
LECTURE 22 EXCERCISE SOLUTIONS

Problem. 1: Let A = {1, 2}. List the ordered pairs and draw the digraph for a relation on
A, for each of the following properties.
a) Not reflexive, not symmetric, and not transitive.
b) Reflexive, not symmetric, and not transitive.
c) Not reflexive, symmetric, and not transitive.
d) Reflexive, symmetric, and not transitive.
e) Not reflexive, not symmetric, and transitive.
f) Reflexive, not symmetric, and transitive.
g) Not reflexive, symmetric, and transitive.
h) Reflexive, symmetric, and transitive.
8 Points, 1 each.

Solution. Note to begin with, that the empty relation is both symmetric and transitive.
The conditions for symmetry and transitivity must hold for all elements in the relation, and
if there are no elements in the relation, they certainly do hold. The empty set causes all
kinds of trouble that way.

Similarly, a relation with one pair is necessarily transitive. Do you see why?

Note the following as well. With two elements in our set, there are four possible pairs
to consider: (1, 1), (1, 2), (2, 2), (2, 1).

If the relation is not symmetric, it must contain one of (1, 2), (2, 1), but not both.

a) Since the relation we want is not symmetric, it cannot be empty. Since the relation we
want is not transitive, it cannot have one pair. Therefore, it either has two pairs, three pairs,
or four pairs. If it had four pairs, it would necessarily contain (1, 1), (2, 2), making it reflex-
ive. Therefore it cannot have four pairs. Therefore, it either has two pairs or three pairs. If it
had three pairs, since it cannot contain (1, 1), (2, 2) together, it is either {(1, 1), (1, 2), (2, 1)}
or {(1, 2), (2, 2), (2, 1)}. However, both of these are symmetric, so the relation we are after
cannot contain three pairs. Therefore it must contain two pairs. Without loss of generality,
consider the relation {(1, 1), (1, 2)}. This is in fact transitive, since for any two pairs of the
form (a, b), (b, c), the relation contains the pair (a, c). Indeed, any of the possible remaining
two-pair relations will be transitive. Therefore, the relation we are after cannot contain only
two pairs. Since we’ve ruled out every possible number of pairs the relation can have, the
relation cannot exist.
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b) Since reflexive, the relation contains (1, 1), (2, 2). Therefore, the relation contains either
two, three, or four pairs. Since not symmetric, it contains either (1, 2) or (2, 1), but not both.
Therefore the relation contains three pairs. Without loss of generality, consider the relation
{(1, 1), (2, 2), (1, 2)}. Again, this relation is transitive since for any possible (a, b), (b, c) pair
of pairs in the relation, (a, c) is in the relation. Indeed, the same logic rules out any of
the remaining possible three pair relations. Again, this gives a contradiction, and no such
relation exists.

c) {(1, 2), (2, 1)}. Not reflexive for the obvious reason, symmetric, and not transitive since
it doesn’t contain (1, 1).

d) Reflexive means the relation contains (1, 1), (2, 2). This is transitive, so it must contain
something more. To maintain symmetry, it must contain (1, 2), (2, 1), so the relation con-
tains all four possible pairs. Unfortunately, the relation containing all four pairs is transitive.
Therefore, no such relation can exist.

e) {(1, 2)}. Not reflexive, for the obvious reasons, not symmetric since it doesn’t contain
(1, 2), and transitive since for every (a, b), (b, c) pair of pairs (of which there are none), it
contains (a, c).

f) {(1, 1), (1, 2), (2, 2)}. Reflexive, not symmetric, and for every (a, b), (b, c) pair, it contains
(a, c), so transitive.

g) {(1, 1)}. Not reflexive, since it doesn’t contain (2, 2), definitely symmetric, and for every
(a, b), (b, c) pair of pairs (of which there are one), it contains (a, c), so it is transitive.

h) {(1, 1), (2, 2)} would suffice, as would the set of all four pairs, {(1, 1), (1, 2), (2, 2), (2, 1)}.

Common Problems. I didn’t expect an explanation or justification for each, I only graded
on whether the answer given was correct.
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Problem. 2: Let R be a relation on A, and prove the following.
a) R is reflexive iff IA ⊂ R.
b) R is symmetric iff R−1 ⊂ R.
c) R is transitive iff R ◦R ⊂ R.
6 Points, 2 each.

