Lecture notes on Dirichlet convolution

Siddhartha Sahi Rutgers University

October 4, 2007

1 Convolution

An **arithmetic** function is a real or complex-valued function f whose domain is the set of natural numbers \mathbb{N} ; e.g the Euler ϕ -function. If f, g are arithmetic functions, their **convolution** is defined as follows

$$(f * g)(n) := \sum_{d|n} f(d) g(n/d) = \sum_{d_1d_2=n} f(d_1) g(d_2)$$

It follows immediately from the definition that f * g = g * f, and also that

$$((f * g) * h) (n) = \sum_{d_1 d_2 d_3 = n} f (d_1) g (d_2) h (d_3) = (f * (g * h)) (n)$$

Thus the convolution operation is *commutative* and *associative*.

Also if δ is the function $\delta(n) := \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } n > 1 \end{cases}$ then

$$(f * \delta) (n) = \sum_{d|n} f (d) \delta (n/d) = f (n)$$

Hence δ is an *identity* for the convolution operation.

2 Multiplicative functions

An arithmetic function f is said to be **multiplicative** if

$$f(n_1n_2) = f(n_1) f(n_2)$$
 whenever gcd $(n_1, n_2) = 1$

We showed earlier that the Euler ϕ -function is multiplicative and we will see more examples in a moment.

By induction, one can see that a multiplicative function satisfies

 $f(n_1n_2...n_k) = f(n_1) f(n_2)...f(n_k)$ if the n_i are pairwise coprime.

In particular if $n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$ is the prime power decomposition of n, we get

$$f(n) = f(p_1^{a_1}) f(p_2^{a_2}) \dots f(p_k^{a_k})$$

Therefore f is completely determined by its values on prime powers p^a .

3 Dirichlet's theorem

Let D(n) denote the set of divisors of n.

Lemma 1 $d \in D(n_1n_2)$ if and only if $d = d_1d_2$ for some $d_1 \in D(n_1)$, $d_2 \in D(n_2)$.

Proof. First suppose $d = d_1d_2$ for some $d_1|n_1, d_2|n_2$. Then $n_1 = d_1x_1, n_2 = d_2x_2$ for some integers x_1, x_2 , and hence $n_1n_2 = (d_1d_2)x_1x_2$ and so $d = d_1d_2$ divides n_1n_2 .

Conversely suppose d divides n_1n_2 . Let $d_1 = \gcd(d, n_1)$ then $\gcd(d/d_1, n_1/d_1) = 1$ and d/d_1 divides $(n_1n_2/d_1) = (n_1/d_1)n_2$. Therefore d/d_1 divides n_2 and we can take $d_2 = d/d_1$.

Lemma 2 Suppose $gcd(n_1, n_2) = 1$, then

- 1. If $d_1 \in D(n_1)$ and $d_2 \in D(n_2)$ then $gcd(d_1, d_2) = 1$.
- 2. The multiplication map $(d_1, d_2) \mapsto d_1 d_2$ is a bijection between $D(n_1) \times D(n_2)$ and $D(n_1 n_2)$.

Proof. 1) Since gcd (d_1, d_2) divides d_1 and d_2 , it divides n_1 and n_2 , and hence divides gcd (n_1, n_2) . Now gcd $(n_1, n_2) = 1$ implies gcd $(d_1, d_2) = 1$.

2) By the previous lemma, the map is surjective and so we only have to prove that is 1-1. Suppose that we have

$$d_1d_2 = d'_1d'_2$$
 for some $d_1, d'_1 \in D(n_1), d_2, d'_2 \in D(n_2)$

Then d_1 divides $d'_1 d'_2$; but by 1) d_1 is coprime to d'_2 , hence a_1 divides d'_1 . Similarly d'_1 divides d_1 . Thus $d_1 = d'_1$, which implies $d_2 = d'_2$. Therefore the map is 1-1.

We can now prove the following useful result due to Dirichlet.

Theorem 3 If f and g are multiplicative then so is f * g.

Proof. If $gcd(n_1, n_2) = 1$, then

$$(f * g) (n_1 n_2) = \sum_{d \mid n_1 n_2} f(d) g(n_1 n_2/d)$$

= $\sum_{d_1 \mid n_1, d_2 \mid n_2} f(d_1 d_2) g\left(\frac{n_1}{d_1} \frac{n_2}{d_2}\right)$ by Lemma 2 2)
= $\sum_{d_1 \mid n_1, d_2 \mid n_2} f(d_1) f(d_2) g\left(\frac{n_1}{d_1}\right) g\left(\frac{n_2}{d_2}\right)$ by Lemma 2 1)
= $\sum_{d_1 \mid n_1} f(d_1) g\left(\frac{n_1}{d_1}\right) \sum_{d_2 \mid n_2} f(d_2) g\left(\frac{n_2}{d_2}\right)$
= $(f * g) (n_1) (f * g) (n_2)$

4 Examples of multiplicative functions

As noted earlier, the Euler ϕ -function is multiplicative.

