6 at any
NE-selection under the proportional prize. On the other hand, by Theorem 12, the
output is bounded above by

(2B2CD/c)(1 + β|N |ε)) = 4(1 + 7(0.05)) = 5.4

at any IR- selection under the deterministic prize. Thus the proportional prize
outperforms the deterministic.

8.1 Welfare

For simplicity we take β = 1/(D − d)|N | in this, and the next, subsection, i.e.,
the random variables µn(1) are iid with uniform distribution on [d,D]. When the
deterministic prize is used, only the contestants in the elite coterie K(χ) (whose
average size is 1 + [|N |ε/(D− d)|N |]) get the prize with significant probability under
any IR strategy tuple. More precisely, the remaining contestants in N \ K(χ) get
the prize with probablity at most v(χ)B

∑
k∈K(χ) δ

k(1) (See the proof of Theorem 8
in the appendix for this estimate.)
If the proportional prize is used then, at any NE, not only does the expected total

output go up as we just saw, but each contestant in N \K(χ) wins the prize with
much greater probability than before (at least demin/|N |D ≡ O(1/|N |), provided
deminv(χ)/|N |D > Cemin, i.e., provided v(χ) > C|N |D/d). Thus, provided the
minimum valuation v(χ) of the prize is large enough, all the contestants in N \K(χ),
who constituted the impoverished majority under the deterministic scheme, suddenly
find their prospects brighten when the proportional scheme is introduced and are able
to become better off by working hard. The elite coterie K(χ), of course, loses its
status: the probabilities of winning the coveted prize drops from O(1/|K(χ)|) to
O(1/|N |) for each of its members, though they still must work so as to not lag
behind the others. In short, the proportional prize inspires all contestants to work
hard and considerably raises total output, as well as the payoffs of the impoverished
majority.

8.2 Bounded Deviation

Suppose that, when a contestant produces a fraction x of total output, he wins the
prize with probability h(x), with h(0) = 0 and h(1) = 1; and that h is of bounded
deviation from the linear function πD, i.e., there are positive constants m,M such
that

m(x− y) < h(x)− h(y) < M(x− y), for all y < x
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Then a careful rereading of the proofs reveal that the estimates of Theorems 1 and
2 survive, though in slightly weakened form: lower bounds need to be diminished by
a factor of m/M and upper bounds to be raised by a factor of M/m. In the same
vein, a contestant’s utility from winning the prize with probability p could be f(p)
instead of the standard expected value pf(1).If f is of bounded deviation from the
linear expectation pf(1), we can accomodate f just like h. Finally the quantification
of output can be altered without disrupting our results, so long as the alteration is
of bounded deviation.

8.3 Multiple Prizes

One might wonder what happens when l ≤ |N | apriori fixed deterministic prizes are
used instead of a single prize. When |N | = 2 it is evident that using two prizes
is wasteful since the loser will always get the second prize for free. In general, if
l << |N |, then again the proportional prize will perform better. The reason is as
follows. Assume everyone works hard. Define l “heroes” by the top l mean outputs
(as in section 7); and then define the coterie K to consist of those contestants whose
outputs have a positive probability of overtaking the weakest hero. Arguing as in
the proof of Theorem 8, the maximal effort in K will effectively bound the total
IR output, regardless of the values of the l prizes. Also, as in the previous section,
the expected size of K will be small. Thus the proportional prize will outperform l
deterministic prizes when l << |N |. We leave the case of general l for future work.

8.4 Interdependent Production

The discerning reader will notice that our analysis remains valid even if the ran-
dom output produced by a contestant is influenced by the effort (possibly factored
through output) of the others.Various assumptions will need to be recast (somewhat
cumbersomely) but the same method of proof applies. We skip the details.

8.5 More General Elite

We need not be so cut and dried as to require that non-elite contestants cannot
overlap with the hero. This was done for ease of exposition. But, more generally,
overlap with small probability does not disturb our conclusions. Say that K(χ) is
an “(1− ε)− elite” set if the probability of any contestant in N \K(χ) producing
output equalling or exceeding the hero’s, is at most ε. (This probability is to be of
course considered under the scenario that the contestant and the hero are both at
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effort level 1; and, in the case of interdependent production, that everyone in K(χ)
is also at effort level 1.) Then Theorem 8 holds, replacing c by c/(1− ε) in the upper
bound; and so Theorem 12, and hence also the comparison being carried out in this
section, holds with the same amendment.