Solution. a) R is reflexive ⇐⇒ ∀a ∈ A, (a, a) ∈ R ⇐⇒ ∀(a, a) ∈ IA, (a, a) ∈ R ⇐⇒
IA ⊂ R.

b) Noting that (b, a) ∈ R is equivalent to (a, b) ∈ R−1, we can say the following: R is
symmetric ⇐⇒ ∀(a, b) ∈ R, (b, a) ∈ R ⇐⇒ ∀(b, a) ∈ R−1, (b, a) ∈ R ⇐⇒ R−1 ⊂ R.

c) Note that R is transitive if ∀a, b, c ∈ A, ((a, b) ∈ R ∧ (b, c) ∈ R) =⇒ (a, c) ∈ R. Also,
by the definition of composition, for any (a, c) ∈ R ◦ R, there is some b ∈ A such that
(a, b), (b, c) ∈ R. Therefore, we can say the following:

Assume R is transitive. For any (a, c) ∈ R◦R, we have some b ∈ A such that (a, b), (b, c) ∈ R.
By transitivity, (a, c) ∈ R. Therfore, R ◦R ⊂ R.

Assume R ◦ R ⊂ R. Assume that (a, b), (b, c) ∈ R. Then (a, c) ∈ R ◦ R. Since R ◦ R ⊂ R,
(a, c) ∈ R. Therefore, ∀a, b, c ∈ A, ((a, b) ∈ R ∧ (b, c) ∈ R) =⇒ (a, c) ∈ R. Therefore, R is
transitive.

Common Problems. Since these were all ⇐⇒ statements, I’d intended each to be 2
points, one point for each direction. Since most people did all three as a chain of ⇐⇒
statements, effectively proving both directions at once, it really became a question of one
point for the right idea, and one point for how well I thought you accomplished what you
were trying to prove.

The problem, if I may take a brief aside, with doing a proof by a chain of ⇐⇒ state-
ments, is that your proof often becomes just a chain of symbols, and it is very difficult to
see why you are doing what you are doing, and whether or not it is justified. I strongly
encourage some amount of words to at least outline what you are doing, and justify why you
can do that. Words always help.

To that end, points were lost for the most part because I couldn’t see the connections,
how you were justifying one step to the next. Many people seemed to have the right sort
of idea, but it got lost in a jumble of symbols when they tried to put it in the proof, and I
had trouble following what you were trying to do. This was especially common in the third
proof, when in the jump from transitivity to the condition on R ◦R, people were combining
symbols and statements in a way I don’t think applied to the problem, if they were true
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at all. Similarly in the second, the jump from talking about things in R to talking about
things in R−1 was often not justified, or presented in such a way I couldn’t really tell what
you were trying to do. Part of the problem in that case, I feel, is that if R is symmetric, it is
actually true that R−1 = R, and most people almost proved that, but weakened their proof
in the last minute to make it R−1 ⊂ R, without making it clear what they were doing.

Problem. 3: Letm be a fixed natural number, and define Rm = {(x, y)|∃k ∈ Z, x−y = km}.
Prove Rm is an equivalence relation, and that the set of equivalence classes of Rm is given
by m distinct classes, Zm = {0, 1, ...,m− 1}.
6 Points total, 1 for each property of an equivalence relation, 3 for showing the m distinct
classes.

Solution. Note that x−x = 0 = 0m for any integer x. Therefore, (x, x) ∈ Rm for all x ∈ Z,
so Rm is reflexive.

Assume that (x, y) ∈ Rm. Then there exists some integer k such that x−y = km. Note then,
that y − x = (−k)m, so y − x is an integer multiple of m as well. Therefore, (y, x) ∈ Rm,
and Rm is symmetric.

Assume that (x, y), (y, z) ∈ Rm. Then there exist integers k, j, such that x−y = km, y−z =
jm. In that case, x− z = (x− y) + (y − z) = km+ jm = (k + j)m. Therefore, x− z is an
integer multiple of m as well, and (x, z) ∈ Rm. Therefore, Rm is transitive.

Being reflexive, symmetric, and transitive, Rm is an equivalence relation.

Consider any integer n. By a previous theorem, there exist unique integers q, r with
0 ≤ r ≤ m − 1 such that n = qm + r. In that case, n − r = qm, and we see that
(n, r) ∈ Rm, or that n is in the equivalence class r, and r ∈ {0, 1, ...,m− 1}. Hence, any
integer is in one of these m equivalence classes. And clearly each of those equivalence classes
are nonempty, just looking at the integers 0, 1, 2, ...,m− 1.

It remains to show that the m equivalence classes given above are distinct. Suppose that
r = s, 0 ≤ r < m, 0 ≤ s < m. We may assume without loss of generality that r ≥ s.
Since r = s, we see that r ∈ s, therefore, r − s is an integer multiple of m. However,
0 ≤ r − s ≤ r < m. The only integer multiple of m less than m and greater than or equal
to 0 is 0. Therefore, r − s = 0, or r = s. Therefore, each of the m equivalence classes are
distinct.

Common Problems. Many people lost points for only doing half the problem, either not
proving that it is an equivalence relation, or not proving that the classes were distinct.
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