Lecture notes on Dirichlet convolution

Siddhartha Sahi
Rutgers University

October 4, 2007

1 Convolution

An arithmetic function is a real or complex-valued function f whose domain
is the set of natural numbers N; e.g the Euler ¢-function. If f, g are arithmetic
functions, their convolution is defined as follows

(fxg)(n):=> f(dgn/d)= Y f(di)g
d|n dida=n

It follows immediately from the definition that f x g = g * f, and also that

(fxg)xh)(n)= > f(d)g(da)h(ds) = (f*(g*h))(n)

d1d2d3:n
Thus the convolution operation is commutative and associative.
e o . 1 if =1
Also if § is the function § (n) := o then
0 if n>1

=S (@ sn/d) = f ()

d|n

Hence ¢ is an identity for the convolution operation.

2 Multiplicative functions

An arithmetic function f is said to be multiplicative if
f (ning) = f (n1) f (n2) wheneverged (ny,ns) =1

We showed earlier that the Euler ¢-function is multiplicative and we will see
more examples in a moment.
By induction, one can see that a multiplicative function satisfies

fning...ng) = f(n1) f(ne)...[f(ng) if the n; are pairwise coprime.
In particular if n = p{*p5* ... p;* is the prime power decomposition of n, we get
fn) = f") f03°)--- f(p*)

Therefore f is completely determined by its values on prime powers p®.



3 Dirichlet’s theorem

Let D (n) denote the set of divisors of n.

Lemma 1 d € D (nins) if and only if d = dids for some di € D (ny), dy €
D (n2)

Proof. First suppose d = d;d» for some dj|n1, d2|ny. Then ny = dyxy,no =
dyxo for some integers x, 2, and hence nins = (dids) z129 and so d = dyds
divides nins.

Conversely suppose d divides nynz. Let d; = ged (d, ny) then ged (d/dy,ny/dy) =
1 and d/d, divides (nin2/di) = (n1/di) n2. Therefore d/d; divides n» and we
can take dy = d/d;. m

Lemma 2 Suppose ged (ny,ne) = 1, then
1. If di €D (nl) and dy € D (TLQ) then ng (dl,dQ) =1.

2. The multiplication map (di,ds) — dids is a bijection between D (ny) X
D (n3) and D (nins).

Proof. 1) Since ged (dy,ds) divides dy and d», it divides n; and nso, and
hence divides ged (n1,n2). Now ged (ny,n2) = 1 implies ged (dy,ds) = 1.

2) By the previous lemma, the map is surjective and so we only have to
prove that is 1-1. Suppose that we have

didy = dyd), for some dy,d; € D (ny), d2,d) € D (n2)

Then d; divides d}d5; but by 1) d; is coprime to dj, hence a; divides df. Similarly
d} divides d;. Thus d; = d}, which implies ds = d}. Therefore the map is 1-1.
|

We can now prove the following useful result due to Dirichlet.

Theorem 3 If f and g are multiplicative then so is f * g.
Proof. If ged (ng,nq) = 1, then

(f#9) (mna) = > f(d)g(nina/d)

d\nlnz

= Z f(did2) g P2 b9 Lemma 2 2)
dy dy

dy|ny,dz2|ns

> s fg () o (5) by emmaz )

d1|n1,dz2|n2

S f(d)g (Z—) S f(d)g (Z—)

d1|n1 da|na

= (f*9) (m1) (f * g) (n2)



4 Examples of multiplicative functions

As noted earlier, the Euler ¢-function is multiplicative.
The §-function defined above is multiplicative as well, since

1 fm=n=1
0 otherwise

6(mn)=5(m)5(n):{

k

Also the ezxponential function e (n) := n” is multiplicative since

er (mn) = (mn)" = mFn® = ex (m) e (n).

The function oy := e}, * eg is the sum of the kth powers of divisors of n

or (n) =Y ex (d)xeq (n/d) = d*
d|n

d|n

In particular o (n) = oy (n) is the sum of divisors and d(n) = oo (n) is the
number of divisors. By Dirichlet’s theorem these are all multiplicative functions.

Theorem 4 We have the following explicit formula:
o (1= pHatD) S (1 pk) ifk£0
Ok (Hlpll): Hz( pz )/( pz) 1f 75
IL (a; +1) ifk=0

Proof. The divisors of p* are p® with e < a, and we get
_\ —ey _ N\ Lk
o) =), ec@)eo ()= o
For k =0 we get a + 1, and for k£ # 0 we get (1 —pk(““)) / (1 —pk) . Since oy,
is multiplicative, the general result follows m
5 Moebius inversion formula
The Moebius p-function is defined as follows:

(n) = (—=1)" if n = pyps...p, with all p; distinct primes
H T 0 otherwise

Thus H (1) = (_1)0 = 17 H (6) = (_1)2 = 17/" (7) = _17 /1(12) = 07 etc.
Lemma 5 The Meobius function is multiplicative, and we have p*eg = 4.

Proof. Suppose ged (m,n) = 1. Then mn is a product of distinct primes if
and only if each of m,n is a product of distinct primes. In this case we have
p(mn) = (=1)" = u(m) u(n) where r is the total number of prime factors of
m and n. Otherwise we have u (mn) =0 = u(m) u (n).



Thus p is multiplicative and by Dirichlet’s theorem so is u * eg. Thus it is
enough to prove (u * eg) (p*) = ¢ (p?) for all prime powers p*. Now the divisors
of p® are p® with e < a, thus we have

(e eo) ) =D @) eo (") = p (1) + p(p) + p (B2) + oo 1 (07

Fora >0 weget (u*xep)(p”) =1—14+0+...40=0=46(p"), while for a =0
there is only one term and we get (uxeg)(1)=1=6(1). =

Corollary 6 (Moebius inversion formula) Let f, g be arithmetic functions then

g(n) =Y f(d) if and only if f (n) = g(d) p(n/d).
d|n d|n

Moreover in this case g is multiplicative if and only if f is multiplicative.

Proof. The two conditions are g = f x ey and f = g * u, respectively. If
g = f * ep holds then

grn=_(fre)xp=fx(eoxp) =fxd=f

and the converse is similar. The multiplicativity follows from Dirichlet’s theo-
rem. W

Definition 7 If f,g are related as in the corollary above, we say that (f,g) is
a Moebius pair.

By definition, (e, o) is a Moebius pair. Another important example is the
following.

Proposition 8 (¢,e1) is a Moebius pair.

Proof. It is enough to verfy that one of the two relations ¢ x ey = ey,
ey * it = ¢ holds for prime powers p*. We will check both

(@xe0) () =D ¢@)eo (p* ) =D o ()
e=0 e=0

= (p“—pafl) +...+(p1—1) +1
=p" =e (p)
Also

(erxpm) (@) =D e (@) (P* ) =Y p°u (")
e=0 e=0
=p*()+p* ' (-1)+0+...+0
=p'—p" =9 ().
]
Corollary 9 The following relation holds ¢ x o, = e1 x ey,.

Proof. We have ¢ x o, = (e1 *x pu) * (e, xeg) = (€1 *ep) *d =e xex. W