9 The Strategic Game of Incomplete Information

Our main theme, namely that πP elicits better performance than πD when con-
testants’characteristics are suffi ciently diverse and noise is small, has been estab-
lished under the hypothesis that contestants know each others’characteristics. Now
we present some evidence that the theme remains intact even when a contestant
knows only his own characteristics with certainty and has a probability distribution
over those of his rivals. This is the standard scenario of incomplete information. Our
analysis will be in terms of illustrative examples, and not at the level of generality
of the complete information case. (We hope it will spur others to carry out a more
thoroughgoing.analysis.)
Let E = {0, 1} and N = {1, 2}. Let δn(1) = 1 and14 vn = v > 1 for n = 1, 2;

i.e., the incompleteness of information pertains only to the productivities τ 1, τ 2.
Of course, τnz (0) = 0 as always, no matter what the “skill” z of contestant n may
be. Suppose that τnz (1) is uniformly distributed on the interval [z, z + ε], where ε
is a measure of the noise on the output. Furthermore suppose that the skills of the
contestants n = 1, 2 are drawn independently from the intervals [a1, b1] and [a2, b2],
with uniform probability (and that all this is common knowledge to the contestants).
Since contestant n is informed of only his own skill, a strategy for him is given

by a function
σn : [an, bn]→ [0, 1]

where σn(x) is the probability with which n chooses effort 1 when his skill is x.
For any prize allocation scheme π, the game of incomplete information Γ∗π is then

defined in the standard manner. It depends not only on π = πP or πD but also on
the parameters v, a1, b1, a2, b2, ε which we suppress because they are fixed.
First suppose ex-ante symmetry between the contestants and no noise: [a1, b1] =

[a2, b2] = [0, 1] (say) and ε = 0.
Let F n

π ((p, σ′)|x) denote the payoff of n in the game Γ∗π, when he chooses effort 1
with probability p and his skill level is x, while his rival chooses the strategy σ′,i.e.,

14If v ≤ 1 then the only NE in Γ∗πD or Γ∗πP is that both agents never work (since effort 1 costs 1
which cannot be compensated by any probability of winning the prize)
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if n’s strategy is σ, his payoff in Γ∗π will be

F n
π (σ, σ′) =

∫ 1

0

F n
π ((σ(x), σ′)|x)dx.

Notice that F n
π ((1, σ′)|x) increases15 in x (for fixed n, π, σ′), since n’s disutility of

effort stays constant at 1 while his probability of winning the prize goes up16. Thus
n’s best reply to σ′ is to switch from 0 to 1 at some “threshold” skill c, which solves
F n
π ((1, σ′)|c) = 0 i.e., denoting by σc the strategy which assigs effort 1 if x ≥ c and
effort 0 if x < c, we see that σc is a best reply to σ′ in the game Γ∗π if F

n
π ((1, σ′)|c) = 0.

We conclude that (σc, σc) is a17 (symmetric) NE in Γ∗π if F
n
π ((1, σc)|c) = 0. The unique

c(π) that solves this equation is computed rather easily for π = πP or πD. Indeed
we have F n

πD
((1, σc)|c) = cv − 1 and

F n
πP

((1, σc)|c) = cv +

∫ 1

c

(
cv

x+ c
)dx− 1 = cv[1 + ln

1 + c

2c
]− 1

which gives (denoting c(πD) ≡ cD and c(πP ) ≡ cP )

cD =
1

v
(5)

and
v =

1

cP [1 + ln(1+cP
2cP

)]
(6)

When cP = 0, the right hand side of (6) is infinity by L’Hospital’s rule while at c = 1,
it is 1. Since v > 1 the solution of (6) is cP < 1, hence we have ln(1+cP

2cP
) > 0. Thus,

for any v > 1, we deduce that cP > cD. In short, more contestant-types are working
at NE under πP than under πD and hence πP elicits more expected output.
Next let us consider the effect of allowing for ex-ante asymmetry of the incomplete

information. To this end, let [a2, b2] = [∆, 1+∆] for 0 < ∆ < 118 and [a1, b1] = [0, 1],
i.e., contestant 2’s skills are ∆-higher than 1’s, so that ∆ denotes the degree of
asymmetry. As before, fix the noise ε = 0. Arguing as in the ex-ante symmetric case,

15weakly in Γ∗πD and strictly in Γ∗πP
16weakly in Γ∗πD and strictly in Γ∗πP
17also “the", i.e., there is only one symmetric NE as the reader may easily verify.
18If ∆ > 1 then we have the trivial situation that the highest skill-type of 1 cannot beat the

lowest skill type of 2 which renders the deterministic prize ineffective, while the proportional still
continues to elicit effort.
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there again exist thresholds cnD(∆), cnP (∆) such that (σ1
cD(∆), σ

