
Math 477-02 - Solutions to Review problems for Exam #2 - April 15, 2009
Review Session: Monday, April 13, 6:30-8:30 M in SEC-211 (BUSCH)

Calculators may not be used on the exam. You will be given a sheet containing a copy
of table 5.1 of the the text and the following formulas:
Binomial: P{X = k} =

(
n
k

)
pk(1− p)n−k, k = 0, 1, ..., n.E[X] = np, V ar(X) = np(1− p).

Geometric: P{X = k} = p(1− p)k−1, k = 1, 2, ....E[x] = 1
p , V ar(X) = (1−p)

p2 .

Poisson: P{X = k} = λk

k! e
−λ, k = 0, 1, 2, ....E[X] = λ, V ar(X) = λ.

Exponential: fX(x) = λe−λx, x ≥ 0, E[X] = 1
λ , V ar(X) = 1

λ2 .

Normal: fX(x) = 1
σ
√

2π
e
−(x−µ)2

2σ2 .E[x] = µ, V ar(X) = σ2.

#1 A continuous random variable X has density

fX(x) = cx, if 0 ≤ x ≤ 1,

fX(x) = 0, ifx < 0 or x > 1

for some constant c.
(a) Find c.
(b) Find P{X ≥ 1

3} and P{X = 1
3}.

(c) Find E[X] and V ar(X).
Now assume that Y is a second continuous random variable which is uniforly distributed

on the interval [0, 1] an that X and Y are independent.
(d) Find the joint density function f(x, y) being careful to specify where f(x, y) = 0

and giving its value where it is non-zero.
(e) Find P{X ≥ Y }

Solution: (a) Since

1 =
∫ ∞
−∞

fX(x)dx =
∫ 1

0

cxdx =

[
cx2

2
]10 =

c

2
we have c = 2.

(b) P{X ≥ 1
3} =

∫ 1
1
3

2xdx = 8
9 and P{X = 1

3} =
∫ 1

3
1
3

2xdx = 0.

(c) E[X] =
∫ 1

0
x(2x)dx = 2

3 , and E[X2] =
∫ 1

0
x2(2x)dx = 1

2 . Thus V ar(X) = E[x2] −
E[X]2 = 1

2 −
4
9 = 1

18 .
(d) FX,Y (x, y) = 2x if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 and is equal to 0 otherwise.
(e) P{X ≥ Y } =

∫ 1

0

∫ y=x

y=0
2xdydx =

∫ 1

0
[2xy]y=x

y=0dx =
∫ 1

0
2x2dx = [2x3

3 ]10 = 2
3 .
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#2 Ellen plays a game in which her chance of winning is 1
5 . Using a normal approximation,

estimate the probability of her winning exactly 25 times if she plays the game 100 times.

Solution: The exact solution comes from the binomial distribution with n = 100, p = 1
5 .

Thus the mean is np = 20 and the variance is np(1−p) = 16. We may approximate this by
a normal random variable Y with µ = 20, σ2 = 16 and approximate the required quantity
by

P{24.5 < Y < 25.5} = P{25.5 < Y } − P ({24.5 < Y )}.

Now Z = (Y − 20)/4 is a standard normal random variable (mean 0, variance 1) and the
quantity we want is

P{1.375 < Z} − P{1.125 < Z}.

Taking values from Table 5.1, we see that this isapproximately 0.0457.

#3 Alex, Bruce and Charlie are playing darts using the disk x2 + y2 ≤ 4 as the target.
They always hit the target, and the x and y components of their impact points have the
following joint distributions ,denoted fA, fB , fC respectively:

fA(x, y) = cA(4− x2 − y2),

fB(x, y) = cB ,

fC(x, y) = cC(x2 + y2).

(a) Find cA, cB , cC . (You might want to use polar coordinates for Alex and Charlie.)
(b) The game is scored by giving 4 points for a hit inside the circle x2 + y2 = 1 and

1 point for a hit outside that circle. What is the expected value of the number of points
scored by each player on a throw.