The δ -function defined above is multiplicative as well, since

$$\delta(mn) = \delta(m) \delta(n) = \begin{cases} 1 & \text{if } m = n = 1\\ 0 & \text{otherwise} \end{cases}$$

.

Also the exponential function $e_k(n) := n^k$ is multiplicative since

$$e_k(mn) = (mn)^k = m^k n^k = e_k(m) e_k(n)$$

The function $\sigma_k := e_k * e_0$ is the sum of the kth powers of divisors of n

$$\sigma_k(n) := \sum_{d|n} e_k(d) * e_0(n/d) = \sum_{d|n} d^k$$

In particular $\sigma(n) = \sigma_1(n)$ is the sum of divisors and $d(n) = \sigma_0(n)$ is the number of divisors. By Dirichlet's theorem these are all multiplicative functions.

Theorem 4 We have the following explicit formula:

$$\sigma_k \left(\prod_i p_i^{a_i}\right) = \begin{cases} \prod_i \left(1 - p_i^{k(a_i+1)}\right) / \left(1 - p_i^k\right) & \text{if } k \neq 0\\ \prod_i \left(a_i + 1\right) & \text{if } k = 0 \end{cases}$$

Proof. The divisors of p^a are p^e with $e \leq a$, and we get

$$\sigma_k (p^a) = \sum_{e=0}^{a} e_k (p^e) e_0 (p^{a-e}) = \sum_{e=0}^{a} p^{ke}$$

For k = 0 we get a + 1, and for $k \neq 0$ we get $(1 - p^{k(a+1)}) / (1 - p^k)$. Since σ_k is multiplicative, the general result follows

5 Moebius inversion formula

The Moebius μ -function is defined as follows:

$$\mu(n) := \begin{cases} (-1)^r & \text{if } n = p_1 p_2 \dots p_r \text{ with all } p_i \text{ distinct primes} \\ 0 & \text{otherwise} \end{cases}$$

Thus
$$\mu(1) = (-1)^0 = 1$$
, $\mu(6) = (-1)^2 = 1$, $\mu(7) = -1$, $\mu(12) = 0$, etc.

Lemma 5 The Meobius function is multiplicative, and we have $\mu * e_0 = \delta$.

Proof. Suppose gcd (m, n) = 1. Then mn is a product of distinct primes if and only if each of m, n is a product of distinct primes. In this case we have $\mu(mn) = (-1)^r = \mu(m) \mu(n)$ where r is the total number of prime factors of m and n. Otherwise we have $\mu(mn) = 0 = \mu(m) \mu(n)$. Thus μ is multiplicative and by Dirichlet's theorem so is $\mu * e_0$. Thus it is enough to prove $(\mu * e_0)(p^a) = \delta(p^a)$ for all prime powers p^a . Now the divisors of p^a are p^e with $e \leq a$, thus we have

$$(\mu * e_0) (p^a) = \sum_{e=0}^{a} \mu (p^e) e_0 (p^{a-e}) = \mu (1) + \mu (p) + \mu (p^2) + \ldots + \mu (p^a).$$

For a > 0 we get $(\mu * e_0) (p^a) = 1 - 1 + 0 + ... + 0 = 0 = \delta (p^a)$, while for a = 0 there is only one term and we get $(\mu * e_0) (1) = 1 = \delta (1)$.

Corollary 6 (Moebius inversion formula) Let f, g be arithmetic functions then

Moreover in this case g is multiplicative if and only if f is multiplicative.

Proof. The two conditions are $g = f * e_0$ and $f = g * \mu$, respectively. If $g = f * e_0$ holds then

$$g * \mu = (f * e_0) * \mu = f * (e_0 * \mu) = f * \delta = f$$

and the converse is similar. The multiplicativity follows from Dirichlet's theorem. \blacksquare

Definition 7 If f, g are related as in the corollary above, we say that (f, g) is a Moebius pair.

By definition, (e_k, σ_k) is a Moebius pair. Another important example is the following.

Proposition 8 (ϕ, e_1) is a Moebius pair.

Proof. It is enough to verfy that one of the two relations $\phi * e_0 = e_1$, $e_1 * \mu = \phi$ holds for prime powers p^a . We will check both

$$(\phi * e_0) (p^a) = \sum_{e=0}^{a} \phi (p^e) e_0 (p^{a-e}) = \sum_{e=0}^{a} \phi (p^e)$$
$$= (p^a - p^{a-1}) + \dots + (p^1 - 1) + 1$$
$$= p^a = e_1 (p^a)$$

Also

$$(e_1 * \mu) (p^a) = \sum_{e=0}^{a} e_1 (p^e) \mu (p^{a-e}) = \sum_{e=0}^{a} p^e \mu (p^{a-e})$$
$$= p^a (1) + p^{a-1} (-1) + 0 + \dots + 0$$
$$= p^a - p^{a-1} = \phi (p^a).$$

Corollary 9 The following relation holds $\phi * \sigma_k = e_1 * e_k$.

Proof. We have $\phi * \sigma_k = (e_1 * \mu) * (e_k * e_0) = (e_1 * e_k) * \delta = e_1 * e_k$.