2
cD(∆)), (σ

1
cP (∆), σ

2
cP (∆))

constitute the symmetric NE of the games Γ∗πD ,Γ
∗
πP
respectively; and, moreover,

cnP (∆) < cnD(∆)

for n = 1, 2 and all ∆ (unless v is so small that no contestant ever works in NE− we
implicitly eliminate such trivial NE by presuming v is high enough). Thus πP always
outperforms πD and, as anticipated, the superiority of πP becomes more pronounced
as the degree ∆ of the asymmetry rises. (For an example, similar in spirit, in the
context of complete information, see [12]: there the dissimilarity of contestants is
increased from 0 to ∞, and a threshold is shown to exist above which πP supplants
πD in eliciting more output.)
The exact calculations for the asymmetric case emerge from the following lemma.

Suppose a contestant is informed that his rival’s output is uniformly distributed in
some interval [z, z + η] ⊂ R+ and that his own skill is x. Fix x and think of z, η as
variable. We can compute two critical values zD ≡ zD(x, η), zP ≡ zP (x, η) such that
the expected payoff of the contestant is zero in Γ∗πD , Γ∗πP if he chooses effort 1 and if
z = zD, z = zP respectively. Since this payoff varies inversely in z, the contestant’s
best reponse to the rival is to choose effort 1 if z < zD and effort 0 if z > zD in the
game ΓD (or, effort 1 if z < zP and 0 if z > zP , in the game ΓP ). The critical values
zD, zP are as follows .

Lemma 14 The critcal z-values are

zD = x− η/v and zP =
η

exp (η/vx)− 1
− x.

Moreover we have
x (v − 1)− η ≤ zP ≤ x (v − 1) .

We leave it to the reader to see how our results for the asymmetric case can
be straightforwardly derived from this proposition. In fact, this proposition suffi ces
also for the analysis of games of “partial information” which lie between what we,
following others, have called games of “complete”and “incomplete” information. To
be concrete suppose [an, bn] is partitioned into k (for simplicity, equal) subintervals
[an+i∆, an+(i+1)∆] where ∆ = (bn−an)/k and i = 0, 1, 2, ...k−1. (When k = 1 we
have “incomplete” information and as k → ∞ we converge to “complete” informa-
tion.) Each contestant is now informed of his own exact skill and of the subinterval
of [an, bn] in which his rival’s skill lies. This defines a game of partial information in

20



the obvious way (from his initial probability distribution on [an, bn], the contestant
can infer conditional probabilities of his rival’s skill given the subinterval of [an, bn]
in which it lies).
We have not done the exact calculations, but it seems reasonably clear that πP

outperforms πD for every k, not just for the two extreme points k = ∞ and k = 1
that have already been checked.

9.1 The Effect of Noise

The purpose of our last example is to show that if the noise on output becomes so
large as to make skills count for little, then πD is more effi cacious in eliciting output
compared to πP , whereas with small noise it is the other way around.
As before let N = {1, 2}. Now there are three levels of effort E = {0, 0.5, 1} =

{0, S,W} where S means “shirk”(exert little effort) and W means “work”; and 0 of
course means non-participation in the game, as usual. The disutilities for these are
0, δ,∆ respectively, with δ small and ∆ large. The skills are represented by n equally
spaced points a1, . . . , an in the interval [2, 2 + γ] with a1 = 2 and an = 2 + γ. Each
contestant, independently of his rival, has probability 1/n of having any skill ai,
Efforts 0, S lead to outputs 0, 1 respectively, regardless of skill. Effort W leads to

output uniformly distributed in the closed interval [ai, ai + ε] if the skill is ai,where ε
represents the level of noise. To make noise large relative to skills, it will be simpler
to restrict 0 ≤ ε ≤ 2 and to fix γ small. (The smaller γ is fixed to be, the more it
is the case that noise overwhelms skill when it approaches its upper bound.) Thus
the game of incomplete information Γπ(ε, V ) now depends only on the prize scheme
π = πP , πD, on the noise ε and on the (common) valuation of the prize V .
Both for ease of calculation, and for better perspective, we devise a new measure

for the effi cacy of π in eliciting performance. Let Vπ(ε) be the smallest value19 of the
prize above which (W,W ) is an NE in the game Γπ(ε, V ), i.e.,

Vπ(ε) = inf {V : (W,W ) is an NE of Γπ(ε, V )}

We claim that, by fixing n large enough, γ small enough, and δ suffi ciently smaller
than ∆, the following result obtains:

VπP (ε) < VπD(ε) for small enough ε,

and
VπP (ε) > VπD(ε) for large enough ε.

