REVIEW PROBLEMS FOR FINAL EXAMINATION

$\# 1$ Let $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 2 & 2 & 1\end{array}\right], B=\left[\begin{array}{cc}2 & -1 \\ 0 & 1 \\ 1 & -2\end{array}\right], C=\left[\begin{array}{ccc}1 & 1 & 3 \\ -1 & 0 & 0 \\ 2 & 1 & 0\end{array}\right], \mathbf{u}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$,
$\mathbf{v}=\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]$. Find each of the following if it is defined. If it is not defined, say so.
a) $B A$; b) $A C$; c) $B C$; d) $\mathbf{u} \cdot \mathbf{v}$; e) $\mathbf{u v}$; f) $\left(\mathbf{u}^{T}\right) \mathbf{v}$; g) $\mathbf{u}\left(\mathbf{v}^{T}\right)$; h) $A B-B A$; i) $B A-C ; \mathrm{j})\|\mathrm{v}\|$;
\#2 Find the inverse of $A=\left[\begin{array}{cccc}1 & 1 & -8 & -2 \\ 0 & 1 & 6 & 5 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 1 & 0\end{array}\right]$. Then find the solution

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

of the equation

$$
A \mathbf{x}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right]
$$

$\# 3$ Let $A=\left[a_{i j}\right]$ be a 5 by 5 matrix with $\operatorname{det} A=1$. Let $B=\left[i j a_{i j}\right]$. (That is, the (i, j) entry of B is $i j$ times the (i, j) entry of A.) What is $\operatorname{det} B$? \#4 Let

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 1 & 1 & 1 \\
2 & 1 & 0 & 3 & 2 \\
1 & -1 & -1 & 1 & 1 \\
3 & 0 & -1 & 4 & 3
\end{array}\right]
$$

Find: a) a basis for the row space of $A ; \mathrm{b}$) a basis for the column space of $A ;$ c) a basis for the nullspace of $A ;$ d) the dimension of the row space of A;
e) the dimension of the column space of $A ; \mathrm{f}$) the dimension of the nullspace of A. State two general results relating these numbers.
\#5 If the following system of linear equations is consistent, solve it for $\mathbf{x}=\left[x_{1}, x_{2}, x_{3}\right]$. If it is not consistent explain why.

$$
\begin{gathered}
2 x_{1}+4 x_{2}+6 x_{3}=4 \\
x_{2}+3 x_{3}=2 \\
3 x_{1}+5 x_{2}+6 x_{3}=1
\end{gathered}
$$

\#6 Find all values of a such that the following system of linear equations has a solution, and then find all of the solutions.

$$
\begin{gathered}
x_{1}+2 x_{2}+2 x_{3}=6 \\
x_{1}-2 x_{2}+2 x_{3}=a \\
2 x_{2}+4 x_{3}=1 \\
-x_{2}+2 x_{3}=2
\end{gathered}
$$