Solution: (a) Since

1 =
∫ ∫

x2+y2≤4

cA(4− x2 − y2)dxdy = cA

∫ 2

r=0

∫ 2π

θ=0

(4− r2)rdrdθ = 8πcA

we have cA = 1
8π . Similarly,

1 =
∫ ∫

x2+y2≤4

cBdxdy = cB

∫ 2

r=0

∫ 2π

θ=0

rdrdθ = 4πcB

so cB = 1
4π and
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1 =
∫ ∫

x2+y2≤4

cC(x2 + y2)dxdy = cB

∫ 2

r=0

∫ 2π

θ=0

(r2)rdrdθ = 8πcC

so cC = 1
8π .

(b) Let D stand for either A, B or C. Then the expected value for the number of points
scored by player D is∫ ∫

x2+y2≤1

4fD(x, y)dxdy +
∫ ∫

1≤x2+y2≤4

fD(x, y)dxdy.

Evaluating the integrals (again using polar coordinates) gives the expected values 37
16

for Alex, 7
4 for Bruce and 19

16 for Charlie.

#4 A certain transistor has lifetime T , where T is a positive random variable, measured
in days, with densityf(t) = Kte−2t.

(a) What is K?
(b) Suppose it is known that the component has lasted s days. What is the probability

that it will last two more days?

Solution: (a) Using integration by parts we see that the∫
te−2tdt = − (2t+ 1)e−2t

4
+ C

(where C is an arbitrary constant). Then we have

1 =
∫ ∞

0

f(t)dt = K

∫ ∞
0

e−2tdt = K[− (2t+ 1)e−2t

4
]∞0 =

K

4
.

Thus K = 4.
b) This is the conditional probability

P{T ≥ s+ 2|T ≥ s} =
P{T ≥ s+ 2, T ≥ s}

P{T ≥ s} =

P{T ≥ s+ 2}
P{T ≥ s} =

∫∞
t=s+2

4te−2tdt∫∞
t=s

4te−2tdt
=

2s+ 5
2s+ 1

e−4.

#5 Let X be a binomial random variable with n = 3 and p = .5 and let Y be a geometric
random variable with parameter p = .5. Suppose that X and Y are independent.
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(a) Give the values p(x, y) of the joint probability mass function of X and Y for all x, y
satisfying 0 ≤ x ≤ 3, 1 ≤ y ≤ 4.

(b) Find P{X < Y }.
(c) Find the probability mass function for X + Y .

Solution: (a) P{X = i, Y = j} =
(

3
i

)
(.5)k+3.

(b)

P{X < Y } =
∞∑
j=1

P{X = 0, Y = j}+
∞∑
j=2

P{X = 1, Y = j}+

∞∑
j=3

P{X = 2, Y = j}+
∞∑
j=4

P{X = 3, Y = j} =

(.5)3 + 3(.5)4 + 3(.5)5 + (.5)6 = (8 + 12 + 6 + 1)/64 = 27/64.

(c)
P{X + Y = 1} = P{X = 0, Y = 1} = (.5)4 = 1/16,

P{X + Y = 2} = P{X = 0, Y = 2}+ P{X = 1, Y = 1} = (.5)3 + 3(.5)4 = 7/32,

P{X + Y = 3} = P{X = 0, Y = 3}+ P{X = 1, Y = 2}+ P{X = 2, Y = 0} =

(.5)6 + 3(.5)5 + 3(.5)4 = 19/64,

and, for k ≥ 4,

P{X = 0, Y = k}+P{X = 1, Y = k−1}+P{X = 2, Y = k−2}+P{X = 3, Y = k−3} =

(.5)k+3 + 3(.5)k+2 + 3(.5)k+1 + (.5)k = (.5)k+3(1 + 6 + 12 + 8) = 27(.5)k+3.

#6 Cars pass a certain point on a road according to a Poisson process, with an average
rate of 3 cars per hour. Find the probability that an observer wil see exacty three cars
pass in one hour of observation

(a) if three cars pass in the first half hour;
(b) if no cars pass in the first half hour.

Solution: The average number of cars passing in a half hour is 3
2 and so, if X is the

number of cars passing one half hour, then

PX = k = (
3
2
)ke−

3
2 /k!.
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Setting k = 0 gives the answer e−
3
2 for (a), and setting k = 3 gives the answer ( 9

16 )e−
3
2 for

(b).