19The measure Vπ is used in [12] to compare not just πP and πD, but to rank order a class of
schemes π of which πP and πD are two instances.
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The first (second) inequality says that prizes which induce (W,W ) – as an NE
– via πD form a strict subset (superset) of prizes that induce (W,W ) via πP ; and,
in this sense, πP is superior (inferior) to πD in eliciting performance.
We shall check the first inequality for ε = 0 and the second for ε = 2, and the

claim will then follow from continuity considerations.
Let ε = 0. Consider a contestant of the lowest skill level of 2, contemplating the

choice of 0, S,W under the scenario that his rival has chosen W at all skill levels. It
must be that W is his best reply in order to induce (W,W ) an NE. of Γπ(0, V )
When π = πD, he cannot win the prize with effort S since he produces 1 while

the rival produces at least 2. If he chooses effort W , then he can only win the prize
(with probability 1/2) in the event that the rival has matching lowest skill 2, and this
event occurs with probability 1/n. Thus his situation is summed up in the following
table (where “incentive to work”means the change in payoff by switching to W )

Effort Prob of win Payoff Incentive to work
0 0 0 (1/2n)V −∆
S 0 −δ (1/2n)V −∆ + δ
W 1/2n (1/2n)V −∆

We conclude that, in order to make (W,W ) an NE of ΓπD(0, V ), it is necessary to
have

V ≥ 2n∆

Now let π = πP . Assume γ ≤ 1. Noting that we get an upper (resp. lower)
bound on his probanility of winning the prize by imagining his rival to always be
endowed with the lowest (resp. highest) skill, and overestimating the output 2 + γ
of the highest skill by 3, we get

Effort Prob of win Payoff Incentive to work
0 0 0 (2/5)V −∆
S ≤ 1/3 ≤ (1/3)V − δ ≥ (1/15)V −∆ + δ
W ≥ 2/5 ≥ (2/5)V −∆

Thus, to make (W,W ) an NE of ΓπP (0, V ), it suffi ces to have

V ≥ 15∆

So VπP (0) < VπD(0) provided n ≥ 8 and γ ≤ 1.
Next suppose ε = 2. Choose γ ≤ 0.5 small enough to ensure that, if he chooses

W, he wins the prize with probability at least 0.4. (a number close to half) under
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either π = πP or π = πD. (This is clearly feasible since both probabilities converge
to 0.5 as γ goes to 0.).
Under πD we get the table

Effort Prob of win Payoff Incentive to work
0 0 0 (0.4)V −∆
S 0 −δ (0.4)V −∆ + δ
W ≥ 0.4 ≥ (0.4)V −∆

Thus, to make (W,W ) an NE of ΓπD(2, V ), it suffi ces to have

V ≥ (0.4)−1∆

Now consider πP . Recall that the rival of the strongest skill produces uniformly
in the interval [2 + γ, 4 + γ] , i.e., produces at most 2 + γ + 1 ≤ 3.5 with probability
0.5.and at most 2 + γ + 2 ≤ 4.5 with the remaining probability 0.5. Hence the effort
S ensures that the prize is won with probability at least 0.5(1/(4.5))+0.5(1/(5.5)) ≥
0.2, and we get the table

Effort Prob of win Payoff Incentive to work
0 0 0
S ≥ 1/5 ≥ (0.2)V − δ ≤ (0.3)V −∆ + δ
W ≤ 1/2 ≤ (0.5)V −∆

Thus it is necessary to have, taking δ ≤ (0.2)∆,

V ≥ (0.3)−1(∆− δ) ≥ (0.3)−1(0.8)∆ > 2.6∆

Since (0.4)−1 = 2.5 < 2.6, we conclude that VπP (2) > VπD(2) provided γ is small
enough (i.e., the noise is large enough).

Remark 15 It is evident that if we introduce noise ε′ on the output of S, with range
in [1, 1 + ε′] , then so long as ε′ < 1, our example above is not just unhampered, but
in fact reinforced. It is also easy to see that increasing n and decreasing γ (which is
our proxy for increasing noise) will amplify the conclusions of our example. Finally
it suffi ces, for our example to work, that the probability of any of the n skill levels
should go to zero as n goes to infinity (it need not precisely be 1/n).