\#7 You should be able to state the definitions of each of the following terms. (I give a page reference for each term.)
the dot product of vectors a and \mathbf{b} in \mathbf{R}^{n} (page 363);
two vectors \mathbf{u} and \mathbf{v} are orthogonal if ... (page 363);
the norm (or length) of a vector \mathbf{v} (page 361);
an orthogonal set of vectors $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$ (page 374);
a unit vector (page 361);
an orthogonal basis for a subspace W of \mathbf{R}^{n} (page 375);
an orthonormal basis for a subspace W of \mathbf{R}^{n} (page 375);
the orthogonal complement of a set S of vectors in \mathbf{R}^{n} (page 389);
the orthogonal projection of a vector \mathbf{u} on the line through a vector \mathbf{v} (page 366);
the orthogonal projection of a vector \mathbf{u} on a subspace W of \mathbf{R}^{n} (page 393);
the distance from a vector \mathbf{v} to a subspace W of \mathbf{R}^{n} (page 397);
a symmetric matrix A (page 12);
an orthogonal matrix Q (page 412).
You should also be able to state the definitions of terms listed in the previous review sheets. These are:
the transpose of a matrix (page 7);
a linear combination of a set of vectors (page 14);
the standard vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ (page 17);
a consistent (or inconsistent) system of linear equations (page 29);
the augmented matrix of a system of linear equations (page 31);
the coefficient matrix of a system of linear equations (page 31);
a basic variable for a system of linear equations (page 35);
a free variable for a system of linear equations (page 35);
the rank of a matrix (page 47);
the nullity of a matrix (page 47);
the phrase "a set of vectors is linearly dependent" (page 75);
the phrase "a set of vectors is linearly independent" (page 75);
an upper triangular matrix (page 153);
a lower triangular matrix (page 153);
a subspace V of \mathbf{R}^{n} (page 227);
the null space of a matrix A (page 232);
the column space of a matrix A (page 233);
the row space of a matrix (page 236);
a basis for a subspace V of \mathbf{R}^{n} (page 241);
the dimension of a subspace V of \mathbf{R}^{n} (page 246);
an eigenvector \mathbf{v} of an n by n matrix A (page 294);
the eigenvalue λ of an n by n matrix A that corresponds to an eigenvector
v (page 294);
the eigenspace of an n by n matrix A that corresponds to an eigenvalue
λ (page 296);
the characteristic polynomial of an n by n matrix A (page 302);
the multiplicity of an eigenvalue λ of an n by n matrix A (page 305);
an n by n matrix A is diagonalizable if ... (page 315);
\#8 Find an orthonormal basis for the null space of the matrix

$$
\left[\begin{array}{llll}
1 & 0 & 2 & 5 \\
0 & 1 & 2 & 4
\end{array}\right]
$$

\#9 Find the equation of the least-squares line for the data:

$$
(-1,1),(0,0),(1,3),(2,4)
$$

\#10

Find the vector in Span $\left\{\left[\begin{array}{c}1 \\ -1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 2\end{array}\right]\right\}$ which is closest to the vector $\left[\begin{array}{c}-1 \\ -1 \\ 2 \\ 1\end{array}\right]$.
\#11 Let $A=\left[\begin{array}{ccc}-3 & 6 & 0 \\ 0 & 3 & 0 \\ -3 & 2 & 0\end{array}\right]$.
a) Find the eigenvalues of A and a basis for each eigenspace.
b) Find an invertible matrix P and a diagonal matrix D such that $A=$ $P D P^{-1}$ (or, equivalently, $D=P^{-1} A P$.
c) Find the general solution of the system of differential equations

$$
\begin{gathered}
y_{1}^{\prime}=-3 y_{1}+6 y_{2} \\
y_{2}^{\prime}=3 y_{2} \\
y_{3}^{\prime}=-3 y_{1}+2 y_{2}
\end{gathered}
$$

\#12 Let $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}$, a subspace of \mathbf{R}^{4}.
a) Find the orthogonal complement W^{\perp}.
b) Find the orthogonal projection of $\mathbf{v}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ on W.
c) Find an orthonormal basis for W.
\#13 Consider the real symmetric matrices $A=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 4\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 4 & 2 \\ 1 & 2 & 1\end{array}\right]$.
a) Find the eigenvalues of A and an orthonormal basis for each eigenspace. Find the eigenvalues of B and an orthonormal basis for each eigenspace.
b) Find an orthogonal matrix Q and a diagonal matrix D such that $A=Q D Q^{-1}$ (or, equivalently, $D=Q^{-1} A Q$). Find an orthogonal matrix
Q_{1} and a diagonal matrix D_{1} such that $B=Q_{1} D_{1} Q_{1}^{-1}$ (or, equivalently, $\left.D_{1}=Q_{1}^{-1} A_{1} Q_{1}\right)$.
c) Write down Q_{1}^{-1} explicitly.
\#14 Compute $\operatorname{det} A$ if

$$
A=\left[\begin{array}{cccc}
2 & 2 & 4 & 4 \\
0 & 1 & 1 & 1 \\
-1 & -1 & 7 & 1 \\
3 & 3 & 3 & 6
\end{array}\right]
$$

