
LECTURE 23 EXCERCISE SOLUTIONS

Problem. 1: Prove that if S1, S2, ..., Sn are subsets of A, then S1 ∪ S2 ∪ ... ∪ Sn ⊂ A.

Solution. Let x ∈ S1 ∪ S2 ∪ ... ∪ Sn. If x is in the union of all those sets, then there must
be at least one Si such that x ∈ Si. If not, then x certainly couldn’t be in their union. By
assumption, Si ⊂ A. Hence, x ∈ A. Therefore, S1 ∪ S2 ∪ ... ∪ Sn ⊂ A.

Common Problems. When asked to prove one set is contained in another, it is a very
common approach to simply take an arbitrary element in the one set, and follow your nose
until you can show it is contained in the other.

Problem. 2: Suppose that π = {S1, S2, ..., Sn} satisfies 1) S1 ∪ ... ∪ Sn = A and 2) if i 6= j,
then Si ∩ Sj = ∅. Prove that π is a partition of A.

Solution. It suffices to show that for any x ∈ A, there exists a unique Si such that x ∈
Si. This is the definition of a partition. So consider let x be an element of A. Because
S1 ∪ ... ∪ Sn = A, x ∈ S1 ∪ ... ∪ Sn. Hence x must be in at least one of the sets S1, ..., Sn.
This proves existence; we must further show uniqueness. Suppose that x ∈ Si and x ∈ Sj.
Therefore, x ∈ Si ∩ Sj. By assumption, if i 6= j, the intersection is empty. Since it is not
empty (it contains x), it must be that i = j, hence Si = Sj.
We have therefore shown that for any element in A, there exists some Si that contains it,
and that Si is unique. Therefore, π is a partition of A.

Common Problems. Existence is relatively straightforward. The key to this problem, as
I see it, is uniqueness. But considering uniqueness almost leads directly to considering the
intersection, at which point assumption two comes into play.

Problem. 3: Let π = {S1, S2, ..., Sn} be a partition of A. Let R be a relation such that
(a, b) ∈ R if there exists some Si such that a ∈ Si and b ∈ Si. Prove that R is an equivalence
relation, and that A/R = π, or that the equivalence classes of R are given by π.

Solution. First, showing that R is an equivalence relation. We must show that it is reflex-
ive, symmetric, and transitive. Let a ∈ A. Since π is a partition, a ∈ Si for some Si. Hence,
there is some Si such that a ∈ Si and a ∈ Si. Hence, (a, a) ∈ R. Therefore, R is reflexive.
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Suppose that (a, b) ∈ R. Then there exists some Si such that a ∈ Si and b ∈ Si. This
is equivalent to b ∈ Si and a ∈ Si. Hence, (b, a) ∈ R. Therefore, R is symmetric.

Suppose that (a, b) ∈ R, (b, c) ∈ R. Since (a, b) ∈ R, there exists some set Sj such that
a ∈ Sj and b ∈ Sj. Since (b, c) ∈ R, there exists some set Si such that b ∈ Si and c ∈ Si.
Note that b ∈ Sj and b ∈ Si. Since π is a partition, b is in a unique set in π, therefore
Si = Sj. Hence, we have Si such that a ∈ Si, b ∈ Si, c ∈ Si. Hence, (I say hence a lot) a ∈ Si

and c ∈ Si. Therefore, (a, c) ∈ R. Therefore, R is transitive.

Then, the equivalence classes. Let E be an equivalence class of R. Consider any x ∈ E.
Since x ∈ A, and π is a partition of A, x ∈ Si for some Si. So consider any y ∈ Si. Clearly,
we have an Si such that x ∈ Si and y ∈ Si, therefore (x, y) ∈ R. Therefore, y ∈ E. Hence,
Si ⊂ E. Further, consider any z ∈ E. Since x ∈ E, (x, z) ∈ R. Therefore, there exists
some Sj such that x ∈ Sj and z ∈ Sj. However, since x ∈ Si and x ∈ Sj, by the uniqueness
property of partitions, we know that Si = Sj. Hence, z ∈ Si. Therefore, E ⊂ Si. Since
E ⊂ Si, Si ⊂ E, we have that E = Si.

This shows us that each equivalence class is one of the sets in π. Further, the above also
shows that, taking any Sk and taking x ∈ Sk, the equivalence class associated with x must
be Sk. Hence, every set in π is an equivalence class. Since every set in π is an equivalence
class, and every equivalence class is a set in π, the two must be equal: A/R = π.

Common Problems. The hard part of this problem is, I think showing that the set of
equivlance classes is π. There are probably many ways to do this, but it should always take
something like this form: showing that π ⊂ A/R (any Si is an equivalence class), and then
that A/R ⊂ π (any equivalence class is some Si), therefore π = A/R.
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