#7 By definition, a ”hundred year flood” on a river is a flood which is so severe that it
happens, on the average, once every hundred years. Find the probability that there will be
exactly three hundred year floods on the Raritan River between 2010 and 2159 (inclusive),
both exactly and by using a suitable Poisson approximation. Assume that at most one
such flood can occur in any year and thet floods in different years are independent.

Solution: The average number of hundred year floods in a 150 year period is 3
2 . Thus, if X

is the number of hundred year floods in a hundred year period, the Poisson approximation
gives

P{X = k} = (
3
2
)ke−

3
2 /k!.

The desired probability is then P{X = 3} = ( 9
16 )e−

3
2 . The exact value, using the binomial

distribution is (
150
3

)
(.01)3(.99)147.

#8 Let X and Y be independent random variables, exponentially distributed with param-
eters λ and µ respectively.

(a) Find P{X > 2Y }.
(b) Find the probability density for the random variable Z = X + Y.

Solution: (a) µ/(µ+ 2λ); (b) µλ(e−µz − e−λz)/(λ− µ).

#9 A total of n balls, numbered 1, 2, ..., n are put into n urns, also numbered 1, 2, ..., n in
such a way that ball number i is equally likely to go into any one of the urns numbered
1, 2, ..., i. Find:

(a) the expected number of urns that are empty;
(b) the probability that no urn is empty.

Solution: (a) Let Xi,j = 1 if the i-th ball is the first ball placed in the j-th urn and
Xi,j = 0 otherwise. Then

∑
1≤j≤i≤nXi,j is the number of non-empty urns and so

∑
1≤j≤i≤n

E[Xi,j ]
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is the expected number of non-empty urns. Now E[X1,1] = 1 while if i > 1 and i ≥ j ≥ 1
we have

E[Xi,j ] = (
j − 1
j

)(
j

j + 1
)...(

i− 2
i− 1

)(
1
i
) =

j − 1
i(i− 1)

.

Thus for i > 1 we have

i∑
j=1

E[Xi,j =
1

i(i− 1)

i∑
j=1

j − 1 =
1

i(i− 1)
i(i− 1)

2
=

1
2
.

Thus the expected number of non-empty urns is

n∑
i=1

i∑
j=1

E[Xi,j ] = 1 +
n∑
i=2

1
2

= 1 +
(n− 1)

2
=
n+ 1

2

and so the expected number of empty urns is n−1
2 .

(b) If no urn is empty, then the i-th urn must contain the i-th ball. The probability of
this is 1

n!) .

#10 An entomologist is catching mosquitos in certain region which is inhabited by r
distinct types of mosquitos. Each mosquito caught will, independently of the types of the
previous catches, be of type i with probability Pi (where, of course,

∑
1≤i≤r Pi = 1).

(a) Compute the mean number of mosquitos that are caught before the first type 1
catch.

(b) Compute the mean number of types of insects that are caught before the first type
1 catch.

Solution: (a) Let Xi = 1 if the i-th mosquito caught is first type 1 mosquito to be caught.
Then the nuber of osquitos caught before the first type 1 mosquito is caught is

∞∑
i=1

(i− 1)Xi

and so the expected number of mosquitos caught before the first type 1 mosquito is caught
is ∞∑

i=1

(i− 1)E[Xi].

Now E[Xi] = (1 − p1)i−1p1 and so (using
∑∞
i=0 ia

i = a
(1−a)2 ) we see that the expected

number of mosquitos caught before the first type 1 mosquito is caught is

1− p1

p1
.
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(b) For 2 ≤ j ≤ r, let Xi,j = 1 if the i-th mosquito is the first type j mosquito to
be caughr and no type 1 mosquito has been caught yet. Then the number of types of
mosquitos caught before the first type 1 mosquito is caught is

∑r
j=2

∑∞
i=1Xi,j and so the

mean number of types caught before the first type 1 catch is

r∑
j=2

∞∑
i=1

E[Xi,j ].

Now E[Xi,j ] = (1− p1 − pj)i−1pj and so

∞∑
i=1

E[Xi,j ] =
pj

p1 + pj
.

Thus the mean number of types of mosquitos caught before the first type 1 mosquito is
caught is

r∑
j=2

pj
p1 + pj

.


