
1 Lecture 11 (2/24/2011)

1.1 Even and odd integers

The set of even integers is

{· · · ,−4,−2, 0, 2, 4, 6, · · · }

Thus an integer m is even iff it is of the form m = 2k for some integer k.
Similarly the set of odd integers is

{· · · ,−3,−1, 1, 3, 5, 7, · · · }

Thus an integer m is odd iff it is of the form m = 2k for some integer k.
Every integer is either even or odd but not both, therefore in U = Z

∼(m is even) is equivalent to (m is odd) and vice versa

Theorem 1 If an integer is even then its square is even.

Proof.

1. Let m be an integer.

2. Assume m is even.

3. Then m = 2k for some integer k

4. Squaring both sides we get

m2 = 4k2 = 2l where l = 2k2 (1)

5. Since k is an integer, 2k2 is an integer.

6. Therefore by (1) and by definition m2 is even.

We now prove the converse of this theorem.

Theorem 2 If the square of an integer is even then the integer is even.

This theorem is a little hard to prove as it stands, so we will prove instead its
contrapositive which is equivalent to Theorem 2. The contrapositive statement
is "if an integer is not even then its square is not even", or equivalently

Theorem 3 If an integer is odd then its square is odd.

Proof.

1. Let m be an integer.

2. Assume m is odd.
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3. Then m = 2k + 1 for some integer k

4. Squaring both sides we get

m2 = 4k2 + 4k + 1 = 2l + 1 where l = 2k2 + 2k (2)

5. Since k is an integer, 2k2 + 2k is an integer.

6. Therefore by (2) and by definition m2 is odd.

1.2 Rational and irrational numbers

Recall that a real number x is said to be rational if we can express x in the form
x = p/q where p, q are integers and q 6= 0. If x is not rational we say that x is
irrational.
A rational number x can have many expressions of form p/q; for example

1/2, 2/6, 74/148 are all expressions of the same rational number. In fact if p, q
have a common divisor say l, then we can write p = lp1, q = lq1 for some integers
p1, q1 and then we have

p

q
=
lp1
lq1

=
p1
q1

We say an expression p/q is reduced if p, q have no common divisors other than
±1.

Theorem 4 Every rational number has a reduced expression.

We postpone the proof of this theorem. The main idea is that we can always
cancel common divisors of the numerator and denominator to arrive at a reduced
expression. To make this argument precise requires a little bit of work.

1.3 Irrationality of
√
2

We now come to the main result of this lecture.

Theorem 5
√
2 is an irrational number.

This is hard to prove as it stands, therefore we give a proof by contradiction;
i.e. we assume that

√
2 is rational and derive a contradiction. The assumption

that
√
2 is rational gives us a place to start the proof; namely we can write

√
2

in the form p/q. The hard part (creative part) of the proof consists of figuring
out how to derive a contradiction.
Proof.

1. Assume by way of contradiction that
√
2 is rational.
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2. By Theorem 4,
√
2 has a reduced expression

√
2 = p/q (3)

for some integers p, q

3. By definition p, q have no common divisors other than ±1.

4. Thus p, q are not both divisble by 2, i.e. p, q are not both even.

5. Squaring (3) we get 2 = p2/q2 and hence

p2 = 2q2 (4)

6. Therefore p2 is even and hence by Theorem 2, p is even.

7. Thus p = 2k for some integer, and substituting in (4) we get

2q2 = p2 = (2k)
2
= 4k2

8. Cancelling 2 we get
q2 = 2k2

9. Thefore q2 is even and hence by Theorem 2, q is even.

10. Statements 4, 6, 9 constitute a contradiction.

11. Therefore
√
2 must be irrational, contrary to our assumption.

1.4 Infinitely many primes

Recall that a natural number p is said to be prime if p > 1 and the only divisors
of p are 1 and p.
A basic result about prime numbers is the following

Theorem 6 Every natural number bigger than 1 has a prime divisor.

We postpone the proof of this theorem as well, until after we discuss math-
ematical induction.
Next we have the following "easy" theorem, whose proof we leave as an

exercise.

Theorem 7 If k is a natural number then k, k + 1 have no common divisors
other than 1.

We come now to another mathematical theorem with a beautiful proof.

Theorem 8 There are infinitely many primes numbers.
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We will prove this by contradiction also. Thus we assume that there are
finitely many primes, and derive a contradiction. The main idea is that if there
were finitely many primes, we could write them all down and multuiply them
together.
Proof.

1. Suppose to the contrary that there are only finitely many primes, say

p1, p2, . . . , pm

2. Then the product k = p1p2 . . . pm is a natural number.

3. Every prime number divides k.

4. By Theorem 7, no prime number divides k + 1.

5. Since k + 1 > 1, this contradicts Theorem 6.

6. Therefore there must be infinitely many primes.

1.5 Exercises

1. Prove that if x is rational and y is irrational then x+ y is irrational.

[Hint: P ∧Q⇒ R is equivalent to P ∧ (∼R)⇒ (∼Q). Use this to get an
equivalent retsatement of the assertion, which is easier to prove.]

2. Prove that there are infinitely many irrational numbers.

3. Prove Theorem 7.

[Hint: Argue by contradiction, i.e. assume k, k+1 have a common divisor
l > 1, and derive a contradiction.]
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