MATH 250-02

03/28/2012
Practice questions for exam \#2
\#1 Compute the determinant of each of the following matrices:
a) $\left[\begin{array}{cccc}2 & 1 & -1 & 3 \\ 1 & 0 & -1 & 1 \\ -1 & -1 & 2 & 1 \\ 3 & 1 & 0 & 2\end{array}\right]$
b) $\left[\begin{array}{cccc}1 & 2 & 0 & 0 \\ -1 & 3 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & -1 & 1\end{array}\right]$
c) $\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64\end{array}\right]$
\#2 Use Cramer's rule to find x_{3} if

$$
\begin{gathered}
2 x_{1}-x_{2}=3 \\
-x_{1}+2 x_{2}-x_{3}=5 \\
-x_{2}+2 x_{3}=1 .
\end{gathered}
$$

Show your work.
\#3 Find the characteristic polynomial, all real eigenvalues and bases for the corresponding eigenspaces for each of the following matrices:
а) $\left[\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right]$
b) $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & -2 \\ -1 & 0 & 2\end{array}\right]$
c) $\left[\begin{array}{ccc}1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & -1 & 2\end{array}\right]$
$\# 4$ Let $A=\left[\begin{array}{lll}2 & 3 & 3 \\ 0 & 3 & 1 \\ 0 & 0 & 2\end{array}\right]$.

Find an invertible matrix P and a diagonal matrix D such that

$$
D=P^{-1} A P
$$

Note that this is the same as requiring

$$
A=P D P^{-1}
$$

\#5 (a) Is the matrix

$$
A=\left[\begin{array}{ccc}
3 & 1 & 0 \\
-1 & 3 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

diagonalizable? Why or why not?
(b) Is the matrix

$$
B=\left[\begin{array}{ccc}
2 & 3 & 4 \\
0 & 3 & 1 \\
0 & 0 & -2
\end{array}\right]
$$

diagonalizable? Why or why not?
\#6 You should be able to state the definitions of each of the following terms. (I give a page reference for each term.)
an upper triangular matrix (page 153);
a lower triangular matrix (page 153);
a subspace V of \mathbf{R}^{n} (page 227);
the null space of a matrix A (page 232);
the column space of a matrix A (page 233);
the row space of a matrix (page 236);
a basis for a subspace V of \mathbf{R}^{n} (page 241);
the dimension of a subspace V of \mathbf{R}^{n} (page 246);
an eigenvector \mathbf{v} of an n by n matrix A (page 294);
the eigenvalue λ of an n by n matrix A that corresponds to an eigenvector v (page 294);
the eigenspace of an n by n matrix A that corresponds to an eigenvalue λ (page 296);
the characteristic polynomial of an n by n matrix A (page 302);
the multiplicity of an eigenvalue λ of an n by n matrix A (page 305);
an n by n matrix A is diagonalizable if ... (page 315);
$\# 7$ Let $A=\left[\begin{array}{lllll}0 & 3 & 0 & 2 & -3 \\ 1 & 2 & 2 & 3 & -2 \\ 2 & 4 & 4 & 5 & -4 \\ 1 & 1 & 2 & 1 & -1\end{array}\right]$.
(a) Find a basis for Row A
(b) Find a basis for $\operatorname{Col} A$
(c) Find a basis for Null A
\#8 Show that

$$
\left\{\left[\begin{array}{c}
2 \\
1 \\
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
4 \\
4 \\
-2 \\
0 \\
4
\end{array}\right]\right\}
$$

is a basis $N u l l A$ where A is the matrix from problem $\# 7$.
\#9 (a) Find the general solution of the system of differential equations:

$$
\begin{gathered}
y_{1}^{\prime}=2 y_{1}-y_{2} \\
y_{2}^{\prime}=-y_{1}+2 y_{2}
\end{gathered}
$$

(Here y^{\prime} denotes the derivative of y.)
(b) If

$$
A=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
$$

find A^{100}.
$\# 10$ Let A and B be 3 by 3 matrices. Suppose $\operatorname{det} A=2$ and $\operatorname{det} B=5$.
(a) Can you determine $\operatorname{det} A B$? If so, what is it? If not, why not?
(b) Can you determine $\operatorname{det} A^{3}$? If so, what is it? If not, why not?
(c) Can you determine det $2 B$? If so, what is it? If not, why not?
\#11 Suppose A is an m by n matrix, that rank $A=3$, nullity $A=7$, and nullity $A^{T}=5$. What are m and n ?
$\# 12$ (a) Suppose that V and W are subspaces of \mathbf{R}^{n} and that V is contained in W. Show that $\operatorname{dim} V \leq \operatorname{dim} W$.
(b) Suppose that V and W are subspaces of \mathbf{R}^{n}, that V is contained in W, and that $\operatorname{dim} V=\operatorname{dim} W$. Prove that $V=W$.
$\# 13$ Let A be an n by n matrix. Suppose that \mathbf{u} is a 1-eigenvector for A, that \mathbf{v} is a 2 -eigenvector for A, and that \mathbf{w} is a 3 -eigenvector for A. Prove that $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent.
$\# 14$ Let A be a 4 by 4 matrix. Suppose that \mathbf{u} is a 1 -eigenvector for A, that \mathbf{v} is a 2 -eigenvector for A, that \mathbf{w} is a -3 -eigenvector for A, and that \mathbf{z} is a λ-eigenvector for A where λ is some negative number. Suppose that $\operatorname{rank}[\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{z}]=3$. What is λ ? Why?

