
LECTURE 10 EXCERCISE SOLUTIONS

Problem. 1: Given m letters distributed into n pigeonholes, with m n, show there exists a
pigeonhole with two or more letters.

Solution. Following the hint, we let the universe be the set of pigeonholes, and P (x) be
the property that pigeonhole x contains 2 or more letters. Note then, that ∼ P (x) is the
property that x contains 1 or 0 letters. We are therefore asked to prove ∃xP (x). Proceeding
as suggested in remark 3, we consider the opposite (the denial) of what we want to prove,
and hope to arrive at a contradiction.

Assume the denial is true, ∼ ∃xP (x). This is equivalent to ∀x(∼ P (x)). What does this
mean? This statement says that for each pigeonhole, there are either 0 or 1 letters in that
pigeonhole. Noting that each letter is in some pigeonhole, we therefore conclude that there
is at most one letter per pigeonhole, or at most m letters. Hence, m ≤ n. However, by
assumption we had that m n. Since this is a contradiction, we conclude that our original
assumption ∼ ∃xP (x) is false.

If ∼ ∃xP (x) is false, then ∃xP (x) is true. Therefore, there exists some pigeonhole with
2 or more letters in it.

Problem. 2: If a, b, c, d are natural numbers with a
b
< c

d
, then there is a natural number n

such that a
b
< n

b+d
< c

d
.

Solution. As has been stated, proving existence statements are really the only time you
should consider proving by example. In this case, consider n = a + c. But that number is
sort of useless by itself, so I’ll describe my logic/computations. In some sense, the solution
a + c is suggested by the structure of the problem (just in a sort of visual way), but if you
want something more precise, here’s how I thought about it. In these sorts of problems, it’s
often important to keep in mind what we’re given, so we’ll start there. Rewriting a

b
< c

d
, we

have that

ad < cb

Keep that in mind.
After that, I started by putting the inequality we’re interested in in terms of a common
denominator.

ad(b+ d)

bd(b+ d)
<

nbd

(b+ d)bd
<

cb(b+ d)

db(b+ d)
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Once you have everything in a common denominator, it’s clear that what we’re really after
is an n such that

ad(b+ d) < nbd < cb(b+ d)

Or, just to be clear, if not suggestive,

(ad)d+ (ad)b < nbd < (cb)d+ (cb)b

The problem here is the d ∗ d and the b ∗ b. We’d like to get something that is entirely
dividible by bd, and hence is some integer multiple of bd. So, to relate d ∗ d and b ∗ b to bd,
I went back to the given and wrote down the following.

(ad)d < (cb)d

(ad)b < (cb)b

Then we can say that, adding adb to each side of the first and cbd to each side of the second,

(ad)d+ (ad)b < (cb)d+ (ad)b

(cb)d+ (ad)b < (cb)d+ (cb)b

Thus we see that (ad)d+ (ad)b < cbd+ abd < (cb)d+ (cb)b. Simplifying in the middle,

(ad)d+ (ad)b < (a+ c)bd < (cb)d+ (cb)b

Since the above inequality is true, we may take n = a+ c, and satisfy everything.

Common Problems. As I’m writing this, I have not graded the problems yet, but there
is an important point to be made here. It is insufficient to simply write down n = a + b as
your answer. The problem asks you to prove that such a satisfying n exists, and as such
it is insufficient to give an n without showing that it does satisfy the inequality - that’s the
proof part of it.

Problem. 3: Continuing from problem 2, assume that bc− ad = 1. Prove that n is unique.

Solution. Recall that in the previous problem, you were asked to show that such an n exists.
Having exhibited such an n, you are now asked to, given the assumptions, prove that there
is a unique such n.

There are two approaches you could take here. If you assumed that you knew what the
unique n was (for instance, if you thought that the n you found in problem 2 was unique),
then you could show that the inequality failed for n+1 and thus failed for all larger numbers,
and failed for n − 1 and thus failed for all smaller numbers. Therefore, it is only satisfied
for your particular n, and it is unique. If you did not know what the unique n was, then
what you could do is work out, given a, b, c, d, the range of n that satisfied the inequality.
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For instance, for some Nmin, Nmax, if Nmin ≤ n ≤ Nmax, then n satisfies the inequality. You
could then try to show that, if bc − ad = 1, then there is a single natural number between
Nmin and Nmax, and prove uniqueness of n that way.

However, I believe that my answer of n = a + c is the unique answer in this case. So I
want to show that

a+ c− 1

b+ d
≤ a

b

c

d
≤ a+ c+ 1

b+ d

The above are equivalent to
b(a+ c− 1) ≤ a(b+ d)

c(b+ d) ≤ d(a+ c+ 1)

A little algebra...
ba+ bc− b ≤ ab+ ad

cb+ cd ≤ da+ dc+ d

Cancel stuff...
bc− b ≤ ad

cb ≤ da+ d

Rearrange in a suggestive way...
bc− ad ≤ b

bc− ad ≤ d

Now, to review, if the above inequalities are true, then it is true that a+c−1
b+d

≤ a
b
and c

d
≤ a+c+1

b+d

are true. If those are true, then n = a + c is the unique n that satisfies the inequality in
problem 2.

So it suffices to show that bc−ad ≤ b and bc−ad ≤ d. However, by assumption, bc−ad = 1.
Thus these inequalities are equivalent to showing 1 ≤ b and 1 ≤ d. Since b and d are natural
numbers, these inequalities are true.

Therefore, bc− ad ≤ b and bc− ad ≤ d are true.

Therefore, a+c−1
b+d

≤ a
b
and c

d
≤ a+c+1

b+d
are true.

Therefore, n = a+ c is the unique n such that the inequality in problem 2 is satisfied.
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