10 Proofs

This section contains proofs that were postponed.
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10.1 Theorem 5

Proof. Let σ =
(
σ1, . . . , σN

)
be an NE under πP at χ. Denote by Z the total

expected output at σ. If σn(0) = 0 for all n then, by Assumption 1,

Z ≥ |N |demin

Now suppose σn(0) > 0 for some n. Let W denote the (stochastic) total output
produced by all the contestants other than n at σ and let Z ′ denote the expectation
ofW. Now if n is choosing effort 0 with positive probability, for a payoff of zero, it
must be that effort 1 does not get him a positive payoff, i.e., (with E for expectation)

0 ≥ E
[

dv

D +W

]
− C ≥

[
dv

D + Z ′

]
− C

where the first inequality comes again from Assumption 1 and the second is Jensen’s
inequality20. This yields

Z ′ ≥ dv

C
−D

Since Z ≥ Z ′, we conclude that

Z ≥ min

{
|N |demin,

dv

C
−D

}

10.2 Theorem 8

Proof. Since χ ≡ (δn, τn, vn)n∈N is fixed, we shall suppress it and write K ≡ K (χ).
Imagine the scenario when every contestant in K chooses effort 1. In this scenario
an j /∈ K has 0 probability of winning the prize at effort level 1 and hence, by the
stochastic dominance condition of Assumption 7, at any effort level. This defines
certain probabilities πk∗ > 0 for k ∈ K to win the prize, and (recalling that by
Assumption 1 each contestant produces at least d > 0 with probability 1) it is
evident that (i)

∑
k∈K π

k
∗ = 1 and (ii) πk∗ is independent of the mixed strategies

chosen by the contestants in N \ K. Furthermore for k ∈ K, again by stochastic
dominance, the probability that k wins can only increase if any contestants inK\{k}
change to strategies other than 1. Hence we deduce that every contestant k ∈ K can

20Jensen’s inequality states that, if G is a convex function and X is a random variable, then
EG(X) ≥ EG( X). We apply it here to the convex function d/(X +D).
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guarantee himself the payoff πk∗v
k − δk(1) by playing 1. Thus, if σ ∈ IR(ΓπD(χ)),

the payoff F k(σ) of k at σ satisfies F k(σ) ≥ πk∗v
k − δk(1) for all k ∈ K. But clearly

F k(σ) ≤ π̄k(σ)vk (denoting π̄k(σ) ≡ k’s probability of winning the prize under σ),
so we have

π̄k(σ) ≥ πk∗ − (δk(1)/vk)

for all k ∈ K, which implies∑
k∈K

π̄k(σ) ≥
∑
k∈K

πk∗ −
∑
k∈K

δk(1)

vk
= 1−

∑
k∈K

δk(1)

vk

But then, putting v ≡ v1 and observing B−1v ≤ vn ≤ Bv for all n ∈ N by part 1 of
Assumption 7 , we have∑

n∈N\K

π̄n(σ) = 1−
∑
k∈K

π̄k(σ) ≤
∑
k∈K

δk(1)

vk
≤ B

v

∑
k∈K

δk(1)

So we obtain ∑
n∈N\K

F n(σ) =
∑

n∈N\K

[
π̄n(σ)vn −

∑
e∈E

σn(e)δn(e)

]
≤ Bv

∑
n∈N\K

π̄n(σ)−
∑

n∈N\K

∑
e∈E

σn(e)δn(e)

≤ B2
∑
k∈K

δk(1)−
∑

n∈N\K

∑
e∈E

σn(e)δn(e)

But each n ∈ N \K can guarantee a payoff of at least 0 by choosing effort level 0,
so each F n(σ) is non-negative since σ ∈ IR (ΓπD(χ)), and thus

∑
n∈N\K F

n(σ) ≥ 0.
Combining the above two inequalities, we have∑

n∈N\K

∑
e∈E

σn(e)δn(e) ≤ B2
∑
k∈K

δk(1)

Since δk(1) ≤ C and δn(e) ≥ ce by Assumption 1 , we get∑
n∈N\K

∑
e∈E

σn(e)e ≤ B2|K|C
c

Recalling also that µn(e) ≤ De by Assumption 1, we obtain∑
n∈N\K

∑
e∈E

σn(e)µn(e) ≤ B2|K|C
c
D
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Clearly, by our definition of h and Assumption 1,∑
k∈K

∑
e∈E

σn(e)µk(e) ≤ B2|K|µh(1) ≤ B2|K|C
c
D

(using the fact that C > c in the last inequality). The above two inequalities prove
the Key Theorem.