\#15 Compute $\operatorname{det} B$ if

$$
B=\left[\begin{array}{lll}
0 & 0 & 7 \\
0 & 3 & 1 \\
5 & 2 & 5
\end{array}\right]
$$

$\# 16$ Let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors in \mathbf{R}^{n}. Suppose

$$
\|\mathbf{u}\|=2,\|\mathbf{v}\|=5,\|\mathbf{w}\|=3, \mathbf{u} \cdot \mathbf{v}=-4, \mathbf{u} \cdot \mathbf{w}=2
$$

and

$$
\mathbf{v} \cdot \mathbf{w}=6 .
$$

Find

$$
\|3 \mathbf{u}-2 \mathbf{v}+\mathbf{w}\| .
$$

$\# 17$ Suppose R and S are two 3 by 3 matrices, that $\operatorname{det} R=3$ and $\operatorname{det} S=5$. Find a) $\operatorname{det}(R S) ;$ b) $\operatorname{det}(2 S) ;$ c) $\operatorname{det} R^{2}$.
\#18 Suppose that P is a 2 by 3 matrix, that Q is a 3 by 2 matrix and that $\operatorname{det} P Q=7$. What is $\operatorname{det} Q P$? Why?
\#19 (a) Prove that if A is an n by n symmetric matrix and \mathbf{u} and \mathbf{v} are column vectors in \mathbf{R}^{3} then $(A \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(A \mathbf{v})$.
(b) Prove that if A is an n by n symmetric matrix and \mathbf{u} and \mathbf{v} are eigenvectors for A corresponding to different eigenvalues then \mathbf{u} and \mathbf{v} are orthogonal.
\#20 Let A be a 4 by 4 symmetric matrix. Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}2 \\ -1 \\ -1 \\ -1\end{array}\right]$.
Suppose $A \mathbf{u}=3 \mathbf{u}$ and $A \mathbf{v}=a \mathbf{v}$ for some real number a. What is a ? Why?
\#21 Find the $L U$ decomposition of

$$
A=\left[\begin{array}{cccc}
1 & 3 & -1 & 1 \\
-1 & -1 & 3 & 0 \\
2 & 8 & 1 & 8
\end{array}\right]
$$

$\# 22 A$ is a 5 by 5 matrix. The equation $A \mathbf{x}=\mathbf{0}$ has free variables x_{2}, x_{3}, and x_{5} and has general solution

$$
x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
2 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
0 \\
0 \\
0 \\
-3 \\
1
\end{array}\right] .
$$

(a) Find the reduced row echelon form of A.
(b) If $A=\left[\begin{array}{lllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}\end{array}\right]$ and

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right],
$$

and

$$
\mathbf{a}_{4}=\left[\begin{array}{c}
0 \\
-1 \\
1 \\
-1 \\
0
\end{array}\right]
$$

find \mathbf{a}_{2} and \mathbf{a}_{3} and \mathbf{a}_{5}.
$\# 23$ Let U, V and W be subspaces of \mathbf{R}^{5}. Assume

$$
U \subseteq V \subseteq W^{\perp}
$$

and that

$$
\operatorname{dim} U=2, \operatorname{dim} W=3
$$

What is $\operatorname{dim} V ?$
$\# 24$ Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ be a linearly independent set of vectors in \mathbf{R}^{6} and let V be Span S.
(a) Show that $T=\left\{\mathbf{v}_{1}-\mathbf{v}_{2}, \mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{3}-\mathbf{v}_{4}, \mathbf{v}_{3}+\mathbf{v}_{4}\right\}$ is a basis for V.
(b) Show that $\left\{\mathbf{v}_{1}-\mathbf{v}_{2}, \mathbf{v}_{2}-\mathbf{v}_{3}, \mathbf{v}_{3}-\mathbf{v}_{4}, \mathbf{v}_{4}-\mathbf{v}_{1}\right\}$ is linearly dependent.