10.3 Lemma 11

For the proof of Lemma 11, it will be useful to first establish some auxiliary results.
First, some notation. Let � = [0, 1]n be the unit cube in Rn and let 0 < ε < 1 be
fixed. For x = (x1, . . . , xn) in � we define

Nε (x) = |{i : xi ∈ [M − ε,M)}| , where M = max(xi).

If X is a �-valued random variable with density ρ (x) , we write Nρ
ε for the random

variable
Nρ
ε = Nε (X)

If ρ (x) ≡ 1 then the xi are iid with uniform density on [0, 1]. In this case we will
show that N1

ε is closely related to the binomial random variable Bε, which counts
the number of successes in n independent trials with individual success probability
ε:

Pr (Bε = k) =

(
n

k

)
εk(1− ε)n−k.

Lemma 16 If ρ (x) ≡ 1 then

Pr
(
N1
ε = k

)
=

{
Pr (Bε = k) if k < n− 1

Pr (Bε = n− 1) + Pr (Bε = n) if k = n− 1

Moreover
E
(
N1
ε

)
≤ nε (7)

Proof. It suffi ces to establish the first statement, since it implies that Bε sto-
chastically dominates N1

ε , which in turn implies the second statement. For the proof
of the first statement we note that the possible values of N1

ε are 0, 1, . . . , n− 1, while
those of Bε are 0, 1, . . . , n. Therefore it suffi ces to prove that

Pr
(
N1
ε = k

)
= Pr (Bε = k) for k < n− 1
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Ignoring ties, which occur with probability 0, the event N1
ε = k is a disjoint union

of n
(
n−1
k

)
events, corresponding to the choice of the maximum index (in n ways) and

the choice of the next k indices (in
(
n−1
k

)
ways). By symmetry, each of these events

has probability Pr (Ek), where Ek is the event

Ek = {x1 is largest}& {x2, . . . , xk+1 ∈ (x1 − ε, x1)}& {xk+2, . . . , xn ∈ [0, x1 − ε]}

Thus its suffi ces to show that

Pr (Ek) =
Pr (Bε = k)

n
(
n−1
k

) =

(
n
k

)
εk(1− ε)n−k

n
(
n−1
k

) =
εk(1− ε)n−k

n− k

Now writing q (x) = Pr (Ek|x1 = x) we have

Pr (Ek) =

∫ 1

0

q (x) dx

Since x2, . . . , xn are independent and uniform on [0, 1] we get

q (x) =

{
εk(x− ε)n−k−1 if x > ε

0 if x ≤ ε

Integrating over x, making a change of variable y = x− ε , we get, as desired

Pr (Ek) =

∫ 1

ε

εk(x− ε)n−k−1dx = εk
∫ 1−ε

0

yn−k−1dy =
εk(1− ε)n−k

n− k

Lemma 17 Suppose ρ (x) is bounded above by a constant β. Then we have

E (Nρ
ε ) ≤ βnε.

Proof. Using (7) we get

E (Nρ
ε ) =

∫
�
Nε (x) ρ (x) dx ≤ β

∫
�
Nε (x) dx = βE

(
N1
ε

)
≤ βnε

We can now prove Lemma 11
Proof. Transform Y , distributed uniformly on [d,D], to X = [Y − d] [D − d]−1

which is uniform on [0, 1]. The average size of the elite set is unaffected by this
transformation. Thus the result follows from Lemma 17
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10.4 Lemma 14

Proof. First consider πD. Then z = zD implies x = z+η/v, and thus the player wins
if the opponent’s output lies in the interval [z, z + η/v]. This event has probability
(η/v) /η = 1/v and gives expected payoff v (1/v)− 1 = 0.
Now consider πP . The expected payoff is

1

η

∫ z+η

z

(
xv

x+ y

)
dy − 1 =

xv

η
ln

(
x+ η + z

x+ z

)
− 1

Setting this equal to zero and solving for z we get

z =
η

exp (η/xv)− 1
− x = zP

For the bounds on zP we note that for an opponent of skill exactly y∗ = x (v − 1)
the payoff under πP is xv

x+y∗ − 1 = 0. Thus if z + η < y∗ the payoff at each y in
[z, z + η] is ≥ 0, which implies zP ≥ y∗ − η. Similarly if z > y∗, the payoffs in
[z, z + η] is ≤ 0, which implies zP ≤ y∗.
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